SUPER
CLOUD

D14

SUPERCLOUD Self-Management of Security

Project number:

Project acronym:

Project title:

Project Start Date:

Duration:

Programme:

Deliverable Type:
Reference Number:
Work Package:
Due Date:

Actual Submission Date:

Responsible Organisation:
Editor:
Dissemination Level:

Revision:

Abstract:

Keywords:

Implementation

643964
SUPERCLOUD

User-centric management of security and dependability in clouds of
clouds

1st February, 2015
36 months
H2020-1CT-2014-1

Demonstrator
ICT-643964-D1.4/ 1.0
WP 1

JUL 2017 - M30

31st July, 2017

IMT

Reda Yaich, Nora Cuppens, Frédéric Cuppens
PU

1.0

This report describes the implementation components that constitute
the Self-Management of Security. For each component, a basic de-
scription of its functioning mechanism and the interfaces needed to
communicate with it are provided.

Self-Management, Security, SSLA, Negotiation, Autonomic

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 643964.

This work was supported (in part) by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 15.0091.

This document has gone through the consortiums internal review process and is still subject to the
review of the European Commission. Updates to the content may be made at a later stage.

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

Editor

Reda Yaich, Nora Cuppens, Frédéric Cuppens (IMT)

Contributors (ordered according to beneficiary numbers)

Reda Yaich, Nora Cuppens, Frédéric Cuppens (IMT)
Marc Lacoste, Sébastien Canard (Orange)

Alysson Bessani, Fernando Ramos, Nuno Neves (FC.ID)
Krzysztof Oborzynski (PHHC)

Daniel Pletea (PEN)

Marko Vukolic (IBM)

Disclaimer

The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.

This document has gone through the consortiums internal review process and is still subject to the
review of the European Commission. Updates to the content may be made at a later stage.

SUPERCLOUD D1.4 Page 1

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

Executive Summary

This Deliverable describes the implementation of the SUPERCLOUD Security Self-Management Frame-
work. We present the specification and development of security services that are needed by Cloud
Service Customers (CSC) to define, control and manage the required level of protection over compute,
storage and network planes. An important part of the Deliverable is also dedicated to the presenta-
tion of Security Service Level Specification and Negotiation Platform. In addition, we report on the
integration of security services together as well as with compute, data and network components. Fi-
nally, we showcase the integration of Security Self-Management with SUPERCLOUD project use-cases
demonstrators (i.e., Philips Imaging Platform).

SUPERCLOUD D1.4 Page I1

SUPER
D1.4SUPERCLOUD Self-Management of Security Implementation CLOUD

Contents

Chapter 1 |intr0duction| 1
[1.1 Motivation and Objectives|. 1
1.2 Document Organization| o v e 1

Chapter 2 [Security Self-Management Framework 2

p Yy g

2.1 Overview of Security Selt-Management| L. 2
[2.2 Security Selt-Management Approach Specification|. 4
2.2.1 Micro-Services Architecturelo oL 4
[2.2.2 Docker for Micro-Services Deployment| 4
[2.2.3 Security Selt-Management Dockerized Architecturel 5
Chapter 3 [Security Service Level Management 6

Yy g
3.1 SSLA Specification Service]o 6
[3.1.1 Accounts Management| L Lo 6
[3.1.2 Service and Protection Level Expression| 8
[3.2 SSLA Negotiation Platform| 0o 0o oo 11
[3.2.1 Multi-Agent SSLA Negotiation Platform|. 11
[3.2.1.1 " Agent Creation|. L 12
[3.2.1.2 Cloud Services Publishing and Discovery| 13
13.2.1.3 Cloud Services Negotiation| 15

Chapter 4 IImplementation of Security Self-Management| 17

4.1 Security Selt-Management Framerwork| o000 18
[4.1.1 Overall Security Orchestrator| 18

4.2 Security Selt-Management Services| Lo 23
4.2.1 Authorization Servicel e e 23
[4.2.2 Monitoring Service] Lo 24
[4.2.3 Sottware Trust Management Service| L oL 25
4.2.4 SSLA Enforcement Servicel 26

4.3 Compute-Level Security Services| Lo o 27
4.4 Data-Level Security Services|. 28
4.5 Network-Level Security Services|. o 29
Chapter 5 IIntegration of Security Services | 31

. ntegration wit ompute decurity Dervices| oL oo e

b.1 1 1 h C S ity S | 32
5.2 Integration with Data Security Services| 32
0.2.1 Location-Awareness Policies for SLAS 0L 32
[5.2.2 Monitoring of Data Access Failures|. 33

5.3 Integration with Network Security Services 34
[5.4 Integration with Use-Cases Application| 34
Chapter 6 |Components Access and Installation| 35

. pecification Plattorm|00 000000

[6.1 SSLA Specification Platiorm] 35
6.2 SSLA Negotiation Platform| 35
6.3 Security Orchestrator| e 35
6.4 Security Services| oL e e e e e 36
6.4.1 Authorization Servicel e e 36

SUPERCLOUD D14 Page I1I

SUPE
D1.4- SUPERCLOUD Self-Management of Security Implementation ﬂ CLOUD

[6.4.2 Monitoring Service]o e e e 37

6.4.3 SSLA Services o ..o 37

[6.4.4 "Trust Management Service] 37
Chapter 7 |Conclusion| 38
[7.1 Summary] e e 38
[[2 Tuture Works oo 38
List of Abbreviations| 40
|_Bibliography| 40

SUPERCLOUD D1.4 Page IV

SUPER

D1.4SUPERCLOUD Self-Management of Security Implementation CLOUD
List of Figures
2.1 Overview of Selt-Management of Security] 2
[2.2 Architecture of Security Self-Management components| 3
[2.3 Micro Services Approach for Security Selt-Management|. 5}
[3.1 Profile Selection in the SSIA Interfacel o0 6
[3.2 SSLA Specification Authentication Pagel o000 7
3.3 Amazon and Google Cloud Offer List|. 7
[3.4 Cloud Providers Management| L oL 7
[3.5 Setup of a Cloud Service Provider Offer| 8
3.6 Location Configuration in Cloud Service Ofter|. 8
[3.7 Compute Service and Protection Level Setting] 9
13.8 Storage Service and Protection Level Settings| 0000 10
[3.9 Network Service and Protection Level Settings| 10
[3.10 Request/Offer XML File Generation| 10
[3.11 Overview of the SUPERCLOUD Agent-Based Market Place| 11
[3.12 Introduction of a Negotiation Agent into the SUPERCLOUD Market Place] R
[3.13 Configuration of the Negotiation Agent| 12
13.14 Discovery of Cloud Services| 13
[3.15 Publishing Message Content|. L o L 14
[3.16 Call for Cloud Services Proposal| 15
4.1 Overview of SUPERCLOUD Security Services|. 17
4.2 Overiew of the Overall Orchestratorl 18
4.3 Security Orchestrator Workflow| 19
|4.4 Illustration of security services deployment|. 21
4.5 Deployed security services| L L 22
4.6 Integration of the Authorization Service with an Application or a Service] 23
[4.7 Security monitoring: approachl oo Lo 25
4.8 Overview of Software Trust Servicel 26
4.9 SSLA Enforcement Servicel Lo 27
[4.10 Captures from the SSLA Reporting Dashboard| 28
[5.1 Security Services Integration Approach|. oL, 31
5.2 Integration of SSLA Management and Georeplication Services| 32
.3 SSLA TLocation-Aware Janusl oL 33
5.4 Integration of Seli-Management of Security and Janus| 33
5.5 OrBAC-based orchestration of network security policies| 34

SUPERCLOUD D14

Page V

D1.4SUPERCLOUD Self-Management of Security Implementation g CLOUD

List of Tables

SUPERCLOUD D1.4 Page VI

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

Chapter 1 Introduction

1.1 Motivation and Objectives

This Deliverable reports on the implementation of the SUPERCLOUD Security Self-Management
Framework that was specified in Deliverable D1.2 [23]. The document presents the implementation of
services that are needed by Cloud Service Customers (CSC) to define, control and manage the required
level of protection over compute, storage and network planes.

The document also describes the implementation of a global negotiation platform for Security Service
Level Agreement (SSLA). The platform relies on software agents to conduct Cloud Services Negotia-
tion on behalf of a single customer across providers, and on behalf of a single provider across customers.

We present the integration of the Security Self-Management Framework and corresponding services
with security services developed as part of Compute, Data and Network SUPERCLOUD sub-frameworks.
We show also how security services of the Security Self-Management Framework are well integrated
with the SUPERCLOUD project use-cases demonstrators (i.e., Philips Imaging Platform).

1.2 Document Organization

The rest of the document is organized as follows. We first present in Chapter [2| an overview of the Se-
curity Self-Management Architecture and the corresponding specification and deployment approaches.

Then, in Chapter [3] we present the SSLA Specification and Negotiation framework that captures
Cloud Services Customers (CSCs) and Cloud Services Providers (CSPs) requirements used to negoti-
ate cloud services among CSCs and CSPs.

In Chapter [4, we provide insight on the implementation of Security Orchestrators and Services.

In Chapter |5, we report on the integration of Security Self-Management Services with the SUPER-
CLOUD Compute, Data and Network planes.

Finally, in Chapter [6] we present how the services presented in this Deliverable can be downloaded
and deployed, before we conclude in Chapter

SUPERCLOUD D1.4 Page 1 of [41]

SUPER
D1.4- SUPERCLOUD Self-Management of Security Implementation CLOUD

Chapter 2 Security Self-Management Framework

In this Chapter, we provide a brief introduction to the Security Self-Management Framework. In this
introduction, we first highlight general design principles, and then describe the specification of the
Security Self-management Architecture.

2.1 Overview of Security Self~-Management

In Figure [2.1] depicted below, Cloud Service Customers (CSCs) interact with a SUPERCLOUD Front-
end (i.e., the Frontal) to express their requirements and constraints (cf. Section [3.1]). After a negoti-
ation phase (cf. Section , a Security Service Level Agreement (SSLA) is established to define the
expected quality of service and level of protection. The objective and motivation of this process are
described in details in Deliverable D1.2 [23].

Based on this SSLA, a U-Cloud (User/Customer-Specific Cloud) is created over a single or multiple
providers as illustrated in Figure[2.1] The hypervisor shown in the Figure refers to the SUPERCLOUD
compute and network virtualization frameworks. The implementation of these SUPERCLOUD sub-
frameworks have been presented in Deliverable D2.3 [10] and Deliverable D4.3 [I9]. On the top of
these sub-layers, automation of management and control of security services is delegated to the Security
Self-Management Framework.

I

i

|

| Provider Provider

! Sugercmud Infrastructure l Network W StorageL Infrastructure l Network W Network L

|__Frontal _ ! Management Management | (| " L
| SuperCloud | \ Hardware ‘ Hardware ‘
_ Frontal Provider 1 Provider 2

Figure 2.1: Overview of Self-Management of Security

As shown in Figure[2.2] the Security Self-Management Framework is structured into four sub-systems,
namely (1) the SSLA Specification and Negotiation Service, (2) the Orchestration Service, (3)
the overall (i.e., Cross-Plane) Security Services, and (4) Plane-Specific Security Services.

SUPERCLOUD D1.4 Page 2 of [41]

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

SSLA Specification and Negotiation Service >

-
‘l

\ -

v Security Self-Management Services gj)

A4 l A

Authorization SSLA Soft Trust Monitoring
Service Enforcement | Service Service
S =

SR T T ————

ote

|

|
—
=

|
1L
P

|

|

|
— 1

|

|

|

|

|

|

|

|
"<«
—

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Security
of Storage
\/ v v
Security
of Network

Figure 2.2: Architecture of Security Self-Management components

Storage
Plane
N

Network
Plane

I
5

. The SSLA Specification and Negotiation Service encapsulates the services implemented
in SUPERCLOUD to capture and negotiate Protection Level and Service Level requirements
and constraints expressed by Cloud Customer and Cloud Providers.

. The Orchestration sub-system contains essentially the Orchestrator. This service coordi-
nates the configuration, deployment and management of security services across planes. This is
achieved through the interpretation and exploitation of Security Service Level Agreements. The
Storage Service is part of the orchestration sub-system as it is in charge of the persistence of
SSLA, policies and monitoring information.

. On the top of Plane-Specific Security Services, the Overall (Cross-Plane) Security Services
provide a unified and uniform view of security services across compute, storage and network
planes. For instance, the Authorization Service manages access control and usage control features
over the three planes. Similarly, Monitoring, SSLA Enforcement and Software Trust Services
operate at the same time over the compute, storage and network planes.

. At the lowest level of the architecture, we can find the Plane-Specific Security Services.
These security services operate on a particular layer of the virtualization infrastructure (i.e.,
storage, compute and network planes). As illustrated in Figure Plane-Specific Security
Services are dedicated to a specific SUPERCLOUD plane. For instance, in the Network Plane, we
can find services providing Deep Packet Inspection (DPI), Network Intrusion Detection (NIDS),
or network DDos mitigation — see Deliverable D4.3 [19] for more details. Similarly, both the
Compute Plane and the Storage Plane possess specific security services. Detailed description of
Plane-Specific Security sub-systems can be found in Deliverables D2.3 [10], D3.3 [2] and D4.3 [19].
A review of these services is also provided in Sections and

SUPERCLOUD D1.4 Page 3 of [41]

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

2.2 Security Self-Management Approach Specification

In this Section, we present the approach specification and the technical choices that have been made
during the implementation of the SUPERCLOUD Security Self-Management Framework. In the work-
flow we adopted to specify, develop, integrate and test the Security Self-Management service presented
in Figure adaptive and user-centric properties were given the highest consideration. We have par-
ticularly taken into account the following guidelines:

e The SUPERCLOUD front-end portal needs to be accessed through different devices (Desktop,
Laptop and smartphone). Thus a web-based frontal is preferable.

e The Security Self-Management Framework needs to be developed in a modular way to enable
portability, reuse and extensibility.

e Security Services are developed by different project partners, each with specific requirements
in terms of programming languages and paradigms. Thus the implementation of Security Self-
Management Services needs to be technology- and language-agnostic.

To reach the aforementioned objectives, we decided to adopt an agile software development approach
based on Micro-Services. In what follows, we provide a brief presentation of the Micro-Services ap-
proach. Then, we describe the micro-services compliant SUPERCLOUD Security Self-Management
Architecture.

2.2.1 Micro-Services Architecture

Micro-services is an architecture paradigm that splits down large and complex applications into mul-
tiple services. The particularity of this approach is that services can be deployed independently of one
another and are loosely coupled. The other particularity of the micro-services approach is that each
service is task-specific: services are focusing on completing single and different system sub-objectives
in an efficient way. Additionally, micro-services are developed in any programming language and their
interactions are performed using language-agnostic application programming interfaces (APIs) such
as Representational State Transfer (REST).

As presented in Section the SUPERCLOUD Security Self-Management Framework consists of
numerous services called “Security Services” in the project. Like Micro-Services, Security Services are
task-specific and system-agnostic. In other words, they do not know (and do not need to know) the
system overall logic to function. They are implemented independently using different programming
languages and approaches. At deployment phase, security services get composed by the Security
Orchestrator in order to form the SUPERCLOUD Security Self-Management Framework. Thus, each
security service can be refactored/replaced with less effort as services are loosely coupled. In addition,
security services do not depend on each other to run, making their isolated deployment possible and
easy to achieve. For a detailed description of security services objectives and functioning, we refer the
reader to Deliverable D1.2 [23].

2.2.2 Docker for Micro-Services Deployment

To deploy SUPERCLOUD Security Self-Management Services, we selected Docker Tool [4] state-of-the-
art technology for the deployment of the Security Micro-Services architecture presented in Section[2.2.1]
The SUPERCLOUD Security Self-Management Framework is a collaborative software that include
several services. Each security service is developed by a different partner having specific preferences and
requirements for processing and operating environment. Thus the encapsulation of Security Services
into self-contained, ready-to-deploy containers is a key issue for the successful integration of all services.
All that security services’ developers need to do is to expose interaction interfaces to allow dynamic
security services composition. Integration examples are provided in Chapter

SUPERCLOUD D1.4 Page 4 of [41]

SUPER
D1.4- SUPERCLOUD Self-Management of Security Implementation CLOUD

2.2.3 Security Self-Management Dockerized Architecture

In this Section, we present the SUPERCLOUD Security Self-Management architecture that corre-
sponds to the Dockerizatiorﬂ of security services.

Front-End ﬁ

Self-Management of Security VM

Security Self-Management Orchestrator |

Docker Engine

| os |

SUPERCLOUD Virtualization Infrastructure

Physical Infrastructure Physical Infrastructure

Figure 2.3: Micro Services Approach for Security Self-Management

As illustrated in Figure[2.3] the whole system is split into separate self-contained security services, each
realizing an individual security objective. The objectives are directly derived from the Security Service
Level Agreement specified and negotiated through the SUPERCLOUD Front-end. The translation of
SSLA objectives into Security Services deployment and configuration instructions is achieved by the
Security Orchestrator. Thus the interaction and communication occur primarily between the front-end
and the Security Orchestrator, allowing retrieval of SSLA objectives. The Orchestrator then parses
the file to extract the list of services to be deployed. The Orchestrator also coordinates the automated
configuration and deployment of each security service.

To implement this architecture, the following guidelines have been followed to ensure high-compatibility
and easy integration between the different parts of the architecture:

e The SUPERCLOUD frontal is hosted on a web-server Docker container.
e Each security service is developed independently and encapsulated in a Docker container.
e Orchestration and coordination between services is achieved based on Docker Compose [3].

e Services communicate over REST APIs and links between them are set by the Security Orches-
trator at deployment phase.

The rest of this Deliverable provides a generic view of the development and deployment of Security
Self-Management Services.

li.e., running in a Docker container.

SUPERCLOUD D1.4 Page 5 of [41]

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

Chapter 3 Security Service Level Management

In this Chapter, we will present the SUPERCLOUD Front-End service. This service encapsulates
the mechanisms developed in the SUPERCLOUD project to capture and manage Security Service
Level Agreements (SSLAs). These mechanisms are part of the Security Service Level Agreement
Specification and Negotiation Service presented in Figure [2.2]

3.1 SSLA Specification Service

In this Section, we present the Security Service Level Agreement Specification Service. The objective
of this service is to assist both Cloud Service Customers (CSCs) and Cloud Service Providers (CSPs)
in the expression of Cloud Service Requests (for CSCs) and Offers (for CSPs).

3.1.1 Accounts Management

As depicted in Figure the SSLA specification service is used by both CSP and CSC. Hence,
the first step consists in selecting the type of profile the user of the service wants to adopt. This
step is subsequently followed by an authentication phase, e.g. via a classical user/password form, as
illustrated in Figure

#»:05 Dashboard

Providers Customers

Figure 3.1: Profile Selection in the SSLA Interface

Once authenticated, both CSP and CSC will have access to their list of offers/requests. In Figure
we illustrate some examples of list of offers from Amazon and Google CSPs.

If a CSP or a CSC is not available in the system, we can create it through a specific administration
section. In Figure [3.4] we can see a list of providers along with the ability of adding new ones that
are not in the list.

SUPERCLOUD D1.4 Page 6 of [41]

SUPER
D1.4- SUPERCLOUD Self-Management of Security Implementation CLOUD

SUPER
CLOUD

Figure 3.2: SSLA Specification Authentication Page

SUPER SUPER
clouo Amazon [e Google

™ VeryLargeOffer

= ™ Silver o
= LargeOffer m

N ™ Platin i
™ MediumOffer m
W SmallOffer [} ¥ Gold o

=1

Figure 3.3: Amazon and Google Cloud Offer List

clouo List of Providers

List of providers

& Google

& Azure

B 8 &

& Amazon

&+ Add

Figure 3.4: Cloud Providers Management

SUPERCLOUD D1.4 Page 7 of [41]

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

3.1.2 Service and Protection Level Expression

Once logged-in, Cloud Service Providers and Cloud Service Customers will have the ability to create,
update and delete their respective requests/offers. We illustrate this Section with offers managed by
CSPs, but requests expressed by CSCs are made in an analogous way.

Each offer/request is structured into three sections and a header. Sections are dedicated to each of
the SUPERCLOUD planes (i.e., Compute, Storage and Network), while the header contains general
terms that apply to all three sections. Figure [3.5|illustrates the addition of a new offer from Amazon.
Each offer needs to have a name and a price.

Amazon-Offer1 |

$1,000.00

General Host_Location Location | ~
Pricing_Policy Pay as you go | By month | By year
Negotiation D
Scale_In @
Scale_Out @D
Price $ | 1000
Violation_Compensation_Policy 10%

Figure 3.5: Setup of a Cloud Service Provider Offer

The price is calculated based on the price value fixed in the header in addition to the individual prices
of each of the options added in the offer. Along with the price, a CSP can set:

e A pricing policy: pay-as-you-go, by month, by year, etc.
o If the offer is fixed or can be negotiated.
e If the offer can scale in and/or out.

e A default SSLA violation compensation policy.

Amazon-Offer1

$1,000.00
General Host_Location Eurape [=]

Pricing_Policy | France 3y year
Netherlands

Negotiation | Germany
Portugal

Scale_In |
Austria

Scale_Out | Europe
NorthAmerica

Price .
SouthAmerica
Asia

Violation_Compensation_Policy
Africa

Figure 3.6: Location Configuration in Cloud Service Offer

As Location- Awareness and Location-Control have been identified in Deliverables D1.2 [23] and D5.1 [11]
as key requirements, and in compliance with European Commission Regulation, Location settings are

SUPERCLOUD D1.4 Page 8 of [41]

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

included systematically in all offers. Thus, providers need to make explicit in their offers the geo-
graphical localization of the machines hosting the services. This location selection is illustrated in
Figure [3.6]

Once Cloud Services general terms have been specified, the SSLA Specification Service allows CSPs
to tune their offers in terms of compute, storage and network capabilities.

#5505 Offer: SmallOffer - Amazon

Violation_Compensation_Policy Policy
Compute VM #1 Core 16vCores | ~
= Add VM £I-Remove VM
Clock 3Ghz |
Memory 8Go
Service_Level_Objectives Uptime
& Add S5LO <95.00%
50 §
Uptime
95.00% - < 99.00%
100§
Uptime
99.00% - < 89.95%
200 %
Protection_Level_Objectives WVMs Isolation
@ Add PLO True
50 §
x Delete:

Figure 3.7: Compute Service and Protection Level Setting

In Figure each offer is composed of one or many VMs. Each VM is defined in terms of processing
capabilities: Virtual Cores, Clock Speed and RAM Memory. Most interestingly, compute-level Service
Level Objectives (SLOs) and Protection Level Objectives (PLOs) are specified. In the illustrative
example depicted in Figure three uptime SLO options are possible, each with a specific pricing
policy. Similarly, the offer specifies which Security Self-Management services are available and can be
deployed at the compute level. In this example, VMs isolation is made available for CSCs.

The specification of storage requirements is performed similarly. In Figure[3.8 we provide an example
of storage options (e.g., capacity, disk type) and associated Quality of Service (QoS) and Quality of
Protection (QoP). Network offer specification is achieved in a similar manner. We provide in Figure
an example of Network offer specification.

Once the three aspects of the cloud offer have been specified, the cloud provider (and the customer
as well) can either save the offer/request to be completed later or generate the XML file that will
be used to perform cloud service transactions. The persistence of offers/request is achieved using the
"Generate XML" button depicted in Figure 3.10

The generated XML file will be used later by the SSLA Negotiation Platform to match CSC request
with CSP offers. This process is described in the next Section.

SUPERCLOUD D1.4 Page 9 of [41]

SUPER

D1.4- SUPERCLOUD Self-Management of Security Implementation CLOUD
SUPER .
cioun Offer: SmallOffer - Amazon
Protection_Level_Objectives VMs Isolation
@ Add PLO True
50§
Storage Capacity 10Go =
-£ Add data store
Type HD ~
Service_Level_Objectives Avallability
@ Add SLO 99.999%
500
Avallability
99.99%
100 $
Protection_Level_Objectives Encryption
@ Add PLO True
100 $
Figure 3.8: Storage Service and Protection Level Settings
SUPER .
#5505 Offer: SmallOffer - Amazon
W Add PLO True
100 $
Network Bandwith 1Gbps | ~
-[= Add virtual network £|-Remove virtual network
Service_Level_Objectives Latency
@ Add SLO 10ms

Protection_Level_Objectives
@ Add PLO

Figure 3.9: Network Service and Protection Level Settings

Generate XML

Figure 3.10: Request/Offer XML File Generation

40§
% Delete

| I

True
s
x Delete

Cloud Type
Private
200 %
x Delete

Cloud Type
Public
100 %
% Delete

SUPERCLOUD D14

Page 10 of

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

3.2 SSLA Negotiation Platform

In this Section we present the implementation of the SSLA negotiation platform used to match CSCs
requests with CSPs offers. The platform has been implemented in Java using a Multi-Agent paradigm.

3.2.1 Multi-Agent SSLA Negotiation Platform

In the SUPERCLOUD project demonstrator, we make use of the JADE (Java Agent Development) [§]
Framework for the implementation of our multi-agent based negotiation framework. JADE offers
a stable middleware that complies with the FIPAE| specifications and offers tools that support the
debugging and deployment of agents. Agents are reactive and proactive software programs. They
are able to achieve “autonomously”, and eventually “collectively”, a set of actions to fulfill a goal.
Goals can be self-assigned, but generally they are set by the humans that these agents are assisting, or
behaving on their behalf. Besides the agent abstraction, JADE provides a simple, yet powerful peer-
to-peer agent communication based on the asynchronous message-passing paradigm. JADE offers
also a yellow pages service called Directory Facilitator to support offers and requests publishing,
subscription and discovery. The general overview of the Multi-Agent Negotiation Platform is depicted
in Figure [3.11

\slui,bscription A
PN |

et
%,%“r
\J

Dis(;hyery

AY
| ¥ |
] 1 i
] 1 i
¢! | |
| ! h] |
] \ 1 i
{ ! N] i
) 1 i
) 1 i
P! I g |
| Brokering | : : : | Brokering |
s | | . ! o) | | .
Customer 1 ! ! ~ 5 AN | g, [{ Provider 1
| i : S, N : Yo/] |
| | B y 7 ! ! |
L) 1 / | |
(0 ‘aal AT o
By -/ = > o
g . : Negotiation | : -------- ‘\ ,‘l ‘,{3’- : : Negotiation |
| S S 13 |
Customer2 : | : Negotiaton ~ \TTte--l__/ STl v : : | A&
. \ Pl - &>
1 P! \ d N a t [l Y
"? N i % g ‘ b yl | . -
g 4@0&3‘ -T A \ : . : : '~ | Provider 2
~ v. | Selection : | S | | Selection :
Customer 3] | [} Negotiation : | !
| - ! |
| sstA | ! I | SSLA |
1 p ! ;! |
~

Plateform SUPERCLOUD Cloud Services Marketplace

‘ Client Agent Provider Agent Directory Facilitator ‘

Figure 3.11: Overview of the SUPERCLOUD Agent-Based Market Place

In Figure we identify Customers (on the left) that make use of the SSLA Specification Platform,
described in Section to formulate their requirements. Similarly, Cloud Providers (on the right)
make use of the same platform to specify their constraints. The generated XML file is used by a
dedicated Negotiation Agent to find the best provider/customer. Negotiation agents are split into
two types : Customers Agents (CA) and Provider Agents (PA). CA are devoted to the fulfillment of
Customers requests, while PA negotiate offers on the behalf of Cloud Providers. Agents interact with
each other using messages that are mediated by the JADE asynchronous message passing mechanism.
As illustrated in Figure the Directory Facilitator (DF) plays a central role within the market
place. It allows agents offering cloud services (i.e., Provider Agents) to subscribe to the list used by
Customers Agents to find cloud service offers.

!The standards organization for agents and multi-agent systems.

SUPERCLOUD D1.4 Page 11 of

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

In what follows, we present the negotiation workflow from the moment agents are created to the stage
the agreement is reached.

3.2.1.1 Agent Creation

In Figure [3.12] we show the agent’s instantiation interface that allows both Cloud Customers and
Cloud Provider to create and configure an agent to be run on the market place.

@ @ SSLA Negotiation Platform
Add new CSC agent:

Name: |CSC-1 Select SSLA

Add new CSP agent:

Name: Select SSLA SUPERCLOUD

Figure 3.12: Introduction of a Negotiation Agent into the SUPERCLOUD Market Place

To create an agent, we need first to provide the agent name. This name makes the agent uniquely
identified within the platform. The after pressing the "Select SSLA" button, a dialog window will
pop-up letting the user select the XML file generated with the SSLA Specification Service presented
in Section 3.1

| NON | Open
| I SSLA E
Name ~ Date Modified
* catalog.xml mardi 30 aolt 2016 15:03
* order.xml lundi 3 octobre 2016 17:35
File Format: XML files (*.xml) E
Cancel Open

Figure 3.13: Configuration of the Negotiation Agent

Both Cloud Service Customers and Cloud Service Providers make use of the SSLA Specification
Platform (cf. Section to express their requirements and constraints for the Cloud Service.

SUPERCLOUD D1.4 Page 12 of

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

3.2.1.2 Cloud Services Publishing and Discovery

Once created, both the Provider Agents (PA) and Customers Agents (CA) enter in Publishing and
Discovery mode. Provider Agents promote their Cloud Service Offers to the Directory Facilitator.
The DF is subsequently used by the CA to discover offers. For this purpose, we make use of the FIPA
Agent Communication Language (FIPA-ACL) [6]. A FIPA ACL message contains a set of one or
more message parameters (such as performative, sender, receiver, content, etc.). Precisely which
parameters are needed for effective agent communication will vary according to the situation; the
only parameter that is mandatory in all ACL messages is performative, although it is expected that
most ACL messages will also contain sender, receiver and content parameters. The execution of
offers publishing and discovery is illustrated in Figure The Figure shows the message exchanges
between CSP, CSC and the Directory Facilitator.

RECQIIEST:1 (3-0 5-00 1
INFO‘M:I (9-0 437 8-01
»

REqHBTﬁ 9-2 9—; 1
INFORM:3 [3-2 465 H-21
»

RECIUEST:4 [2-3 23

"
d

INFORM:4 (2-3 977 -3

L 4

RECIJEST:5 (0-4 0-4 3
INFORM:5 (0-4 490 fi-4)
b

REQUEST:& (0-7 0-7 1
INFO‘M:S (0-7 507 -7
»

RECIUEST:S (6-& 6-§

"
il

INFORM:3 [B-§ 184 k-5

b A

arciireria e A A

Figure 3.14: Discovery of Cloud Services

As illustrated above, each agent makes a request to the DF (left column) to inform it about the service
it is offering. In Listing below, we illustrate the code snippet used by the PA to add a new service
with name SUPERCLOUD-CSP and type CSP (i.e., CSP in line 9) to the yellow pages service offered by
the DF.

Listing 3.1: Java Code of Provider Agent Publishing phase

// Register as a Cloud Service Provider in the DF Yellow Pages service
DFAgentDescription df = new DFAgentDescription();
dfd.setName(getAID());

ServiceDescription cloudService = new ServiceDescription();

cloudService.setType("CSP");
cloudService.setName ("SUPERCLOUD-CSP") ;

SUPERCLOUD D1.4 Page 13 of

D1.4- SUPERCLOUD Self-Management of Security Implementation

SUPER
CLOUD

fd.addServices(sd);

try {
DFService.register(this, df);
}

catch (FIPAException e) {
e.printStackTrace() ;

}

Figure presents the content of a message sent by a CSP to the DF (see the receivers section).
This message corresponds to the service created in Listing above.

[ACL Message
SERsae Envelope
Sender: ... 10.35.128.99:9999/JADE
i df@10.35.128.99:9999/JADE
Receivers:
Reply-to:
Communicative ... request =
Content:
(set
(service-description
:name SUPERCLOUD-CSP
‘type "Cloud Service"))))))
Language: fipa-sl0
Encoding:
Ontology: FIPA-Agent-Management
Protocol: fipa-request &

Conversation-id:
In-reply-to:
Reply-with:

Reply-by:

User Properties:

1:9999/)ADE1500281971087-0

3:9999/JADE15S00281971087-0

OK,

Figure 3.15: Publishing Message Content

SUPERCLOUD D14

Page 14 of

D1.4- SUPERCLOUD Self-Management of Security Implementation » CLOUD

3.2.1.3 Cloud Services Negotiation

When the CA is created, it receives at the same time the Cloud Customer requirements in terms
of Cloud Service. This file is processed by this agent to extract Service Level and Protection Level
Objectives. The CA then contacts the DF to have the list of PA offering cloud services. This list is
first filtered, as only a short list of PA matching the CSC requirements is kept. The members of the
filtered short list are used then as receivers to the Call For Proposal (CFP) sent by the the CA.

el oo B B

1]
REQUEST:0 [4-5 4-5
1 g
5 INFORM:O (445 511 4-51 :
3 REQUEST:1 [1-6 1-K
4 INFORM: (146 256 1-B1
5
h
. P:3 [ace 339 _[
CFP:3 [ack 339 1
& '
. CFP:3 [ack 339 1
qFF:3 [ace 339 1
10 o
1 PR E:3 (ace 351 [H391
12 REFUSE:S [acp 355 339 :
03 PROPOSES [afe 356 3391
PROPOSES [ace 358 391
14 |
05 MCCEPT - 390
IMF g0 1
1k

Figure 3.16: Call for Cloud Services Proposal

Figure [3.16| shows the Call for Proposal issued by CSC-1 to CSP, CSP-1, CSP-2 and CSP-3. Here we
see that only three CSPs replied with offers (i.e., PROPOSE). Among the three offers, only one was
accepted (i.e., offer of CSP-1). In this example, we assume that only one provider is needed to fulfill
the request of the customer. However, in multi-cloud settings, multiple providers are selected by the
customer to constitute the clouds federation.

Additionally, for simplicity, we showed only a one-shot selection process where the negotiation is limited
to a single [proposal, accept-proposal] round. Nevertheless, the implemented negotiation framework
handles more sophisticated and complex negotiation schema where CA and PA alternate offers and
counter-offers until a consensus is reached. The overall negotiation process is summarized as follows:

1. The Provider Agent (PA) joins the Multi-Agent Cloud Market Place (CMP) and subscribes with
the Directory Facilitator (DF) to publish cloud offers.

2. The Customer Agent joins the CMP looking for a cloud service. It retrieves the list of PA offering
the service it is looking for.

SUPERCLOUD D1.4 Page 15 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

3. A Call for Proposal is sent to the list of matching PAs.
4. Interested PAs replies to the CFP.
5. The CA replies to the proposals.
e If a PA can fulfill completely the request, the CA selects the best (i.e., cheapest) offer. It

negotiates the price if above the expected value.

e If no PA can fulfill the request, the CA composes PAs offers and forms a multi-cloud based
on its own needs. The CA negotiates the price to comply with the initial expected value of
services.

6. The negotiation terminates if:

e The deadline is reached.
e No proposal have been made by PA and no multi-cloud can be formed.

e An agreement is reached and a offer/counter-offer was mutually accepted by Customers and
Providers.

7. An XML SSLA file is generated.

The SSLA file generated at the end of the negotiation represents the agreement that the CSP must
enforce. Thus it is used primarily to guide the deployment of security services across Compute, Data
and Network planes. This file will also serve as a basis for arbitration if the agreement was violated
by one party. This file is converted into the standard WS-Agreement format [I]. The choice of making
this conversion is motivated by interoperablility needs. Indeed, we assume that Cloud Customers and
Cloud Providers may need to have standard format to communicate about active agreements.

SUPERCLOUD D1.4 Page 16 of

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

Chapter 4 Implementation of Security Self-Management

This Chapter gives an overview of the implementation of the security services presented in Chapter
Theses services constitute the SUPERCLOUD Security Self-Management Framework. As discussed
in Section [2.2] we adopted the micro-services approach to ease the automation of security services
deployment and management across the different SUPERCLOUD frameworks (i.e., compute, data
and network).

Compute : Compute : SSLA i Trust
Security E Monitoring Authorization i i
Orchestrator | | Service Service ! Service ! Service
& i ; = T ==
...... p— &8 N P 5 =
’ \. 4 N, 1, 1 1.
SSLA .'/ Trust \‘. SSLA Ay L
Specification 1 Servi H E Service |
Service i ervice 1 __ ' ,:
@ = Overall N = / Disaster Janus AB
@ i Security | Recovery Secure Encryption K-Anonymity HyperLedger
_____________ SSLA 1 Orchestrator E Service Storage Service Service Fabric
H SSLA P AN & T \ - ooa
i / \
! Negotiation \\Q'o ,*Monitoring's, = @ @y 889
c | Platform | Authorization " "~~~ Service |
ustomer ! 1 N H 1 1l _ =
g 1 Service i ! !
N J B -
N BN £~ s o
Security Self-Management Net\{vork Network Network Fault- Distributed
Appliance Security Sec. Policy Tolerant SDN
Chaining Monitoring Manager SDN Controller
0]

Figure 4.1: Overview of SUPERCLOUD Security Services

As illustrated in Figure security services are split into five categories: (a) Specification and Ne-
gotiation of SSLAEL (b) Overall (and cross-planes) Security Services (cf., Sections and 4.2), (c)
Compute-Level Security Services (cf., Section [4.3)), (d) Data-Level Security Services (cf., Section [4.4)),
and (e) Network-Level Security Services (cf., Section [4.5)).

Some security services are spread across planes to allow distributed and/or decentralized operation.
For instance, the Monitoring Service is provided at each level of the SUPERCLOUD framework to
allow a 360° surveillance of cloud service and security service provisioning.

In what follows we first review in Sections and the Overall Security Orchestrator and the
security services that operate across compute, data and network SUPERCLOUD planes. Then in
Sections [4.4) and [£.5] we provide a brief review of security services that have been implemented in,
respectively, compute, data and network SUPERCLOUD sub-frameworks. The detailed description of
these services can be found in Deliverables D2.3 [10], D3.3 [2] and D4.3 [19] respectively.

!These services have already been presented in Chapter

SUPERCLOUD D1.4 Page 17 of

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

4.1 Security Self-Management Framerwork

In this Section, we present the implementation of the Security Services that constitute the Security
Self-Management Framework. The framework is mainly composed of five services, namely the Owverall
Security Orchestrator (OSO), the SSLA Enforcement Service (SES), the Authorization Service (AS),
the Trust Management Service (TMS) and the Monitoring Service (MS).

4.1.1 Overall Security Orchestrator

In Section we selected Dockerﬂ as a state-of-the-art technology to deploy the micro-services en-
capsulating the SUPERCLOUD Security Self-Management Services. Docker is known to be adequate
for packaging simple and single-container applications and services. But when it comes to complex
systems that consist of several dependent and independent services, a more sophisticated deployment
schema is required. To that aim, we build on the top of Docker Compose tool [3] to develop the Over-
all Security Orchestrator. Docker Compose allows agile and dynamic deployment of security services.
The same approach has been adopted to implement the Compute-Level Security OrchestratOIﬂ

,.--\\ ',.--\\
7 Security v " Security
1 Service | 1 Service :
- ’

@,

— ¢ Security N\ T/
Orchestrator |

U N T T N
/ K / N, 7= 3] =N
’ AN / N o " 23 S
4 Trust ~ ., SSLA N | Security ; —={" Security 3
E " p
| Management | | Enforcement |] seage i %‘e !
1 . . N, by
! Service E_ ! Service E N AT - -
[R— ————y ==\ Ay
‘\ - '/ AN ’/ co_mPUte . ./’Security\\ ."Security\.
\\ ==/ Overall \\ I Security Service ! S%ce /:_ i Se&vé:e i
.....) . -
@ | Security | N2 NN
------------------ ¥ Orchestrator = 0”“25"3‘”:
SSLA o o Config =gy
/‘- ‘\\ ¢o ,' \\\ Files .’ Security N _Q_', Security \.
- . S i Si i
s N Y& Monitoring', R : eage b e(ge ;
. . ————i . " . N N
| Authorization I | Service | { Soourty’y ey N2 Y
) .
i Service | i 1 L@ SN @S Data
H ! H ! N seuity \. o2 - .
N !p ol \ ot | orhestator | Security Service
R ’ R ’ o '\\#_o S
L 4 Neoeee ’ | Security \ et Security %

1 Service 1 Service :

Security Self-Management

]
v v
h @ " 3 @ "
\---' \---'

Network
Security Service

Figure 4.2: Overiew of the Overall Orchestrator

Figure [4.2] represents the workflow from the moment the SSLA file is generated by the SSLA Speci-
fication and Negotiation Service, to the concrete deployment of security services. The first phase of
the workflow occurs inside the Overall Security Orchestrator. During this phase, the Orchestrator
processes the SSLA file and derives instructions about the security services to be deployed and the
Service and Protection Level to be ensured. The Security Orchestrator, and SUPERCLOUD plane-
specific security orchestrators take care as well of the configuration and deployment of security services
identified in the first phase. In what follows, we provide a detailed view of the orchestration workflow
illustrated in Figure .2

The complete processing of the SSLA XML file by security orchestrators involves four steps, each oper-
ated by a dedicated engine that we illustrate in Figure

“https://www.docker.com/what-docker
Please refer to Deliverable D2.3 [10].

SUPERCLOUD D1.4 Page 18 of

https://www.docker.com/what-docker

D1.4- SUPERCLOUD Self-Management of Security Implementation » CLOUD

’/'"\ ’---
" Security\\ .’ Secu"ty N
| Service : 1 Service |
3 = ’

@ L ND,” Compute
_ ! Orchestrator | Security

Overall Security Orchestrator

’ - -=a -
S T AN . - \ Services
P4 SSLA : AN " Securl - Securlty \
--------- s</-———- i Interpretation } = § Sentce ,' p Serice
SSLA . ! H S Config N @,’ @ -
, | H s, Files
/’ Ve T ’ N Raiuind TN
d Confi ' N I'e Secunty Y 7 Security 'y
v :irllelsg. : \\. | Service | Service |
H L Vot ’
! PO ’ ------ S H ‘\Q{I&cu;tx__ll
3 : Y] o
H 1 Configuration ! C/’ ! — o
]
i @ """ [I 1 *“‘V\K" i
' H] | Service | Service
'] . H 1 1
1 Security Services [} H 1 : N ; N ;
H Description b ! ! NS ‘.@/
Y o =
: : Management 1 : : ”Securlty Y "’Secu_vity\\ Data
“ ! 'V Security
| -
N ! Services
\\ ‘\--- L

¥
.‘;" Secunty Ay

Network

A
Asoouriyn ,i -~ Security Services
| Serwce | 'Security\
Service |
/Secun /Secunty _-/)/Secunty\
Service | Service | Service |
| | |
N2 oan B nan 8/
/Security\ /Security\
Service | Service |
e/ e/

| Docker Enginel

Figure 4.3: Security Orchestrator Workflow

1) Interpretation

The first step of the Orchestration of Security Self-Management Services is SSLA Interpretation. The
SSLA file generated after negotiation is processed by the Overall Security Orchestrator to extract
security services to be deployed. From this list of services, the Orchestrator identifies services that
are part of Security Self-Management and those that are specific to one of the SUPERCLOUD planes
(i.e., compute, storage and network). For both, the Orchestrator generates dedicated XML configuration
files. Each XML file contains:

o Security Level Objectives such as QoS metrics to be reached.
e Protection Level Objectives that refer to security properties to be ensured.

e List of Security Services with corresponding configuration parameters.

Once generated, XML configuration files are transmitted to Security Orchestrators specific to Compute,
Data and Network planes. The Overall Security Orchestrator configures and deploys the Security
Services that encompasses the three planes (i.e., SSLA, Authorization, Monitoring and Trust) as
illustrated in Figure Finally, the Security Orchestrator of each plane configures and deploys the
Security Services that are specified in the SSLA XML configuration file extracted from the SSLA. The
process followed by each plane-specific Security Orchestrator to configure, deploy and manage security

SUPERCLOUD D1.4 Page 19 of

1

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

services is similar to the one used by the Overall Security OrchestratOIE] .

2) Configuration

The configuration of Self-Management of Security Services is achieved through a single configuration
file. This file is built by weaving Security Services Description (Left side of Figure based on
the instructions extracted by the SSLA Interpreter from SSLAs. This file specifies how services can
interact with each other in a coherent and consistent way. It defines the order in which services are
deployed and the conditions under which a service may be invoked or not. The file defines parameters
that are necessary for the execution of each service such as network ports to be opened, volumes to

be mounted or dependencies with respect to other services.
We provide in Listing an example of what a deployment configuration file looks like.

Listing 4.1: Example of a deployment file generated by the Orchestrator

services:

authorization:

build:

ports:

- "8080:8080"

volumes:

- /policies:/policies

db:

image: mysql

ports:

- "3306:3306"

environment:
MYSQL_ROOT_PASSWORD: 123456
MYSQL_USER: supercloud
MYSQL_PASSWORD: 123456
MYSQL_DATABASE: selfmanagement

In this example, the Security Orchestrator will deploy two services, an Authorization Service and a
Storage Service containing persistent data such as monitoring information. The Authorization Service
is built using a Docker file placed in the current directory.

The instructions specify that the Authorization Service needs to expose port 8080 and map it to port
8080 outside the container. The policies used for authorization are copied from the mounted volume
/policies. For the Storage Service, a default MySQL image is used (cf. line 10) and port 3306 is
mapped to 3306. Additional configuration information (e.g., root password, database name) is also
specified (cf. lines 13-17).

2) Deployment
The current version of the Orchestrator relies on the Docker Compose tool for the deployment of
security services (i.e., containers and links between them). Deployment is done in two steps.

First, the Docker images are built based on the instructions provided within the individual Dockerfile
files. Listing provides an example of the Dockerfile used for the Authorization Service.

Listing 4.2: Authorization Service Dockerfile

FROM ubuntu

MAINTAINER Reda Yaich <reda.yaich@imt-atlantique.fr>

4At the network plane, Security Services are deployed as applications on the north-bound interface of the Network
Hypervisor by the Security Service Chaining Component. Please refer to Deliverable D4.3 [19] for more details.

SUPERCLOUD D1.4 Page 20 of

SUPER
D1.4- SUPERCLOUD Self-Management of Security Implementation CLOUD

5 # Update the base ubuntu image with dependencies needed
6 RUN apt-get update && \
7 apt-get install -y openjdk-8-jdk && \

8 apt-get install -y ant && \

9 apt-get clean;

10 RUN apt-get update && \

11 apt-get install ca-certificates-java && \

12 apt-get clean && \

13 update-ca-certificates -f;

14

15 # Setup JAVA_HOME, this is useful for docker commandline
16 ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64/

17 RUN export JAVA_HOME

18

19 # Expose the required ports
20 EXPOSE 8080:8080

21

22 #copy files to the created container volumes

23 COPY /Authorization_Service /Authorization_Service
24 COPY /policies /Authorization_Service/bin/policies
25

26 #set the working directory

27 WORKDIR /Authorization_Service

28

29 #Specifies the entrypoint to the docker

30 ENTRYPOINT ["/Authorization_Service/start.sh"]

The command docker-compose build will process the docker-compose.yml file present in the cur-
rent folder and create the image of each Security Service.

Then, using the command docker-compose run, the Security Services are executed as follows:

e A self-management dedicated virtual network is created.
e Volumes are mounted for security services requiring such operation.
e Images of each service are pulled by Docker.

e Creation of services is ordered based on dependencies.

At this stage, the services are deployed as shown in Figure [£.4]

Docker Engine

Bridge
Network

Trust Storing Monitoring
Container Container Container Container

Figure 4.4: Ilustration of security services deployment

SUPERCLOUD D1.4 Page 21 of [d1]

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

We show in Figure the corresponding process displayed by the Docker machine.

CREATED STATUS PORTS NAMES

4 minutes ago Up 4 minutes BB/tcp, 0.0.0.0:109B82-=B0BR/tcp orchestrator_trust_1

4 minutes ago Up 4 minutes BBd/tcp, 9.0.0.0:B0EB0-=BOBA tcp orchestrator_authorization_1
4 minutes ago Up 4 minutes BBd/tcp, 9.0.0.0:19B81-=B0BO/ tcp orchestrator_ssla_1

4 minutes ago Up 4 minutes B.B,8,0:3306-=3306/tcp orchestrator_storage_1

Figure 4.5: Deployed security services

3) Management

In the deployment phase, Security Services are deployed on the host successively to avoid dependency
conflicts. After that, the Orchestrator enters the management phase to prevent the Self-Management
of Security Framework from running in an unhealthy state (e.g., due to faulty services). Two main
states are handled by the Security Orchestrator:

1. Overloaded services. This situation can occur when the user multi-cloud scales-up in response
to client demand. Consequently, some Security Services (e.g., Monitoring, Authorization) need to
adapt to such change. To address this issue, the Orchestrator makes use of the docker-compose
scale SERVICE=X command, provided by Docker-Compose and Docker Swarm, to launch X in-
stances of the considered service.

2. Faulty services. For some reasons, security services may stop. As a self-managed security
service, the Orchestrator needs to re-run without human intervention security services. This is
achieved using command docker-compose up --no-recreate that allows the Orchestrator to
re-launch the same service without re-building its image, hence reducing recovery time.

The automation of restarting faulty security services is important due to the critical nature of their
objectives. However, in some settings, continually restarting faulty containers embodying these ser-
vices may block the overall self-management process. This is mainly due to the restart process loop
that will fill up the physical host disk space. This is relatively common when handling stateful services
such as MySQL. This is particularly true for the Storage Service in our architecture. To address this
issue, we make use of a more sophisticated management scheme that relies on the Swarm mode [5]
of the Docker engine. Within Swarm, the Docker engine makes use of an explicit restart policy that
needs to be specified within the docker-compose.yml configuration file.

Listing shows an example of Docker-Swarm specific restart instructions. The max_attempts pa-
rameter makes the deployment process safer by fixing a limit to container restarts. The replicas
statement enables to specify the initial number of instances for each Security Service.

Listing 4.3: Restart policy configuration in Swarm

deploy:

replicas: 3
restart_policy:
condition: on-failure
delay: 30s
max_attempts: 3
window: 60s

SUPERCLOUD D1.4 Page 22 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

4.2 Security Self-Management Services

As illustrated in Figure[d.2] Security Self-Management is composed of several Security Services. Theses
services are deployed based on the requirements of Cloud Service Customer to allow him/her build a
U-Cloud that satisfies his/her requirements. As presented in Section Security Services are split
into two categories, Plane-Specific Services and Cross-Plane Services.

In this Section, we present the Cross-Plane Security Services. In the next Sections (i.e., Sections
and we provide an overview of Security Services that have been developed within Compute,
Data and Network planes.

4.2.1 Authorization Service

This Section introduces the SUPERCLOUD Authorization Service. The service was presented in
detail in Deliverables D1.2 [23] and D2.2 [14] and D2.3 [10]. The Authorization Service extends the
OrBAC API to manage authorizations within Multi-Cloud Infrastructures. The service objective is to
allow the interpretation of OrBAC policies to derive access control and usage control decisions (i.e.,
permission, prohibitions, obligations).

Within the SUPERCLOUD framework, other application and services can delegate authorization
decisions to this service. For instance, the geo-replication service from the Compute Plane relies on
this service to distinguish locations wherein replication among VMs is allowed from locations wherein
it is not (cf., Section |5.1)). For the same purpose, the Secure Data Storage Service Janus from the
Data Plane interacts with this service to get the authorized locations for data replication (cf., Section
5.2)). At the Network Plane, the Network Policy Manager delegates to the Authorization Service the
management of context changes and the selection of appropriate routing paths to ensure network
service availability (cf., Section [5.3). Finally, the Philips Imaging Platform relies on the Authorization
Service for Access Control Decisions (cf., Section [5.4)).

As illustrated in Figure[4.6] the SUPERCLOUD Authorization Service works in a classical client-server
mode wherein the application (here the Philips Imaging Platform) plays the role of the client and the
SUPERCLOUD authorization service the role of server.

) ()
Subject / Action / Object A&

Authorization Service

\4

Permission ?

\4

Application
@ Interface
A ort

Application /
Service
True Axis Server
User ! I False

Figure 4.6: Integration of the Authorization Service with an Application or a Service

Policies

A

Applications that want to interact with the Authorization Service perform standard HTTP requests.
Authentication is achieved by a dedicated service that needs to be specified. Hence, we assume that
the SUPERCLOUD authorization service considers all identities as valid.

SUPERCLOUD D1.4 Page 23 of

ﬁ CLOUD

D1.4- SUPERCLOUD Self-Management of Security Implementation

The SUPERCLOUD authorization service REST AP]E] can be accessed via a standard and public
REST API that only responds to GET requests and runs at:

http://IP:PORT/services/SupercloudAuthorizationService/ endpoint.

Decisions can be of three types; permissions, prohibitions and obligations. A decision is made
with respect to a triple (subject, object, action). For example, to verify if a subject s is autho-
rized to perform an action a on an object o, the syntax of the request should be as follows:

/IsPermitted?subject=s&action=a&object=o

All requests represent a conjunction of conditions in which the above-mentioned triples can be pre-
sented in any order. The SUPERCLOUD authorization service standard reply to such decision requests
is a Boolean value.

The SUPERCLOUD authorization service REST API is shown in Table [4.1]

l Request ‘ Description ‘ Parameters ‘ Response

GET URL/IsPermitted? Checks if an action is permitted | subject=s&action=a&object=o Boolean
on a subject

GET URL/IsProhibited? | Checks if a scope is prohibited subject=s&action=a&object=0 Boolean

GET URL/IsObliged? Checks if a scope is obliged for | subject=s&action=a&object=o Boolean
a user

GET URL/Actions? Retrieves all active actions in | None List of actions
the policy

GET URL/Objects? Retrieves all active objects None List of objects

GET URL/Subjects? Retrieves all active subjects None List of subjects

Table 4.1: Authorization Service API

4.2.2 Monitoring Service

The main aim of the Monitoring Service is to detect threats on the SUPERCLOUD infrastructure
and on U-Clouds. This service is also a building block to react to threats, either directly, or by
passing threat information to other components of the SUPERCLOUD Security Self-Management
Infrastructure. We focus here on threats relevant to the computing infrastructure. Another monitoring
service dedicated specifically to networking threats is implemented as part of the SUPERCLOUD
network security framework, as described in Deliverable D4.3 [19].

Two dimensions of monitoring are explored:

e Vertical monitoring aims to provide a cross-layer view of threats and of their mitigation, based
on probes (and counter-measures) in the different virtualization layers or at U-Cloud level. In-
formation from provider-controlled infrastructure monitoring systems is also taken into account.

e Horizontal monitoring aims to provide a multi-provider view of threats and of their mitigation.
A deployment framework such as MANTUS may help towards reaching a single point of control of
security [18]. This aspect of monitoring also includes composition with other security services of
the SUPERCLOUD Security Self-Management Infrastructure to propose a rich security response.

We present here a preliminary version of the Monitoring Service focusing on cross-layer self-protection.
A more extensive version will be described in Deliverable D2.4.

®See D2.3 [10] for more details.

SUPERCLOUD D1.4

Page 24 of

D1.4- SUPERCLOUD Self-Management of Security Implementation » CLOUD

Monitoring ' DETECT | Virtualization
component [REACT _ J infrastructure

Container

o~-—omHoxXT!' MMy

i D Provider u "
. R Monitoring .
. o v

P *

=

Figure 4.7: Security monitoring: approach

The security monitoring approach was presented in Deliverable D2.1 [12] and is summarized in Fig-
ure [£.7] Monitoring relies on orchestration of two hierarchical autonomic security loops.

e The first level manages intra-layer security monitoring in user- or provider-controlled parts of
the virtualized infrastructure.

e The second level manages cross-layer security monitoring, also integrating monitoring informa-
tion and counter-measures from the cloud provider.

The general design of the service is based on the VESPA framework [21] for the system model and on
the OpenStack Watcher [17] framework for external APIs. We chose VESPA as it already implements
a first two-level autonomic security monitoring model, but with a very basic API. We selected Watcher,
as it is already integrated with OpenStack and provides much richer monitoring API.

4.2.3 Software Trust Management Service

In this Section, we present the Software Trust Service (STS) that processes Cloud Customers Ex-
periences to compute trust and reputation values. These values are derived from the aggregation of
monitored information. The objective of the Software Trust Service is to assist cloud customers and
providers selecting the best interacting partners within the Cloud Market Place.

The trust that a cloud customer c is willing to put into a cloud provider p is derived from past ex-
periences. The experiences constitute customers’ and providers’ feedback and reflect their level of
satisfaction with respect to the expected quality of service and protection. This experience informa-
tion is thus processed by the Trust Service for assessment of the trust that a customer can put in the
candidate provider. Before making a decisiorﬂ the requesting customer ¢ will make use of the SUPER-
CLOUD Trust Management Service to derive a trust value based on past experiences. Then, during
the transaction (i.e., Cloud Service Delivery), the CSC ¢ will make use of monitoring mechanisms
to observe the behavior of the provider. We make the reasonable assumption that all Service Level
Objectives (SLOs) conveyed in an SSLA agreement can be monitored and that monitoring information
is reliable and cannot be tampered with.

Figure[4.8|illustrates the integration of the software trust model within the SUPERCLOUD computing
framework, and more specifically within Self-Management of Security. The Software Trust Service

5This decision is about the provider to engage with, for a specific service s.

SUPERCLOUD D1.4 Page 25 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

6. Display

SSLA supervision

SLA
Enforcement
Service

GET

POST GET
Objectives

. SSLA
Active SSLA Objectives

GET
experiences#

raw data

GET

trustworthiness

Software
Trust
R Service Software
Active SSLA [U-Cloud X] i Trust P —
trustworthiness N
Service
I [U-Cloud Y]

Figure 4.8: Overview of Software Trust Service

builds on the top of the SSLA enforcement and monitoring service to make trust assessments. The
trust computation component mainly integrates the algorithm that processes the SSLA objectives and
derives trustworthiness values as described in [22]. These values are made available via a standard
REST API interface. The Software Trust Service REST API interface is split into two parts, internal
and external. The internal interface interacts with other SUPERCLOUD services. These interactions
are orchestrated by the Security Orchestrator. The external interface is used to communicate with
other Software Trust Services to exchange experiences and trust values. This interface is mandatory
when computing Cloud Marketplace-level Trust Metrics (i.e., reputation).

4.2.4 SSLA Enforcement Service

The management of SSLAs involve five main phases: Specification, Negotiation, Enforcement, Mon-
itoring and Arbitration (cf., Deliverable D1.2 [23]). Specification and Negotiation have been already
described in Sections and of Chapter 3| In this Section, we make a focus on Enforcement and
Arbitration while Monitoring will be presented in Section

The objective of SSLA enforcement service is to provide the Cloud Service Customer (CSC) with
mechanisms to supervise the execution of the active SSLA. Thus the service will process the SSLA
upheld by the CSC and the CSP and extract the metrics to be monitored (Performance and Security
Level Objectives).

As illustrated in Figure the SSLA Enforcement Service (SES) translates and maps low-level raw
resource metrics measured by monitoring services to high-level SSLA objectives. For instance, upTime
and downTime are mapped to availability for both Compute, Storage and Network as follows:

upTime

Availability = 1 — (4.1)

downTime

Here, downTime refers to the time required to bring a service (Compute, Storage or Network) to

SUPERCLOUD D1.4 Page 26 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

6. Display

SSLA supervision

SLA 2. GET/POST

Enfor <
Service j Required Metrics

1.GET

4. GET

5.POST
Objectives

. SSLA
Active SSLA Obijectives

Storing Service

raw data

v
Raw Metrics Monitoring
Measured Service
Metrics

Figure 4.9: SSLA Enforcement Service

work after a failure, while upTime represents the sum of time without failure. Following this schema,
the SSLA Enforcement Service extracts, periodically, relevant information to compute statistics that
reflect the fulfillment of each Protection/Security Level Objective. This information is then displayed
graphically using charts as shown in Figure

4.3 Compute-Level Security Services

The Compute Sub-Framework provides a number of Security Services that are orchestrated based
on Cloud Customers’ requirement to ensure self-protection of U-Clouds on the top of the distributed
virtualization infrastructure. The list of services include :

e Authorization Service: This service offers Access Control and Usage Control mechanisms to
services and applications. It is built on the top of the OrBAC API. The Authorization Service
derives decisions (i.e., permission, prohibitions, obligations) from OrBAC policies [9]. More
details on this service can be found in Section and Deliverable D2.3 [10].

e Security Monitoring: This service implements self-protection of U-Cloud resources, to de-
tect and react to threats to the computing infrastructure in an autonomous manner. Two
aspects of self-protection should be considered: cross-layer defense (vertical orchestration) and
cross-provider defense (horizontal orchestration). Deliverable D2.3 [10] introduces a preliminary
version of the monitoring component focusing on cross-layer self-protection. A more extensive
version will be described in deliverable D2.4.

o Geolocation-aware data replication: This service aims to replicate data only in allowed
locations. This objective is further complicated by relying on virtual machines (VMs) provided
locally or by multiple cloud providers. Deployment of new services and requirements like avail-
ability or backup procedures cause the configuration of these VMs to be dynamic over time.
The integration of the Georeplication Service with the Security Self-Management Framework is
described in Section [5.1} Details on the implementation of this service and its integration with
Security Self-Management can be found in Deliverable D2.3 [10].

SUPERCLOUD D1.4 Page 27 of

SUPER
D1.4- SUPERCLOUD Self-Management of Security Implementation CLOUD

SUPER

SUPER
CLOUD

CLOUD

SSLA Enforcement Service SSLA Enforcement Service
Overview Response Time Security Incidents Failures Bandwidth Qverview Response Time Security Incidents Failures Bandwidth
Count of Incidents per day Average Response time per VM in Milliseconds

200
150
VM3 E—
VM1
6 Average: 85
50
0
o ot o o i

Figure 4.10: Captures from the SSLA Reporting Dashboard

e SSLA Service: The objective of this service is to provide the Cloud Service Customer (CSC)
mechanisms to supervise the execution of the active SSLA. The SSLA Enforcement Service
(SES) translates and maps low-level raw resource metrics measured by monitoring services to
high-level SSLA objectives. For more details about this service, please refer to Section [4.2.4 and
Deliverable D2.3 [10] as well.

e Software Trust Service: The objective of the Software Trust Service is to assist cloud cus-
tomers and providers selecting the best interacting partners within the Cloud Market Place.
The Software Trust Service builds on the top of the SSLA Enforcement and Monitoring Service
to make trust assessments. The trust computation component mainly integrates the algorithm
that processes the SSLA objectives and derives trustworthiness values as described in [22]. These
values are made available via a standard REST API interface. Please refer to Section [4.2.3] for
more details.

4.4 Data-Level Security Services

The SUPERCLOUD data protection sub-layer provides several components to implement secure and
dependable data management services in a multi-cloud environment. As illustrated in Figure the
implemented architecture considers a user-centric deployment of independent data security services.
The security services implemented in this sub-framework have been presented in details in Deliverable
D3.3 [2]. In this Section, we provide a brief overview of each service.

The main protection and management services include:

e Secure Data Replication Service: JANUS is a cloud-of-clouds storage system that maintains
data in a dependable and secure way using multiple cloud providers as storage backends. The

SUPERCLOUD D1.4 Page 28 of [d1]

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

system employs several Byzantine-resilient replication and coding algorithms [16] to spread the
stored data in multiple cloud storage services (Amazon S3, Google Storage, Rackspace Files,
etc.) in such a way that fault tolerance and confidentiality is preserved even if a fraction of these
providers is compromised. The description of the ongoing integration of Janus with Security
Self-Management is described in Section and a detailed presentation of Janus may be found
in Deliverable D3.3 [2].

e Attribute-Based Encryption Service: This service implements an Attribute Based Encryp-
tion (ABE) scheme, in which the encryption and decryption are based on users attributes. More
precisely, in such a system, each end-user possesses some characteristic attributes. When upload-
ing a new data, the depository chooses an access control policy, based on the existing attributes,
and related to the data. Then, only users having the set of attributes verifying the defined access
control policy will be able to decrypt and read the stored data. More details about ABE Services
can be found in Chapter 6 of Deliverable D3.3 [2].

e Data Anonymization Service: This service aims at allowing personal sensitive data release,
while preserving the individuals privacy. The service calculates the best solution for the given
data in terms of cost-efficiency. This is done by means of so-called cost metric calculation as well
as the Optimal Lattice Anonymization (OLA) algorithm (cf., Deliverable D3.2 [15]). A detailed
explanation of the OLA algorithm as well as of all including components of the tool can be found
in the Deliverable D3.3 [2].

e Hyperledger Fabric: This component provides State-Machine Replication-related mechanisms
as described in SUPERCLOUD Deliverable D3.2 [15]. Notably it includes: (a) a component
that treats non-determinism when replicating arbitrary applications when replicas can fail in an
arbitrary (i.e., Byzantine) way, (b) a component that introduces a novel model for developing
reliable distributed protocols called XFT, (¢) a component that empirically evaluates latency-
optimization for state-machine replication in WANs and informing the design of novel state-
machine replication protocols, and (d) a component that introduces a generic state-transfer tool
for partitioned state-machine replication that enables elasticity.

4.5 Network-Level Security Services

As illustrated in Figure the Network Security Self-management sub-framework is composed of
independent security services that include: the Network Security Monitoring Service, the Network
Security Policy Management Service, and the Network Security Appliance Chaining Service. More
details about those services can be found in Deliverable D4.3 [19].

e Network Security Monitoring Service: This service allows the detection of security incidents
in a tenant network hosted over a multi-cloud. For this purpose, the service collects statistics
regarding the network state by issuing requests to switches periodically. It also provides a tunable
notification service to a Context Handler for specific types of alerts (e.g., link congestion, high
packet drop rate). The services processes collected information to have a complete view of the
state of the network, enabling automatic response to security incidents.

e Network Security Policy Management Service: This service aims at managing and de-
ploying network security policies automatically. It interacts with the Security Monitoring service
which provides alerts and statistics about the SDN networks exposed by the Network Hypervisor.
It is deployed as an application on top of the Network Hypervisor. It reacts to the notifications
received and instructs the Network Hypervisor to deploy the changes in order to dynamically
adapt the network to the context of the environment. The reaction is chosen according to security
policies.

SUPERCLOUD D1.4 Page 29 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

e The Network Security Appliance Chaining Service: This service allows end-user to easily
compose his own security service chains (online or off-line) in a multi-cloud environment. The
service runs on top of the Floodlight [7] controller and uses its REST API to discover the
topology, get traffic statistics or install rules in the switches. REST commands used are only
valid for switches compatible with OpenFlow [13] version 1.3, which must be explicitly activated
in Open vSwitch.

In the next Chapter, we will provide some examples of the integration of Security Self-Management
Framework.

SUPERCLOUD D1.4 Page 30 of

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

Chapter 5 Integration of Security Services

In this Chapter, we present an overview of the integration of Security Services. This integration has
been achieved following the methodology illustrated in Figure 5.1.

Components Implementation
Requirements * * * v
Expression T Acceptance
Ana|ysis Select Components Define Components Integrate Key
(D1 1.D1.2 to Integrate Interfaces to Sub-Systems Sub-Systems Performance
D5.1) “ & Indicators
| v y y :
v
Test of Components Test of Interfaces Test of Sub-Systems Test of the System
O >
Mar’16 Sep’16 Nov’16 Mar’17 June’17
Eindhoven Evry Darmstad Vienna Azores
Meeting Meeting Meeting Meeting Meeting

Figure 5.1: Security Services Integration Approach

The overall integration workflow has been discussed and planned throughout several SUPERCLOUD
technical meetings as annotated in Figure 5.1. The process may be summarized as follows:

1. First, Security Services have been developed and tested individually.

2. Second, for each service, external interfaces that allow it to communicate with other services
have been defined and developed.

3. Then, individual services were integrated into sub-systems based on common objectives and
dependencies. For instance, Authorization depends on Authentication.

4. Finally, sub-systems have been integrated to use-case demonstrators in order to evaluate and
validate the overall SUPERCLOUD Self-Management of Security Framework.

In the remainder of this Chapter, we will highlight examples of Security Service integration at different
levels. First, we show examples of integration between services of Compute (cf., Section , Data
(cf., Section and Network (cf., Section frameworks. Finally, in Section we demonstrate
the integration of some Security Services with applications related to project use-cases.

SUPERCLOUD D1.4 Page 31 of

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

5.1 Integration with Compute Security Services

In this Section, we showcase the integration of SUPERCLOUD Security Self-Management Services
with Compute-Level Security Services. In this example, we describe the integration of the Geolocation-
aware Replication Service developed by Philips Research with two of the Security Self-Management
Services, namely Authorization and SSLA Management services.

The main goal of the Location-aware Data Replication Service is to allow cloud users to keep control on
the locations where their data could be replicated, addressing the numerous geolocation directives and
regulations El We showcase in this Section how such objective has been achieved in SUPERCLOUD.

Authorization Service

SSLA
Mgnt.
Service

Application
Interface
Address:Port

Axis Server

& ‘&
SLA Compliant Data
Hosts

Philips Research GeoReplication Service

Figure 5.2: Integration of SSLA Management and Georeplication Services

As illustrated in Figure[5.2] geolocation policies are extracted from the SSLA by the SSLA Management
Service and converted to OrBAC rules. These rules are subsequently processed by the Authorization
Service to derive permissions and/or prohibitions. From the Georeplication Service perspective, inte-
gration with the aforementioned Authorization Service is achieved throughout a standard REST API
interface. This interface allows the Georeplication Service to retrieve the list of locations/VMs that
are compliant with the cloud customer requirements. This list is subsequently used by this service to
achieve SSLA-compliant data replication.

5.2 Integration with Data Security Services

Data Security Services and Security Self-Management Services are integrated at several levels. In this
Section we provide two examples of these integration actions.

5.2.1 Location-Awareness Policies for SLAs

This Section provides an overview on the implementation of location-aware data replication services.
This feature is showcased in SUPERCLOUD through the integration of SSLA services that extract
user requirements in terms of data location and the secure storage provided by Janus.

'For instance, the GDPR. (General Data Protection Regulation).

SUPERCLOUD D1.4 Page 32 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

SSLA ‘
Specification | L =T Server

Service

Security
Orchestrator

volur;nes configuration i . D|Sk Driver

Bl Security Self-Management [l B SUPERCLOUD Data Layer - s Cloud Providers NN '

Figure 5.3: SSLA Location-Aware Janus

As illustrated in Figure the location-aware fault-tolerance service is the result of the integration
of two components of Self-Management of Security, and two components from the Janus framework.

The user first specifies his data volumes requirements through the SSLA Specification Serviceﬂ Then,
based on these requirements, a request is sent to the Janus service where a solver will find the best
solution that matches the user’s desiderata. Once this configuration is found, the result is sent back
to the SSLA Service which takes care of forwarding it to the Security Orchestrator. In the last phase,
the Orchestrator will use this configuration file to deploy and configure the Janus Virtual Disk Driver.
Once running, this component will do regular backups of user data only on providers that fulfill the
user’s requirements in terms of location, but also in terms of cost and latency.

5.2.2 Monitoring of Data Access Failures

In this Section, we provide an overview of the ongoing integration action between the Security Self-
Management and Janus, the dependable and secure multi-cloud data storage serviceﬂ

SSLA

Enforcement -
Service

Ciéncias
Ulisboa

| JANUS

I D

i b

I P

I P

I D

i P

I P

I P

I P

I D

i P

A —— I

1 3 |

3 Active SSLA ssLA Raw Metrics L j

| ¢ Objectives I 5

I

i P

I P

: Storage Service ! ! Raw Data

i b

I P

I P

P i
s Security Self-Management iy B SUPERCLOUD Data Layer R Cloud Providers [JNEEE—— '

Figure 5.4: Integration of Self-Management of Security and Janus

As illustrated in Figure [5.4] the Janus secure storage service embodies monitoring components that
collect information about the health of the servers wherein SUPERCLOUD user data is hosted. The

2This service is described in Chapter
3We invite the reader to refer to Deliverable D3.3 [2] for more details about Janus.

SUPERCLOUD D1.4 Page 33 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

collected data concern essentially data Awailability and the observed Latency. The collected data
are then sent to the Security Storage Service (part of the Security Self-Management Framework) to
be processed by the SSLA Enforcement Service (Left part of Figure [5.4). This raw data is then
processed to be converted into high level metrics to be compared with SSLA objectives defined by the
SUPERCLOUD Cloud Customer. The result of this processing is then displayed to allow supervision
and arbitrationl]

5.3 Integration with Network Security Services

In this Section, we present an overview of the integration of Security Services from the Self-Management
and Computing Framework with Security Services from the Networking framework. This integration
showcases the implementation of user-driven and adaptive network policies for service availability.

— 3
Context
Slalus Information

Alerts Momtormg Engme Security Orchestrator
—_— SDN
Controller
Control Plane
SDN

Security / \
Module .
Swm:h . Switch . Switch

N) |Data Plane Switch Switch

Figure 5.5: OrBAC-based orchestration of network security policies

As illustrated in Figurdb.5| user security preferences captured and negotiated by the Security Service
Level Service are represented as OrBAC authorization rules (i.e., permissions and prohibitions), as
shown in the top-left part of Figure These policies are then used by the Security Orchestrator to
activate and/or deactivate SDN routing paths based on context and monitoring information.

5.4 Integration with Use-Cases Application

In this Section, we demonstrate the integration of the Philips Imaging Platform with the Security
Self-Management Framework. This integration is achieved at two levels. First, the Philips Imaging
Platform is integrated with the SSLLA Service wherein user requirements are captured and used to
derive requirements for Compute, Data and Network but also Customer’s desiderata about security
services and their configuration. For instance, the Philips Imaging Platform is integrated with Janus, the
Secure Data Storage Service developed in the Data Plane. And as illustrated in Section Janus
deployment and configuration is orchestrated by the Security Self-Management Framework. Thus, the
Philips Imaging Platform is also implicitly integrated through Janus. In addition, the Philips Imaging
Platform delegates Access Control Decisions to the Authorization Framework (cf., Deliverable 5.2 [20]
for more details). This integration is illustrated in Figure Finally, the Philips Imaging Platform
also automatically benefits from the SSLA Enforcement Service as well as from the Trust Management
Service. This illustrates the complete integration of Security Self-Management with SUPERCLOUD
project use-case scenarios.

1A more detailed description of the SSLA Enforcement Service can be found in Deliverable D2.3 [I0].

SUPERCLOUD D1.4 Page 34 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

Chapter 6 Components Access and Installation

This Chapter presents how to download and deploy the security services presented in this Deliverable.

6.1 SSLA Specification Platform

The SSLA Specification Platform is encapsulated in a Web-Server Docker. The component can be
downloaded from the SUPERCLOUD repository{ﬂ Once the image downloaded, the start.sh script
shell needs to be executed. The script takes care of the deployment of the image that contains the
web-server hosting the SUPERCLOUD frontal.

The successful deployment of the SSLA Specification Platform can be verified by accessing the url :
http://Docker-Machine-IP:8080/SSLA/. The user should be prompted the welcome page depicted
in Figure 3.1

6.2 SSLA Negotiation Platform

The multi-agent based SSLA Negotiation Platform presented in Section is provided as a JAVA
jar application. The application can be downloaded from the SUPERCLOUD repositoryﬂ Once
downloaded, the following steps are needed to deploy the market place.

e The command java -jar RunMarketPlace.jar will start the multi-agent platform representing
the cloud market place.

e Once the platform started, the user will be prompted the GUI depicted in Figure [3.12] This
interface will allow the user to create an agent by specifying its name and selecting the XML
file containing the cloud service requirements/constraints. The procedure is described in Sec-

tion B.2.1.11

e If the negotiation assistant agent succeeded to find appropriate offers/clients, an agreement is
reached and an SSLA file is generated. It is this file that is used by Security Orchestrator to
configure and deploy security services as described in Chapter

6.3 Security Orchestrator

The Orchestrator is a core component in SUPERCLOUD Self-Management of Security. It is split into
three sub-modules, each responsible of a specific phase of the process presented earlier: interpretation,
configuration, deployment and management (cf., Section . Next, we describe how these modules
can be downloaded and tested. Each module is currently provided as a Java JAR application. In what
follows, we list the necessary steps to download and run them.

e Download the security service deployment module from the SUPERCLOUD repositoryﬁ

"https://github.com/H2020- SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/selfmanagement/specification
Zhttps://github.com/H2020- SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/selfmanagement/negotiation
3https://github.com/H2020- SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/selfmanagement/

SUPERCLOUD D1.4 Page 35 of

http://Docker-Machine-IP:8080/SSLA/
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/selfmanagement/specification
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/selfmanagement/negotiation
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/selfmanagement/

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

e The component needs to be placed in the root directory containing security services resources

as follows:
/
SSLA2Config.jar....coeveiiiiiiiiiiiiiiii.., Converts SSLA to services configurations
DEPLOY T . JAT « ettt ettt e Deploys the configuration
Manage.jar....ovevviiiniiin i, Manages containers encapsulating security services
dOCKET=COMPOSE . YL .+ttt ttttt ittt ittt ettt ittt Generated file
/SO VA CENAIME .« v vttt ettt ettt et e e e Service folder
Service.Clg ..ot e Service-specific configuration
Dockerfile
7= 1o Do =Y PP Other resources
/ServiceName.ottt e Other security service
service.cfg
Dockerfile
/Resources

e Execute the SSLA2Config.jar to launch the processing of SSLA files and the generation of
configuration files.

e Execute java -jar Deploy.jar to deploy security services on the local machine.

e An execution trace will be displayed to verify that services are running.

6.4 Security Services

This Section describes the procedure to download and deploy SUPERCLOUD Self-Management Se-
curity Services presented in Chapter [4] The procedures explaining how to access and deploy Security
Services that have been implemented in each SUPERCLOUD sub-framework (i.e., Compute, Data and
Network) are described in dedicated Deliverables (i.e., Deliverable D2.3 [10], D3.3 [2] and D4.3 [19]).

6.4.1 Authorization Service

The Authorization Service is provided as a deploy-ready Docker image encapsulating the OrBAC
REST API. We present hereafter the procedure to follow to run and test the service. The following
deployment process has been tested in Linux and Mac OS and Windows.

e Download the tar compressed file containing the service Docker imageﬂ
e The archive contains :

— The Authorization Service repository that wraps the OrBAC REST API service running
using Apache Axis 2.
— A Docker file that specifies the way the image should be built.

— A start.sh shell script that runs the service.
e Launch the ./start.sh script to start the Authorization Service.
e Test if the service is running.

— Go to the URL address:
http://localhost:8080/axis2/services/SupercloudAuthorizationService?wsdl

— Type the command-line: curl -get with the same URL above.

“https://github.com/H2020- SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/services/authorization

SUPERCLOUD D1.4 Page 36 of

http://localhost:8080/axis2/services/SupercloudAuthorizationService?wsdl
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/services/authorization

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

6.4.2 Monitoring Service

A first version of the Monitoring Service is accessible at https://github.com/Orange-0OpenSource/
vespa-core.

6.4.3 SSLA Services

As presented in Section[2.2] the SSLA Enforcement Service is provided as a deploy-ready Docker image.
It contains the web application responsible for displaying the information collected by the Monitoring
Service and aggregated by the SSLA engine. We present hereafter the procedure to download, deploy
and test the services on the user’s machind’|

e Download the tar compressed file containing the service Docker imageﬁ
e Launch the ./start.sh script to start the SSLA Enforcement Service.
e To test if the service is running, go to the URL address : http://localhost:80

e This component displays the fulfillment of SSLA based on metrics from the Storage Service.

6.4.4 Trust Management Service

We present here after the procedure to retrieve and deploy the Software Trust Serviceﬂ Like other
Self-Management of Security services, the Trust Service is available as a deploy-ready Docker image.

e Download the tar compressed file containing the service Docker imageﬂ
e Launch the ./startSTS.sh script to start the Software Trust Service.

e Once the trust service starts, it can be accessed thought standard REST calls. For instance, curl
-XGET |: ///Docker-Machine-IP:8000/trust| will retrieve the trust values from the service.

5The following deployment process has been tested in Linux and Mac OS and Windows 10.

®https://github.com/H2020- SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/services/ssla

"The following deployment process has been tested on Mac OS, but tests have been conducted to verify that the
services would run similarly on any other operating system.

Shttps://github.com/H2020- SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/services/trust/

SUPERCLOUD D1.4 Page 37 of

https://github.com/Orange-OpenSource/vespa-core
https://github.com/Orange-OpenSource/vespa-core
http://localhost:80
:///Docker-Machine-IP:8000/trust
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/services/ssla
https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP1/services/trust/

D1.4- SUPERCLOUD Self-Management of Security Implementation g CLOUD

Chapter 7 Conclusion

7.1 Summary

This Deliverable reports on the implementation of the Security Self-Management Framework. It also
describes the demonstrators of security services developed within SUPERCLOUD at the compute,
data and network levels. To proceed, we first presented in Chapter [2| an overview of the Security
Self-Management, Architecture and the corresponding specification and deployment approaches.
Then, we presented in Chapter [3| the SSLA Specification and Negotiation framework that captures
Cloud Services Customers (CSCs) and Cloud Services Providers (CSPs) requirements that are used
to negotiate cloud services among CSCs and CSPs. In Chapter [4 we provided insight on the im-
plementation of Security Orchestrators and Services. In Chapter [5, we reported on the integration
of Security Self-Management Services with SUPERCLOUD Compute, Data and Network planes. Fi-
nally, in Chapter [0 we presented how the services presented in this Deliverable can be downloaded
and deployed.

7.2 Future Works

The last period of the project will be dedicated to the full integration of all SUPERCLOUD security
services into a unified and unique Security Self-Management Framework. The integration action
includes also the complete integration of the Framework with SUPERCLOUD compute, data and
network sub-frameworks. For some services, such as monitoring (cf., Section , there is already
a planned evolution. Hence, an additional integration process might be needed. Finally, we will also
devote some efforts towards deployment of SUPERCLOUD Security Self-Management in the project
testbed.

SUPERCLOUD D1.4 Page 38 of

D1.4- SUPERCLOUD Self-Management of Security Implementation

ﬁ CLOUD

List of Abbreviations

API Application Programming Interface
EC European Commission

CA Customer Agent

CFP Call For Proposal

CMP Cloud Market Place

CSC Cloud Services Customer

CSp Cloud Services Provider

DDoS Distributed Denial of Service

DF Directory Facilitator

DPI Deep Packet Inspection

FIPA Foundation for Intelligent Physical Agents
FIPA-ACL FIPA Agent Communication Language
GDPR General Data Protection Regulation
JADE Java Agent Development

JSON JavaScript Object Notation

NIDS Network Intrusion Detection
OrBAC Organization-Based Access Control
0S Operating System

PA Provider Agent

PLO Protection Level Objective

QoP Quality of Protection

QoS Quality of Service

REST Representational State Transfer
SES SSLA Enforcement Service

SLO Service-Level Objective

SMS Self-Management of Security

SDN Software-Defined Networking

SSLA Security Service Level Agreement
STS Software Trust Service

PEP Policy Enforcement Point

U-Cloud User Cloud

URL Uniform Resource Locator

VM Virtual Machine

VESPA Virtual Environments Self-Protecting Architecture
XML eXtensible Markup Language

SUPERCLOUD D1.4

Page 39 of

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

Bibliography

1]

[10]

[11]

[12]

Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki Nakata, Jim
Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web Services Agreement Specification. 2002.
Accessed: 2016-06-02. URL: https://www.ogf .org/documents/GFD. 107 .pdf.

Alysson Bessani, Mario Miinzer, Sébastien Canard, Nicolas Desmoulins, Marie Paindavoine,
Marko Vukolic, and Daniel Pletea. D3.3 - Proof-of-Concept Prototype for Data Management.
SUPERCLOUD, 2017.

Docker Compose. Docker compose tool. 2016. URL: https://docs.docker.com/compose/.
Docker. Docker tool, 2017. URL: https://docs.docker.com/.
Docker Swarm, 2017. Accessed: 2017-07-13. URL: https://docs.docker.com/swarm/.

FIPA. FIPA SL Content Language Specification. 2002. URL: http://www.fipa.org/specs/
f£ipa00008/SC00008I.htmll

Floodlight-Project. Floodlight Controller, 2016. Accessed: 2016-10-13. URL: http://http:
//www.projectfloodlight.org/floodlight/.

Telecom Italia. JADE - Java Agent DEvelopment Framework, 2010 (accessed July 10, 2017).
URL: http://jade.tilab.com.

Anas Abou El Kalam, Salem Benferhat, Alexandre Miege, Rania El Baida, Frédéric Cuppens,
Claire Saurel, Philippe Balbiani, Yves Deswarte, and Gilles Trouessin. Organization Based Access
Control. In 4th IEEFE International Workshop on Policies for Distributed Systems and Networks
(POLICY), 2003.

Marc Lacoste, Mario Miinzer, Felix Stornig, Alex Palesandro, Denis Bourge, Charles Henrotte,
Houssem Kanzari, Marko Vukolic, Jagath Weerasinghe, Reda Yaich, Nora Cuppens, Frédéric
Cuppens, Markus Miettinen, Ferdinand Brasser, Tommasso Frassetto, and Daniel Pletea. D2.3 -
Proof-of-Concept Prototype of Secure Computation Infrastructure and SUPERCLOUD Security
Services. SUPERCLOUD, 2017.

Marc Lacoste, Yvan Rafflé, Fano Ramparany, Gregory Blanc, Fabien Charmet, Gitesh
Vernekar, Krzysztof Oborzynski, and Paulo Sousa. D5.1 - use case requirements, specifica-
tion, and evaluation plan. SUPERCLOUD, 2016. URL: supercloud-project-archive/SC-D5.
1-Use-case-requirements—-specification-evaluation-plan-CO-M18.pdf.

Marc Lacoste, Benjamin Walterscheid, Alex Palesandro, Aurélien Wailly, Ruan He, Yvan
Rafflé, Jean-Philippe Wary, Yanhuang Li, Soren Bleikertz, Alysson Bessani, Reda Yaich,
Sabir Idrees, Nora Cuppens, Frédéric Cuppens, Ferdinand Brasser, Jialin Huang, Majid Sob-
hani, Krzysztof Oborzynski, Gitesh Vernekar, Meilof Veeningen, and Paulo Sousa. D2.1
- Architecture for Secure Computation Infrastructure and Self-Management of VM Secu-
rity,. SUPERCLOUD, 2015. URL: https://supercloud-project.eu/downloads/SC-D2.
1-Secure-Computation-Infrastructure-PU-M09.pdf.

SUPERCLOUD D1.4 Page 40 of

https://www.ogf.org/documents/GFD.107.pdf
https://docs.docker.com/compose/
https://docs.docker.com/
https://docs.docker.com/swarm/
http://www.fipa.org/specs/fipa00008/SC00008I.html
http://www.fipa.org/specs/fipa00008/SC00008I.html
http://http://www.projectfloodlight.org/floodlight/
http://http://www.projectfloodlight.org/floodlight/
http://jade.tilab.com
supercloud-project-archive/SC-D5.1-Use-case-requirements-specification-evaluation-plan-CO-M18.pdf
supercloud-project-archive/SC-D5.1-Use-case-requirements-specification-evaluation-plan-CO-M18.pdf
https://supercloud-project.eu/downloads/SC-D2.1-Secure-Computation-Infrastructure-PU-M09.pdf
https://supercloud-project.eu/downloads/SC-D2.1-Secure-Computation-Infrastructure-PU-M09.pdf

D1.4- SUPERCLOUD Self-Management of Security Implementation ﬁ CLOUD

[13]

[14]

[15]

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rex-
ford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38(2):69-74, March 2008. URL: http://doi.acm.org/10.
1145/1355734.1355746, doi:10.1145/1355734.1355746.

Markus Miettinen, Mario Miinzer, Felix Stornig, Marc Lacoste, Alex Palesandro, Denis Bourge,
Charles Henrotte, Houssem Kanzari, Ruan He, Marko Vucolic, Jagath Weerasinghe, Sabir Idrees,
Reda Yaich, Nora Cuppens, Frédéric Cuppens, Ferdinand Brasser, Raad Bahmani, Tommaso
Frassetto, David Gens, Daniel Pletea, and Peter van Liesdonk. D2.2 - Secure Computation
Infrastructure and Self-Management of VM Security. SUPERCLOUD, 2016.

Mario Miinzer, Sébastian Canard, Marie Paindavoine, Andre Nogueira, Antonio Casimiro, Joao
Sousa, Joel Alcantara, Tiago Oliveira, Ricardo Mendes, Alysson Bessani, Christian Cachin, Si-
mon Schubert, Caroline Fontaine, Daniel Pletea, Meilof Veeningen, and Jialin Huang. D3.2 -
Specification of Security Enablers for Data Management. SUPERCLOUD, 2016.

Tiago Oliveira, Ricardo Mendes, and Alysson Bessani. Exploring key-value stores in multi-writer
byzantine-resilient register emulations. In Proc. of the 20th International Conference On Princi-
ples Of Dlistributed Systems — OPODIS’16, December 2016.

OpenStack Watcher. URL: https://github.com/openstack/watcher.

Alex Palesandro, Marc Lacoste, Nadia Bennani, Chirine Ghedira Guegan, and Denis Bourge.
Putting Aspects to Work for Flexible Multi-Cloud Deployment. In IEEE International Conference
on Cloud Computing (CLOUD), 2017.

Fernando M. V. Ramos, Nuno Neves, Ruan He, Pascal Legouge, Marc Lacoste, Nizar Kheir,
Redouane Chekaoui, Medhi Boutaka, Eric Vial, Max Alaluna, Khalifa Toumi, Rishikesh Sahay,
and Gregory Blanc. D4.3 - Proof-of-concept Prototype of the Multi-Cloud Network Virtualization
Infrastructure. SUPERCLOUD, 2017.

Paulo Sousa, Gregory Blanc, Krzysztof Oborzynski, Bruno Ferreira, and Joana Cruz. D5.2 -
use-case demonstrators. SUPERCLOUD, 2017.

VESPA: Virtual Environment Self-Protecting Architecture. ~ URL: https://github.com/
Orange-OpenSource/vespa-corel

R. Yaich, N. Cuppens, and F. Cuppens. Enabling Trust Assessment In Clouds-of-Clouds: A
Similarity-Based Approach. In Proceedings of the International Conference on Availability, Reli-
ability and Security (ARES), 2017. doi:10.1145/3098954.3098970.

Reda Yaich, Sabir Idrees, Nora Cuppens, Frédéric Cuppens, Marc Lacoste, Nizar Kheir,
Ruan He, Khalifa Toumi, Krzysztof Oborzynski, Meilof Veeningen, and Paulo Sousa.
D1.2 - SUPERCLOUD Self-Management of Security Specification. SUPERCLOUD, 2015.
URL: https://supercloud-project.eu/downloads/SC-D1.2-Self-Management_Security_
Specification-PU-MO9.pdf|

SUPERCLOUD D1.4 Page 41 of

http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
https://github.com/openstack/watcher
https://github.com/Orange-OpenSource/vespa-core
https://github.com/Orange-OpenSource/vespa-core
http://dx.doi.org/10.1145/3098954.3098970
https://supercloud-project.eu/downloads/SC-D1.2-Self-Management_Security_Specification-PU-M09.pdf
https://supercloud-project.eu/downloads/SC-D1.2-Self-Management_Security_Specification-PU-M09.pdf

	Introduction
	Motivation and Objectives
	Document Organization

	Security Self-Management Framework
	Overview of Security Self-Management
	Security Self-Management Approach Specification
	Micro-Services Architecture
	Docker for Micro-Services Deployment
	Security Self-Management Dockerized Architecture

	Security Service Level Management
	SSLA Specification Service
	Accounts Management
	Service and Protection Level Expression

	SSLA Negotiation Platform
	Multi-Agent SSLA Negotiation Platform
	Agent Creation
	Cloud Services Publishing and Discovery
	Cloud Services Negotiation

	Implementation of Security Self-Management
	Security Self-Management Framerwork
	Overall Security Orchestrator

	Security Self-Management Services
	Authorization Service
	Monitoring Service
	Software Trust Management Service
	SSLA Enforcement Service

	Compute-Level Security Services
	Data-Level Security Services
	Network-Level Security Services

	Integration of Security Services
	Integration with Compute Security Services
	Integration with Data Security Services
	Location-Awareness Policies for SLAs
	Monitoring of Data Access Failures

	Integration with Network Security Services
	Integration with Use-Cases Application

	Components Access and Installation
	SSLA Specification Platform
	SSLA Negotiation Platform
	Security Orchestrator
	Security Services
	Authorization Service
	Monitoring Service
	SSLA Services
	Trust Management Service

	Conclusion
	Summary
	Future Works

	List of Abbreviations
	Bibliography

