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Executive Summary

This document describes technical solutions realized as prototype implementations of components of
the computational sublayer of the SUPERCLOUD architecture. These solutions concern issues related
to the orchestration of computational environments across several different cloud service providers as
well as the strict isolation of computations from access by the service providers with the help of hard-
ware security features. Also solutions for providing access to hardware-accelerated computations utiliz-
ing FPGAs through the SUPERCLOUD API are discussed. Solutions related to the self-management
of security settings are demonstrated through prototypes related to security policy modelling and
enforcement. In addition, two concrete use case-related prototypes are presented. One addresses
the issue of enforcing geo-location requirements of computation (e.g., assurance that computations
are performed within given jurisdictional boundaries), whereas the other prototype demonstrates the
realization of network function virtualization in SUPERCLOUD, which is necessary for the implemen-
tation of the logical communication infrastucture within User Clouds.
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Chapter 1 Overview

This deliverable describes the prototypical implementation of the distributed cloud infrastructure for
computation and of the SUPERCLOUD mechanisms for self-management of security of VMs running
on this infrastructure. The deliverable also includes a description of a number of components to man-
age trust in the SUPERCLOUD and underlying infrastructure, relying on hardware-enabled security
mechanisms. The implementation prototypes demonstrate three core aspects of the SUPERCLOUD
architecture:

• Virtualization and orchestration of computation environments;

• Self-management of VM security;

• Trust management based on hardware security mechanisms.

1.1 Virtualization and orchestration of computation environments

This area covers challenges related to computing virtualization in a multi-cloud setting, on top of
which may be built security and availability services such as geolocation-aware data isolation and
replication.

1.1.1 Virtualization and orchestration

Horizontal orchestration deals with the orchestration of computation environments in the SUPER-
CLOUD architecture across multiple providers. Specific orchestration challenges and solutions are
explored in the horizontal orchestration prototype, described in detail in Sect. 3.1. In addition, the
horizontal orchestration of the SUPERCLOUD computation architecture is studied in the context of
an example related to network function virtualization (NFV), with a prototype described in Sect. 4.2.

1.1.2 Geolocation-restricted data replication

Another prototype studied geo-location-aware data isolation, as described in Sect. 4.1. Nowadays
connected health systems are able to deliver, via collaborations, enhanced and more efficient care for
the patients. In such systems healthcare moves outside hospitals, closer to the analysis tools that
extract more and smarter knowledge from this data. These types of analyses make the healthcare
tailored to a patient and therefore more accurate.
The empowering/enablement of the healthcare tools and ultimately of the patients requires the data
to be replicated in multiple data storages across the world (on different platforms) due to require-
ments regarding data query performance, load balancing and disaster recovery. Replication can be
straightforward when the data may be stored in any storage from any geographical location (e.g.
country or continent). Unfortunately, this is not the case in the real world, where the data storage
platforms need to adhere to different geolocation directives, regulations or requirements imposed by
governmental entities and to other requirements defined by customers or end-users.
We focus on regional restrictions, where data is not free to flow from one region or country to another.
Such restrictions might be dictated by the countries policies, from collaboration agreements or even
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more fine-grained by the owners of the data (e.g. patients). This situation is further complicated
by the increasing reliance on cloud-based virtual machines. Geolocation requirements are present in
such connected health platforms, where multi-tenant multi-datacenter data management (depicted in
Figure 1.1) needs to enforce geolocation requirements like:

Figure 1.1: Multi-tenant multi-datacenter data management system

• Parts of the data should be managed globally (e.g. master data, service configurations, authen-
tication sources);

• Parts of the data should remain “local”:

– Local could be: on premise or within geographical region

– Partially-defined by tenant: German customer? Data stays in Germany

• Isolation of data per tenant (multi-tenancy):

– Keeping all data in one database vs schemas/databases per tenant

Next to these geolocation requirements, we encountered geolocation requirements also in one of the
other SUPERCLOUD use cases, namely the Maxdata use case :

• DR8 Location-awareness: Users should be aware of the physical location of Execution Environ-
ments (EEs) that process users’ data;

• DR9 Location-control: Users should be able to define the set of possible physical locations, at
country level, where users’ data may be processed.

Storing data only in allowed geographical places can be easy to enforce when the connected health
platform is storing and managing the data within a single data storage provider (e.g. a single cloud
provider). In such a case, the cloud provider has control over all the virtual machines (VMs) used
for deployment of the aforementioned platform and knows where all the VMs and their attached data
storages are placed.

SUPERCLOUD D2.2 Page 2 of 68
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Figure 1.2: Connected health platform. Circles depict servers within the platform, ovals geographical
boundaries, and polygons organizations (i.e., cloud providers or hospitals) in control of the servers

This scenario becomes a lot more complex when the platform spans a multitude of cloud providers
over multiple locations, and even several on premise hospital systems are part of the aforementioned
connected health platform (e.g. Philips HSDP platform). Such a scenario is depicted in Figure 1.2.
In this case, multiple VMs belonging to different computing providers are connected; therefore, a
centralized solution for replication becomes more difficult to design because of the synchronization
across computing providers. The configuration of the deployed VMs is dynamic in such a connected
health system, with VMs being deployed in or removed from different computing platforms due to
different requirements (e.g. availability, backup procedures, or new services). In this case, a discovery
solution, which is able to adapt to the dynamicity of the system, needs to be in place.
One straightforward solution is to encrypt the data and broadcast it all over network with the en-
cryption being done so that only allowed VMs can decrypt it. Such a solution is very inefficient when
the size of the data, which needs to be replicated, is big, which is often the case in the connected
health systems. Another is to have a central broker that maintains lists of the resources within the
connected health system. However, the platforms are dynamic, making such lists difficult to maintain.
It would mean that all the computing providers would have to communicate and synchronize their
resources/VMs lists and their geographical locations, which ultimately would have also to be trusted.
Default solutions for the problem of data replication under geolocation restrictions imply a couple of
steps for setting up a secure (e.g. VPN) tunnel between the origin of the data and the place where
the data needs to be replicated. The first step is the discovery of a candidate resource where the
data can be replicated; the second step implies authentication of the discovered resources; and the
third step consists of setting up a session key between the origin and the newly discovered resource
where the data can be replicated. In most of the cases, the second and the third step are together
part of an authenticated key agreement protocol. Such protocols use a public-key infrastructure for
authentication or a pre-shared symmetric key. Here geolocation restrictions would be enforced via
out-of-band communication about which servers can be trusted with what data. Furthermore, to the
best of our knowledge, there are no authenticated key agreement protocols that provide geolocation.
In Sect. 4.1, we present a prototyped solution that can be used for finding VMs that satisfy needed
geolocation requirements. In comparison with state of the art solutions, the proposed solution provides
efficient, adaptable and decentralized discovery of replication VMs that satisfy specified constraints.
Furthermore, the proposed solution is platform independent, allows easy integration across heteroge-
neous health systems and lowers the needed amount of trust that the resource/VMs providers (e.g.
cloud) are not malicious or dishonest.
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1.2 Self-management of VM security

In this section we give a high-level overview of authorization building block of Self-Management of
Security as described in D1.2 and describe how the self-management architecture is demonstrated in
the Security policy prototypes. The prototypes are described in detail in Sections 3.2 and 3.3.
As described in D1.2, a user-centric control and management of security appears to be a necessity
more than a desire for multi-cloud customer: when the dynamic and complex aspect of security man-
agement is coupled with the scalability and heterogeneity of muti-cloud environments, it becomes very
challenging for a human to manage them. For instance, answers to questions such as how outsourced
resources can be manipulated and shared while preserving their confidentiality and integrity? become
more difficult to answer when we consider the complexity of nowadays cloud infrastructures, particu-
larly in context of multi-clouds or federation of clouds.
Access control and trust management provide the necessary mechanisms to answer such questions.
The security specification of VMs can be achieved with the concept of access control and usage control
policy specifications. Based on the different requirements and challenges highlighted in the D1.2 and
D2.1, we need to select a security policy model which is capable of modeling various types of security
requirements (access control, usage control, and information flow, etc.), provide a way to enforce se-
curity requirements dynamically, and most importantly the security policy model should be capable
of handling conflicts in security policies.
In this section, we will present our choice of selecting OrBAC model as access control and usage control
model which is adequate for handling most of these requirements. Organization Based Access Control
(OrBAC) is becoming largely used for modelling access control and usage control policies. It integrates
various concepts defined in the previous work such as role, hierarchy, and context. OrBAC also adds
extensions to enhance its use in a collaborative system. The main concept of OrBAC is the entity
organization. The policy specification is completely parameterized by the organization. This notion
encourages researchers to handle simultaneously several security policies associated with different or-
ganizations. It is characterized by a high level of abstraction. Instead of modeling the policy by using
the concrete and implementation-related concepts of subject, action and object, the OrBAC model
suggests reasoning with the roles that subjects, actions or objects are assigned to in the organization.
Thus, a subject is abstracted into a role which is a set of subjects to which the same security rules
apply. Similarly, an activity and a view are respectively a set of actions and objects to which the same
security rules apply.
The OrBAC model introduces two security levels (concrete and abstract). OrBAC defines the concept
of context. It is a condition that must be satisfied to activate a security rule. A mixed policy
can be offered in OrBAC which defines four types of access: permission, prohibition, obligation and
recommendation. Rules conflicts can appear in this policy. This problem may be resolved by affecting
a coefficient to each rule. Several types of contexts can be used as temporal, geographical (physical and
logical), pre-request, declared, etc. Also, we may have contexts which depend on the application. The
hierarchy notion which facilitates the tasks of the administrator is also used in OrBAC. In the same
way as RBAC, two types of hierarchy (specialization / generalization and organizational) are defined.
Moreover, this hierarchy can be used between different roles, different views, different activities or
different contexts. The OrBAC model defines four predicates:

• empower : empower(s, r) means that subject s is empowered in role r.

• consider : consider(b, a) means that action b implements the activity a.

• use: use(o, v) means that object o is used in view v.

• hold: hold(s, b, o, c) means that context c is true between subject s, action b and object o.

Access control rules are specified in OrBAC by quintuples that have the following form:

SUPERCLOUD D2.2 Page 4 of 68



D2.2 - Secure Computation Infrastructure and Self-Management of VM Security

• permission(org, role, activity, view, context) ∧ empower(org, subject, role) ∧ consider(org,
action, activity) ∧ use(org, object, view) ∧ hold(org, subject, action, object, context) −→
Is Permitted (subject, action, object).

• prohibition(org, role, activity, view, context) ∧ empower(org, subject, role) ∧ consider(org,
action, activity) ∧ use(org, object, view) ∧ hold(org, subject, action, object, context) −→
Is Prohibited (subject, action, object).

The obligations differ from permissions/prohibitions by controlling the behavior of the system based
on specific events that may occur. For the definition of obligations, we consider two different contexts:
the obligation’s activation context and the obligation’s violation context.

• Obligation Activation: An obligation has an activation event after which it becomes effective.
This event may be a temporal or an action-based event .

• Obligation Violation: An obligation has a violation event which specifies when it is violated.
This event may be an action-based, temporal or a relative temporal deadline .

From its specification until its fulfillment, an obligation can have different status, apart from Obligation
Activation and Obligation Violation:

• Obligation Deactivation: An active obligation is deactivated when its context ceases to hold.
The deactivation of an obligation depends on the type of the obligation. Some obligations may
remain required forever after their activation until they are fullfilled.

• Obligation Fulfillment: An obligation is fullfilled when its action is taken. Thus, the obligation
ceases to be required.

Thus, the specification of the obligations can be expressed as follows:

• obligation(org, role, activity, view, Activation Context, Violation Context) ∧ empower(org, sub-
ject, role) ∧ consider(org, action, activity) ∧ use(org, object, view) ∧ hold(org, subject, ac-
tion, object, Activation context) ∧ ¬hold(org, subject, action, object, Violation context) −→
Is Obliged (subject, action, object).

which specifies that the decision (i.e. permission, prohibition or obligation) is applied to a given
role when requesting to perform a given activity on a given view in a given context. We call these
organizational security rules. Security rules can be hierarchically structured so that they are inherited
in the organization, role, activity and view hierarchies. Since a security policy can be inconsistent
because of conflicting security rules (for example a permission can be in conflict with a prohibition).
The OrBAC model is capable of managing the conflicts at Abstract and Concrete levels. In the scope
of current implementation framework we are only considering abstract level conflicts: If no abstract
conflicts are detected then no concrete conflicts can exist. However, we have identified concrete conflicts
also that are generated due to inference rules.

• Abstract Conflicts: An abstract conflict is composed of one abstract permission and one
abstract prohibition. An abstract conflict is called a potential conflict because it can create
conflicts at the concrete level. For example consider two abstract rules: permission1(org1, role1,
activity1, view1, context1) and prohibition2(org2, role2, activity2, view2, context2). Consider a
subject subject, an action action and an object object. If subject is empowered simultaneously
into role1 and role2, if action is considered simultaneously into activity1 and activity2, if object
is used simultaneously into view1 and view2, if context1 and context2 are true for the triple
subject, action, object, then the two concrete rules: is permitted(subject, action, object) and is
prohibited(subject, action, object) are derived, leading to a concrete conflict. In OrBAC model,
these abstract conflicts can be resolved by offering the following possibilities:
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– Separation Constraints: When assigning a concrete entity to an abstract one, the separa-
tion constraints are verified to prevent the user from violating one and potentially generate
concrete conflicts. The separation constraints are not exclusively used to prevent concrete
conflicts but can be used to specify separation of duty.

– Rule Priorities: Define a priority order between the two conflicting rules. We associate
the authorization rules with priorities in order to evaluate their significance in conflicting
situations. Priorities between access control rules may be sometimes derived from the rules
syntactical format.

OrBAC has its administration model AdOrBAC. It uses the same logical formalism and the same
concepts of ORBAC. As a result, OrBAC is a self-administrated model. In the scope of SUPERCLOUD
project, we have extended and adapted the MotOrBAC tool (see section 3.2), which implements
OrBAC security policy model.

1.3 Trust management based on hardware security mechanisms

In this section a brief explanation on the topic as well as a brief description of selected approaches
will be given. Intel Software Guard Extensions (Intel SGX), which has been selected as a means of
implementing secure computation within the scope of SUPERCLOUD, will be described in a little
more detail. The section should provide an insight about the implications and benefits of Intel SGX
compared to other approaches mentioned.

The term trust management, introduced for the first time in 1996 by Blaze et al. [28], represents one
of the three main principles of trust. The definition of trust given by the Trusted Computing Group
(TCG)1 is the following: “an entity can be trusted if it always behaves in the expected manner for the
intended purpose”. This definition does not imply that the behaviour of the trusted entity is good or
honest. It only concerns the variability of the behaviour over time, which will remain the same [22].
Trust management systems are used to evaluate service-providing entities based on the measurement
of the trustfulness. The trustfulness in turn is, among others, based on: security (information pro-
tection); privacy (preserving of sensitive information); data integrity (includes security, privacy and
accuracy); credibility (quality of service); efficiency (in respect of turnaround time); availability (of
cloud service provider); reliability (ability to perform functions under specified conditions and dura-
tion) and adaptability (availability of data storage as well as redundancy to overcome single point
of failure times) [66]. In order to reach these attributes of trustfulness, several techniques, such as
hardware-based systems, are used, in which the trust is only rooted in particular hardware. In the
following, two hardware-based security mechanisms to obtain trust management will be described:

• TPM-based trust management - the trust is rooted in a dedicated Trusted Platform Module
(TPM)

• Architecture-integrated trust management - trust management features are integrated into the
system architecture itself

Trust management, respectively trust, plays an important part in the context of trusted execution en-
vironment, shortly TEE, which plays a central role in the above-mentioned hardware-based solutions.
A TEE is characterized by its tamper-resistant processing environment and is equipped with memory
and storage capabilities. The code is isolated and executed on a separate kernel, so called separation
kernel, of the CPU that guarantees authenticity, integrity and confidentiality of the code and the
persistent memory. Furthermore, a TEE constitutes a closed virtual machine, which is detached from
rest of the platform. However, the separation kernel is, as stated before, responsible for the isolated

1Industry-driven organization for standardization for the deployment of concepts and open standards for trusted
computing platforms
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execution of code. The general principle of the separation kernel is based on the simulation of a dis-
tributed system in order to divide the system into several partitions, such that an isolation between
them can be guaranteed. Besides the isolated execution and persistent secure storage, another goal
of a trusted execution environment is remote attestation. Attestation provides proof that a user is
communicating with a particular software that is running on a particular trusted platform and that
the software or hardware meets specific integrity requirements respectively. If the user is a remote
party, it is called remote attestation [22][34]. The mentioned proof can be a cryptographic signature
computed over a hash of the soft- or hardware’s measurement [34]. According to [75] measurement
“is the process of computing a state indicator of hardware and/or software”.

Before we start to discuss Intel Software Guard Extensions, it is good to know and understand the
principle of other available products/protocols as well, in order to differentiate between Intel SGX and
other hardware-mechanism-based systems available as well as to highlight the capabilities.

1.3.1 TPM-based trust management

This subsection describes trust management technologies that are based on trusted platform modules
in order to obtain TEE-functionality by means of hypervisor protocol extensions.
The trusted platform module (TPM) is build on a hardware component, respectively a dedicated chip,
which is specified and standardized by the Trusted Computing Group. A TPM offers technical features
such as the generation of asymmetric keys of length up to 2048 bits (usable for RSA en- and decryption)
as well as hash algorithms based on SHA-1 and MD5. Further, each trusted platform module is assigned
to a unique build-in Endorsement Key (EK) in order to approve the validity of the TPM. The EK is
considered as a static key that never leaves the TPM. A trusted platform module provides two further
keys: Storage Root Key (SRK) and Attestation Identity Key (AIK). While the SRK is responsible
for the application protection, the AIK signs values, which are stored in the volatile storage of the
TPM. Besides the slow performance of the TPM caused by a slow communication bus to the CPU,
the main disadvantage of the trusted platform module is that the dedicated chip is connected to a
single platform, hence a TPM is ineffectual for cloud computing environments. However, solutions on
virtualized TPMs (vTPMs) were proposed, whereby a trustworthy Trusted Virtual Machine Monitor
(TVMM) hypervisor is used to securely bind the physical TPM to the virtual one. The advantage
of this solution is the usage of only one single physical trusted platform module as the Root-of-Trust
(RoT) for all virtualized TPMs in cloud computing environments.
A trusted platform module may be used as the basis of a trusted execution environment. This could
be done by means of a Static Root of Trust Measurement (SRTM), which hashes the measurement
of all software loaded since the BIOS. However, this is impracticable because of a too large trusted
computing base (TCB). On the other hand a Dynamic Root of Trust Measurement (DRTM) may be
used to pause the CPU, start the measuring process from that point on, hash the result and resume
the paused processes rather than trust everything since the BIOS.
Nevertheless, there are several well-established TEE approaches known that are based on virtualized
TPMs, which are in turn backed by a hardware TPM as a Root-of-Trust, such as: Flicker (2008) [63],
TrustVisor (2010) [62] and the eXtensible and Modular Hypervisor Framework (XMHF) (2013) [79],
among others.

Flicker

Flicker [63] is an infrastructure for executing security-sensitive code, that makes use of the aforemen-
tioned Dynamic Root of Trust (DRTM) principle, in which the operating system is paused in order
to execute and verify a piece of sensitive code and resumed afterwards. By this means Flicker isolates
security-sensitive code from untrusted parts of the system like the operating system and the BIOS.
In this, Flicker relies on only approximately 250 lines of additional code in the application’s trusted
computing base.
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The attestation of the executed code is done by a TPM. To be more accurate, a cryptographic hash
function (SHA-1) provided by the TPM is used to reduce each software event to a hash. Furthermore,
each hashed value is stored within the platform configuration register (PCR) of the TPM by concate-
nating it with the previously stored result followed by a signature procedure by TPM’s AIK.
Through a so-called late launch capability of several processing chips, it is possible to pause the current
execution environment, execute a small piece of code, respectively piece of application logic (PAL),
with the help of SKINIT (on AMD’s architecture) or SENTER (on Intel’s architecture) and resume the
previously paused execution environment operations. This principle is called Dynamic Root of Trust
Measurement as already briefly introduced and is used by Flicker to achieve the proposed properties.
As executions in Flicker pause the whole system, an application should split long work segments into
smaller ones in order to avoid long latency times [63].
The designer of Flicker made a few recommendations on today’s hardware architecture to improve the
experience with their solution. However, there are some known problems in practice, such as percep-
tion of hangs on the machine during Flicker sessions. Furthermore, data loss during transmission on
block devices may happen.

TrustVisor / eXtensible and Modular Hypervisor Framework (XMHF)

The design principle of TrustVisor resembles the principle of the previously described solution Flicker:
TrustVisor provides an isolated and measured execution environment for PALs without any trust to
the application nor the operating system. TrustVisor constitutes a hypervisor for special purposes
such as code and data integrity as well as preserving of secrecy of portions of applications. Compared
to Flicker, TrustVisor [62] occupies more storage of the trusted computing base (approximately 6,000
lines of code) for the verification process, but achieves a higher level of security. Due to its frequent
usage of the hardware, respectively the TPM, Flicker is inefficient compared to TrustVisor.
TrustVisor uses an own DRTM-like principle called TrustVisor Root of Trust Measurement (TRTM)
and employs the trusted platform module as well in it’s architecture. In this, TrustVisor’s solution
is in the usage of virtualized TPMs, so-called micro-TPMs (µTPM), for each PAL, which interact
with the TRTM and executes on platform’s CPU at high speed and provides just a few necessary
possibilities, such as: basic randomness, measurement, attestation and data sealing. The µTPM is
associated with each PAL and the physical TPM is responsible for the RoT in TrustVisor itself [62].
On the other hand there exists the protocol named XMHF (eXtensible and Modular Hypervisor Frame-
work) [79], which represents a special purpose hypervisor as well and its fundamental principle is similar
to TrustVisor. XMHF encompasses also about 6,000 additional lines of code and offers modular ex-
tensibility and automated verification of hypervisor memory integrity while performing at high speed.
On the basis of the modular core design of XMHF, extensibility is provided to so called hypapps
(Hypervisor Applications), which are allowed to use custom features and desired properties. In detail
XMHF is designed to provide the core functionality of TrustVisor with the ability to support custom
hypervisor applications [79].

Other solutions

There are further solutions known such as the work done by Vavala et al. [80], which constitutes an
enhanced version of the TrustVisor/XMHF principle. The protocol includes three additional hyper-
calls. A hypercall is the hypervisor equivalent to a system-call. Virtual machines will use hypercalls
to request actions or information from the hypervisor [20]. The first hypercall is responsible for the
availability of memory to a PAL, the second and third hypercalls are made for retrieving shared keys.
While one key is made to secure data sent to known receivers, the second key is made to validate data
that were secured by a known sender (PAL). This protocol is not only provided with three additional
hypercalls, but rather implements two desirable key features. First, the architecture only loads, identi-
fies and runs modules of the TCB that are actually needed. Second, a robust and verifiable execution
chain is responsible for the correct execution sequence of the code modules. The verification of the
correctly executed code is done on the client side. The client only has to verify the chain’s endpoint
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in order to trust the whole chain [80].
Another solution in the domain of TPM-enabled trust management is called CloudVisor [84]. The
focus of CloudVisor lies on the protection level, which in detail provides protection and guarantees
privacy and integrity to the whole level of the hosted virtual machines even if the virtual machine
monitor (VMM) is compromised. To achieve these features, CloudVisor is using currently available
hardware to achieve nested virtualization (for machine partitioning) and trusted computing (by means
of TPMs) [84].

1.3.2 Architecture-integrated trust management

This subsection describes trust management technologies that are integrated into the system architec-
ture and thus do not confine TEE-functionality to a dedicated module, but span it across the whole
system architecture.

ARM TrustZone

TrustZone is a technology introduced by ARM, which provides hardware mechanisms to separate
a System-on-a-Chip (SoC) system environment in a non-secure normal world and a secure world,
whereas the latter can be used to hide security critical operations from the normal world. The sepa-
ration encompasses all hardware and software resources, such as CPU cores, memory and peripherals
(e.g. I/O devices). This is achieved by providing two separate virtual CPUs for each physical core and
two separate 32-bit memory address ranges, for the normal and secure world respectively. The switch
between the two worlds is supervised by a mechanism called the monitor mode. When a world switch
is done in the monitor mode, the current world state is saved and the state of the world being switched
to is restored. The monitor mode always runs in the secure world, and access from the normal world
is controlled tightly [23].
A distinct feature of TrustZone is that it only implements the basic hardware mechanisms to partition
the system into two worlds alongside with the necessary CPU instructions. The design of the software
model is left completely open. This includes the code, which is executed inside monitor mode and
the way how access from the normal to the secure world is authorized, the support for single- and
multi-threading, process scheduling etc. Likewise there are no predefined methods for authentication,
cryptographic primitives, key management, software measurement or software attestation. A pub-
lic specification of a standardized TrustZone API [43], released by the GlobalPlatform association is
available. Software that implements the TrustZone API includes, amongst others, OP-TEE [15] and
SierraTEE [16].

Intel SGX

This subsection describes the trust management and its advantages through the use of Intel Software
Guard Extensions.

Intel Software Guard Extensions (Intel SGX) comprises a new set of instructions and mechanisms for
the Intel architecture that provide integrity and confidentiality to particular regions of code executed
on untrusted machines. In this, the security model of Intel SGX assumes the operating system and
hypervisor to be potentially compromised [34][49]. Intel SGX works by establishing a protected con-
tainer, a so-called enclave in a protected address space, which cannot be accessed by any non-enclave
code [34].
Intel SGX relies on a complex key derivation procedure and key hierarchy in order to derive keys that
are needed to perform different tasks. For sake of simplicity neither key derivation procedure nor the
particular SGX instructions will be discussed in detail here. Instead the following paragraph gives a
high-level overview of the life cycle of an Intel SGX enclave as well as a brief description of the most
important functionality [34][49].
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1. Enclave creation:
On creation of an enclave the maximum amount of memory, which can be allocated within the
enclave, must be specified. Allocation of the protected memory is done in the next step. This
practice makes memory usage within the enclave flexible and adjustable to the current needs.
The enclave is marked to be in an uninitialized state after creation.

2. Loading of initial code and data:
After the creation of the enclave, the memory can be allocated to it and initial code and data
can be loaded into the enclave. It is important to note that the initial code and data comes from
unprotected memory and the initial state of the enclave will thus be known to the untrusted
OS or hypervisor respectively and therefore should not contain unencrypted secrets. All code
and data, which form the initial state of the enclave must be loaded in this stage, as after the
subsequent initialization of the enclave, this possibility will be disabled. In this stage the enclave
will also update its measurement that is used in software attestation. The software attestation
process is going to be described later on. The enclave is still marked as uninitialized at this
point.

3. Enclave initialization:
In order to fully initialize the enclave and to be permitted to launch, a special data structure,
the EINIT token, must be obtained, which has to be issued by a Launch Enclave (LE). The
LE is a privileged enclave that is provided by Intel itself. It must still be created, loaded and
initialized like any other enclave, but the initialization does not require a valid EINIT token.
This is because the LE is already cryptographically signed by a Intel key hard-coded into Intel
SGX. It is very important to point out that the initialization of any SGX enclave not authored
by Intel itself, requires an LE to work. The consequences of this will be discussed towards the
end of this subsection. After successfully obtaining and verifying the EINIT token, the enclave
is marked as initialized and code within the enclave can be executed. As indicated above, it is
not possible anymore to load further code and data into the enclave.

4. Use and destruction of the enclave:
After initialization the enclave is able to authenticate to a remote party using software attes-
tation. This will allow secrets to be disclosed to the enclave over a secure channel. Untrusted
applications outside the enclave can now call trusted code, which resides within the enclave.
Furthermore, the trusted code has an exclusive ability to directly access data held within the
enclave. The untrusted application code receives output from the enclave when the trusted func-
tion returns, whereas the enclave data remains in protected memory.
After the enclave is ready with the execution, it can be destroyed and used memory will be
de-allocated.

The identities of Intel SGX enclaves are managed by keeping a so-called Enclave Signature Structure
(SIGSTRUCT) for each individual enclave. The SIGSTRUCT holds enclave metadata, a measurement
of the enclave, a unique product id (ISVPRODID), a security version number (ISVSVN) as well as an
RSA signature over the previous fields, which is computed using the enclave author’s private RSA key.
The initialization of an enclave as described above can only take place if there is a valid SIGSTRUCT
present for the enclave. Intel SGX refuses to initialize the enclave otherwise [49][34].
An enclave author can issue certificates created from the same RSA key to enclaves that are running
different versions of the same code. These enclaves would have the same ISVPRODID, but may differ
in their ISVSVN. SGX allows for the transfer of secrets between two enclaves, which run different
versions of the same software, but only if the source enclave has lower or matching ISVSVN than
the target enclave. This helps enclave authors in handling security updates to software running in
enclaves. Upon detection of a security issue in an enclave, the author would create an enclave with
the fixed version of the code, and migrate the secrets from the vulnerable enclave to the new one [34].
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The aforementioned Launch Enclave that has to partake in an enclave’s initialization process is also
Intel SGX’s biggest drawback, as it must be provided by Intel before any enclave deployment can take
place. This effectively puts Intel in full control over which people will be able to deploy SGX enclaves
and which will not. Enclave authors would therefore be forced to maintain a business relationship
with Intel, should Intel plan to effectively make use of this licensing mechanism [34].
As indicated before, Intel SGX utilizes software attestation. During the software attestation process,
the contents of an Intel SGX enclave are measured by computing a secure hash over the parameters,
which have been used to create the enclave as well as over the initial contents of the enclave. For
doing this, a 256-bit SHA-2 hash function is used. The initialization of the enclave also finalizes the
measurement hash [34].
Intel SGX supports two different types of software attestation: local attestation and remote attestation.
Local attestation allows an enclave to prove its identity to another enclave on the same CPU by
creating an attestation report (REPORT), using a single CPU instruction. This REPORT is gener-
ated by computing a Message Authentication Code (MAC) over the enclave’s measurement and other
parameters with a symmetric attestation key shared between the two enclaves, which participate in
the process. It should be clarified, that the REPORT and the aforementioned SIGSTRUCT are two
different data structures, which serve different purposes, although both contain a measurement of the
enclave.
In turn, remote attestation allows for attesting to an enclave, which is not on the same platform. The
remote attestation process verifies and signs the local attestation report, which is then sent to a remote
party. The signature is not implemented in hardware, but in a privileged Quoting Enclave, due to its
complexity. The Quoting Enclave verifies and signs the secure communication between the attested
enclave themselves. Therefore the local attestation mechanism, which is implemented in Intel SGX,
is used. It is important to note that the attestation key is not shipped with the chip, but generated
in a special key generation facility and then supplied later using Intel’s key provisioning service [34][50].

1.3.3 Summary

In the following we will summarize and compare the properties of Intel SGX with the previously
discussed TPM-based solutions as well as with ARM TrustZone and give an insight about the suitability
of Intel SGX for trust management in the context of SUPERCLOUD.
The most important feature, which puts Intel SGX alongside with TrustZone, ahead of TPM-based
approaches like TrustVisor or XMHF, is the fact that the respective Root-of-Trust is realized on chip-
level and integrated into the CPU. Therefore security critical operations can be executed atomically
using special CPU instructions. In contrast, solutions, which rely on a TPM as Root-of-Trust, suffer
from the fact that the TPM is not indivisibly bound to the CPU. This enables Intel SGX to have
a particular security model: Unlike TrustVisor and XMHF respectively, which rely on a trusted
hypervisor and BIOS, Intel SGX distrusts all system software including BIOS, drivers, operating
system and hypervisor. Additionally, Intel SGX does not suffer from significant performance loss
compared solutions like Flicker [63], which directly utilize the TPM. Intel SGX also utilizes software
attestation, but other than the previously described SRTM / DRTM solutions, only the contents of
each respective enclave need to be measured and attested [34].
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Table 1.1: Comparison of hardware-based trust management solutions

TPM-based solutions ARM TrustZone Intel SGX

Principle Special-purpose hyper-
visor based on DRTM
principle and TPM-
based Root-of-Trust

System divided in
secure/non-secure
partition on chip-
level

Creation of secure
partitions in mem-
ory isolated from
the rest of the sys-
tem on CPU-level

Economics Standardized and
open specification

Standardized and
open specification Closed specification

Performance Flicker: slow TPM per-
formance caused by slow
communication bus to
CPU

Runs on main CPU, hence high speed com-
munication

TrustVisor/XMHF: ex-
ecutes at high speed
through usage of virtual-
ized TPM on CPU

RAM limited RAM unlimited

Functionality Operates with provided
systems only

Allows only one
TEE

Allows multiple
TEEs (enclaves);
Tightly integrated
into CPU

Flexibility Flicker: runs arbitrary
code without access to
OS or drivers
XMHF: based on mod-
ular construction, hence
extensibility is provided
to hypapps

Runs arbitrary code

Security Somehow physical pro-
tection of keys, TPM not
well-bound to CPU

Key-storage not
encrypted

Key-storage on
CPU

Integrated as hypervisor
extension

Integrated on CPU, hence infeasible to mod-
ify;
CPU sharing between TEE and untrustwor-
thy code

Drawbacks Perception of hangs and
data loss concerning
block-device transmis-
sion during Flicker
sessions

Only one possible
TEE; confined to
the SoC market

Intel has full control
over licensing and
key distribution

When comparing ARM TrustZone to Intel SGX, the most obvious difference is that TrustZone is
confined to the SoC market. Notwithstanding this, TrustZone bears the most conceptual similarity to
the aforementioned TPM-based solutions. However, there are some differences in how the technology
is realized:
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• ARM TrustZone only allows the presence of a single TEE on the same system, whereas Intel
SGX supports having a number of enclaves on the same machine.

• TrustZone provides no predefined method of software measurement or attestation, software de-
sign is completely in the hands of the developers.

• An API is publicly specified, but its implementation is left to third parties. In contrast, Intel
provided a publicly available SDK [9] for the SGX.

For sake of clarity, Table 1.1 summarizes and compares the respective properties of the trust manage-
ment solutions discussed prior in this section.

Its innovative security properties make Intel SGX the approach that most accurately tackles the
situation in today’s cloud computing scenarios. The potential licensing-related drawbacks mentioned
in the previous subsection notwithstanding, Intel SGX emerges as a sophisticated and interesting
candidate to approach the implementation of a secure computation infrastructure for SUPERCLOUD,
bearing a lot of potential in research.

1.4 Outline of the document

The rest of this document is organized as follows. In Chapter 2, we give an overview of the differ-
ent prototypes that have been implemented, classifying them as enabler-, use case-, or technology
demonstrator-oriented. We then present enabler-oriented prototypes in Chapter 3, use case-oriented
prototypes in Chapter 4, and technology demonstrator-oriented protypes in Chapter 5. Finally, we
conclude in Chapter 6.
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Chapter 2 Implementation Prototypes

The prototypes discussed in this deliverable can be broadly divided into three distinct categories:
Platform Enabler Prototypes, Use Case Prototypes and Technology Demonstrator Prototypes.

• The purpose of the Platform Enabler Prototypes is to demonstrate basic implementation com-
ponents required for realizing the SUPERCLOUD abstraction layer.

• The Use Case Prototypes demonstrate the use of SUPERCLOUD capabilities in realizing actual
SUPERCLOUD services.

• The focus of the Technology Demonstration Prototypes is narrower, exploring dedicated novel
technology solutions which can be integrated into the overall SUPERCLOUD architecture to
provide new or improved computational capabilities for realizing SUPERCLOUD services or
platform features.

At this point, the individual prototypes have been developed as stand-alone technical components.
In the forthcoming work of SUPERCLOUD, the prototyped components will be further harmonized
and integrated with the overall SUPERCLOUD architecture implementation to yield a functional in-
tegrated prototype demonstrating the capabilities of the SUPERCLOUD abstraction layer in practice.
The relation of the individual implementation prototypes to the overall SUPERCLOUD architecture
is shown in Fig. 2.1.
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Figure 2.1: Overview of implementation prototypes

2.1 Platform enabler prototypes

These prototypes are described in Chapter 3. The Horizontal Orchestration Prototype is discussed in
detail in Sect. 3.1. It addresses questions regarding the orchestration of computation environments
in the compute plane of SUPERCLOUD across different cloud providers as well as the underlying
abstraction layers of the SUPERCLOUD implementation.
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Security self-management and policy modelling aspects of the Security Management component of the
SUPERCLOUD architecture are demonstrated by the Security Policy Modelling Prototype (Sect. 3.2)
and the Security Policy Engine Prototype (Sect. 3.3).

2.2 Use case prototypes

These prototypes are described in Chapter 4. The NFV Use Case Prototype and the Authenticated
Discovery Prototype touch all sub-architecture layers of the SUPERCLOUD architecture. The Au-
thenticated Discovery Prototype (Sect. 4.1) demonstrates approaches for enforcing geolocation require-
ments for SUPERCLOUD services, while the NFV Use Case Prototype (Sect. 4.2) demonstrates the
realization of Network Function Virtualization (NFV) services on the SUPERCLOUD architecture.

2.3 Technology demonstrator prototypes

These prototypes are described in Chapter 5. The Computation Environment Isolation Prototype
described in Sect. 5.1 addresses issues related to the low-level isolation of computation environments
from access by cloud providers, utilizing novel hardware-security technologies like Software Guard
Extensions (SGX) from Intel.
A similar hardware-based approach is explored in the Cloud FPGA Prototype in Sect. 5.2, where the
aim is to investigate mechanisms through which optimized FPGA-based computation operations could
be offered as part of the SUPERCLOUD service APIs to virtual machines running in user clouds.
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Chapter 3 Platform Enabler Prototypes

This chapter describes the Platform Enabler Prototypes that demonstrate basic implementation com-
ponents required for realizing the SUPERCLOUD abstraction layer. Three prototypes are presented,
covering the orchestration of computation environments across different cloud providers – Horizon-
tal Orchestration Prototype discussed in Sect. 3.1 – and security self-management – Security Policy
Modelling Prototype described in Sect. 3.2 and Security Policy Engine Prototype described in Sect. 3.3.

3.1 Virtualization and horizontal orchestration

Figure 3.1: SUPERCLOUD computing architecture: horizontal and vertical orchestration

The core of this prototype illustrates a first implementation of the horizontal computing virtualization
architecture: instantiation and deployment of a distributed multi-cloud, in which security services can
be selectively weaved in different areas of the architecture realizing the U-Cloud horizontally (multi-
provider aspects), to overcome the interoperability barrier. Applications can then be deployed based
on the U-Cloud resource aware-constraints, automatically being in a secure environment. This first
aspect, shown in Figure 3.1 will be described in more detail in Section 3.1.1.
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A second dimension of the prototype is an implementation of the vertical computing virtualization
architecture: the modular hypervisor enables users to achieve multi-layer U-Cloud control. This
second aspect, also shown in Figure 3.1 will be described in more detail in Section 3.1.2.
A last dimension of the prototype deals with trust management : guarantees are provided regarding
cross-layer and multi-provider trust management, also in relation with Intel SGX-related isolation
technology. Extensions are also ongoing regarding self-management: to allow cross-layer and multi-
provider autonomic security monitoring (VESPA framework extension). This third aspect will be
described in more detail in Section 3.1.3.

3.1.1 Horizontal orchestration

We present ORBITS, a comprehensive multi-cloud orchestration architecture, that conciliates: (1)
flexible provisioning requirements of microservices-based applications, handling placement, elasticity
and availability; and (2) infrastructure homogeneity to let the user completely control its security
appliances. The architecture also tends to compatibility with the legacy application orchestration
logic.

3.1.1.1 Design requirements

This prototype aims to conciliate two main design properties:

• Flexible provisioning In the multi-cloud, the application logic should influence resource al-
location. The prominent importance of data transfer costs pushes the placement logic nearer
to the application, where the role of the deployed microservice and its interaction with other
services is easily predictable.

The application orchestration logic should consider different classes of parameters (e.g. resource
costs, replication rate, anti-affinity) to enforce on-demand provisioning of resources, guarantee
placement constraints required by MPC use-cases or fault-tolerance for provider outages of EHR.

Broker-based approaches [18, 10, 37] provide a unified view of multi-cloud resources, reconcil-
ing provider specificities and semantics with a “least common denominator” philosophy. This
approach enables optimized provisioning of application resources, but without giving extensive
control over the infrastructure to users.

• Infrastructure homogeneity The multi-cloud should provide an homogeneous infrastructure
from security and resource abstraction standpoints. Homogeneity on an infrastructure across
multiple sites may be obtained through an overlay layer, implementing user-desired security
policies and services, and decoupling provider API from customer usage. Infrastructure homo-
geneity enables the possibility to have the same security services on each provider to protect
execution of applications. Overlay-based approaches [40, 74] provide the user with an important
level of control (e.g., virtualization layer, security appliances), but lack effective multi-provider
orchestration tools.

A further design property is required to ease transition to multi-clouds:

• Undisruptive compatibility Application life-cycles in the multi-cloud should reuse existing
tools to manage deployments/releases and should not disrupt development cycles.

3.1.1.2 The ORBITS architecture

In what follows, we consider a simple use-case where users have (1) a microservice-based application
with (2) related orchestration logic, (3) a number of N distinct providers and M regions that they
require a priori, (4) a set of security services and configurations they want to deploy for protection of
applications, and (5) a list of static provider constraints (e.g. legal country, minimum availability).
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Figure 3.2: The ORBITS architecture. Components with dashed borders represent new services
introduced compared to legacy multi-cloud architectures.

Figure 3.2 gives an overview of our multi-cloud architecture. We adopt a three layered-design, following
a bottom-up description.

• The virtualization layer executes scheduled jobs, with trade-offs between performance and isola-
tion. Virtualization provides isolation between different workloads, leveraging security services
specified by the user at build-time. This meets the requirement of homogeneous sets of system
security services.

• The management layer is in charge of resource provisioning on each overlay provider. This layer
would meet the same requirement of homogeneous security services, focusing on not only the
execution of applications but also on access to resources.

• The orchestration layer coordinates different provider instances and application orchestration.
This layer, leveraging its global view of available providers, ensures flexible provisioning across
multiple providers required by the use-cases.

Management and virtualization layer services are deployed on each provider selected to be inside the
multi-cloud. We refer to those instances as “overclouds”, as they are overlay instances that provide
the homogeneity layer to the orchestration layer.

3.1.1.3 The virtualization layer

The virtualization layer is in charge of execution of microservices with a provider-agnostic approach.
Virtualization is a widely-adopted approach to obtain isolated and transparent hardware resource
sharing, between competing software or systems. Several technologies may be adopted to put in place
execution environments (EEs), that are generally not interoperable.
In ORBITS, the overlay virtualization layer should realize interoperability among isolated EEs across
different providers. This is not obtainable at underlay level because of technological heterogeneity.
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The compute virtualization layer should: (1) provide interoperability across the entire multi-cloud,
hiding provider heterogeneity; (2) be customizable, allowing the user to deploy its chosen security
services; (3) impose minimal performance overhead. Although providers already propose their own
isolated execution environments, typically VMs, this remains insufficient, as customers have not enough
control to add security components inside [40], or improve performance by enforcing co-residency [74].
Two main technological alternatives are available to realize the virtualization layer:

• Nested Virtualization (NV) is a system architecture with two layers of virtualization: the
guest OS virtualizes a nested guest [26]. The concept may be generalized to an arbitrary number
of nested guest layers, leading to recursive virtualization [39, 41]. This extra level of virtualiza-
tion may be executed through nested hardware-assisted full virtualization [72] or paravirtualiza-
tion [24] over hardware-assisted virtualization [40]. Performance of such techniques have always
represented an impeding factor for their massive adoption. However some recent works showed
more acceptable overheads [40, 26]. The full virtualization alternative requires NV-extension
support in the cloud provider hypervisor. This assumption is usually not verified. Thus, we
focused on a paravirtualization-oriented design, that does not require any explicit support from
the provider, even if not compatible with all existing OSes [40].

• Containers are user-space environments on an OS providing isolation between them and host
resources [77]. Resource isolation is achieved using new kernel functionalities (e.g., cgroups,
namespaces for Linux). Containers still suffer from major isolation concerns due to Linux kernel
sharing and achieve weaker isolation than VMs. Initially considered as simple lighter VMs [77],
container technologies recently evolved in per-application portable environment [6] introducing
a flexible mechanism to package applications. However, this application-oriented life-cycle is
slightly incompatible with the IaaS model that deploys general-purpose environments with an
application-independent life-cycle. Recent work has also shown that overlay containers do not
degrade significantly performance [74].

In both cases, user microservices composing complex application will be run inside EEs provided by the
virtualization layer. NV and containers offer different trade-offs in terms of isolation and performance.
Therefore, the user can adapt the virtualization technique to microservice workloads, isolating homo-
geneously across providers components of an application selectively. However, the virtualization layer
only introduces EE homogeneity across multiple providers. For complete infrastructure homogeneity,
it is necessary to rely on another common layer for resource provisioning. This is the Management
Layer, a distributed layer that includes control services of overclouds.

3.1.1.4 The management layer

For infrastructure homogeneity, ORBITS aims not only at virtualization interoperability but at ho-
mogeneous resource management across multiple clouds. This implies uniform APIs across providers.
Two classes of management services of ORBITS overclouds are introduced, for local resource pro-
visioning (Cloud OS and SDN controller) and relation with the orchestration logic (Stratopause
component).

• Local Cloud OS and SDN controller components are normally in charge of compute, storage,
and networking management (including tenant accountability). They are the natural choice to
implement local resource provisioning.

• Stratopause is the link between local resource provisioning and application dispatching. It
informs regularly the application orchestration framework about available overclouds, e.g., re-
sources, cloud attributes (provider, region, virtualization technologies). When the application
orchestration logic schedules a job, Stratopause ensures it is run in the most adequate user-
controlled EE, leveraging eventual co-residency bootstrap. The orchestration logic collects up-
dates from Stratopause instances to reach placement decisions. Stratopause also collects
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Table 3.1: Compute and network security services.

Compute Network

Management Layer
Security Management Module [13]

DDos Protection [5]
Hardening [8, 19]

Virtualization Layer
Introspection [7]

Middleboxes [76, 31]
MAC security profiles [4]

microservices dispatching commands to local overlays, which are transmitted to the local Cloud
OS to provision resources according to expressed requirements.

The management layer enables using equivalent security services on different providers, e.g., to fulfill
EHR systems security requirements. However, this layer does not have the overall vision of all deployed
overclouds. An orchestration layer is thus needed to coordinate different overclouds instances for
flexible provisioning of tasks across providers.

3.1.1.5 The orchestration layer

The orchestration layer is composed of two classes of components performing orchestration at infras-
tructure and application levels.

Infrastructure orchestration

Infrastructure orchestration is realized by the components of the Admin Orchestration Services shown
in Fig. 3.2. The Mantus component deploys management and virtualization layers on selected
providers, whereas the Network Fabric Builder provides on-demand interconnection between such
providers and the Authentication & Authorization Service manages identity and access across overlay
instances. In the following, we will provide an overview of each of these components.

3.1.1.5.1 Mantus: multi-cloud overlay construction

Mantus defines and deploys the overlay cloud infrastructure on a selected group of providers. It
leverages a cloud template text-description for the overlay-infrastructure following the “Infrastructure
as Code” paradigm, where deployed services are defined [46]. Mantus objectives are to: (1) customize
the cloud template according to tenant requested security services; and (2) select a subset of cloud
providers, compatible with policies expressed by the tenant needs. Such services may concern network
and system control, management services, and virtualization and data plane.
To instantiate overlay clouds on multiple providers, the Mantus orchestration workflow is as follows:

1. Service definition Mantus uses a code description to automate infrastructure resource provi-
sioning and configuration, providing benefits in terms of reproducibility and maintenance. Such
description concerns services from management and virtualization layers (Cloud OS services,
SDN controller, and “virtualization” nodes).

In a private cloud, the customer has the highest level of control over security: he may place the
desired protection mechanisms on all available services. The overcloud instantiated by Mantus
offers the same level of control as in a private cloud, formalized in a provider-independent text
description. Table 3.1 shows some examples of different classes of security services that may be
deployed on each overlay cloud.

2. Service enrichment As shown in Figure 3.3, Mantus extends the abstract service description
with the list of security services the user provided as input (as shown in Table 3.1). The initial
description is then enriched by the addition of selected services from providers. Access control
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and hardening services may be introduced as new services in the provider-agnostic description,
that normally should have network connectivity with control services. Network applications may
be described as configuration files that have to be deployed inside the SDN controller description,
similarly for hypervisor appliances that have to be added to compute nodes. Finally, network
middleboxes may be described as extra services, chained together by traffic steering flows. Such
service chaining-oriented description requires a clear definition to express steering rules and
transmit such model to local virtual network fabric builder. Several works [76, 31] addressed
similar problems and may be taken as reference.
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Figure 3.3: (a) Initial sample overlay template; (b) services after the enrichment process.

3. Filtering In parallel to steps 1. and 2., Mantus retrieves a list of available providers, and
applies on it a simple “filter & weight” algorithm. We make the assumption that Mantus
may retrieve a list of provider regions with pre-defined and comparable SLAs. Initially, the
filtering logic will drop providers that do not satisfy static requirements, expressed by the tenant.
Such requirements may include technical constraints (e.g., minimal availability) or non-technical
constraints (e.g, legal residence of the provider, location of specific regions).

4. Weighting The tenant specifies the minimum amount of M distinct providers and a total
number N of regions it requires. According to this specification, Mantus will grade remaining
provider regions with a utility function, giving more importance to cost savings (e.g. virtual
compute instances prices, incoming/outcoming data transfers costs) or to location for roughly
optimizing latency issues for customers. N regions and M distinct providers with the highest
weights will be selected for instantiation. We assume that the amount of requested providers is
fixed at instantiation time and cannot change during execution of applications.

5. Instantiation When providers are selected, the provider-agnostic description of services is con-
verted into the one of the selected cloud providers.

3.1.1.5.2 Network fabric builder

Virtual networks are created inside each overlay cloud by hosting cloud providers. To create multi-
provider connections, a network fabric builder should extend local virtual networks across provider
barriers. Such virtual network connectivity should be transparent to microservice-based applications.
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3.1.1.5.3 Authentication & authorization service

This component manages transparently identity and access for tenants and administrators across
deployed overclouds. The design of some typical authorization services are described in Deliverable
D2.1. Typical authorization policies may for instance be compared using the approach explored in [58].

Application-level orchestration

While the role of infrastructure services is building and maintaining of the ORBITS multi-cloud,
flexible provisioning across clouds is the role of the application orchestration logic – typically for
placing application microservices across providers.
Orchestration frameworks are usually composed of application frameworks and of a resource multiplexer
(e.g., Mesos [2]). Application frameworks are responsible for application deployment on available
resources, following a user specification. The resource multiplexer guarantees fair sharing between
frameworks on a pool of resources.
Several classes of applications may rely on well-known and widely adopted frameworks, e.g., for data-
oriented jobs [3, 1]), general-purpose applications [11, 12]. Newer frameworks also target further
classes, e.g., network services . For generic applications, frameworks use declarative languages to
automate deployment, scaling, and operations. In our scenario, we enhance the placement logic of
application frameworks, introducing the awareness of multi-provider overclouds, deployed by MAN-
TUS. The overcloud-aware placement leverages Stratopause instances to receive updates about (1)
overcloud instance availability and (2) dispatch on a certain provider a selected job.

3.1.1.6 Architecture realization

We are implementing a proof-of-concept prototype of this architecture using Mesos, OpenStack Kilo,
introducing a first implementation of Mantus and Stratopause. We use Xen and LXC as virtual-
ization technologies. For the management layer, we adopted OpenStack ([17]) as Cloud OS deployed
on overlay clouds. OpenStack services are deployed at instantiation time, while compute node will be
added/removed on the fly.
We started implementing Mantus and the Network Fabric Builder with Keystone federation. TOSCA [14]
service modeling provides a declarative language to describe application deployments, providing inter-
operable description for cloud services. When cloud providers are identified, the TOSCA description of
service is mapped to a per-provider description, like OpenStack Heat HOT or AWS CloudFormation.
Finally, we are working on a Mesos orchestration framework to validate the flexible provisioning
capabilities of Stratopause. Stratopause acts as a fake Mesos slave, communicating to Mesos
master, the resource multiplexer, available resources and overlay cloud attributes. When an application
framework places a task on overcloud ,the respective Stratopause instance will instruct OpenStack
services to provision resources to execute such tasks, enforcing the most appropriate virtualization
technique (LXC or paravirtualized XEN VM), and if necessary inform the OpenStack scheduler about
affinity/anti-affinity with previously deployed tasks.

3.1.2 Vertical orchestration

The goal of this prototype is to validate the feasibility of the “vertical” system architecture” (see D2.1)
by proposing a first “node” which can instantiate U-Clouds in a non-distributed context. We also aim
to evaluate performance degradations induced by the usage of multiple layers of virtualization, and
the security potential of such an architecture facing concrete workloads.

3.1.2.1 The NOVA microhypervisor and Genode framework

NOVA OS Virtualization Architecture (NOVA) is a research microhypervisor that combines high-
performance hardware-assisted virtualization for the x86 architecture with a minimal TCB (around
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10 KLOC) and the capability-based security design of L4 micro-kernels. Such features make it a good
candidate for the L0 hypervisor of our architecture.
Like other micro-kernels, NOVA suffers from limited hardware support and the complexity of develop-
ing or porting user-level applications to its specific environment. This drawback may be alleviated by
using Genode, an open-source modular OS framework to build special-purpose OSes running on vari-
ous platforms, such as NOVA. Genode provides ready-to-use drivers for the most common devices, and
several programming primitives making the link between the kernel API and user-level applications.
NOVA and Genode have a similar approach to system architecture, enabling Genode framework con-
cepts to map directly onto the micro-kernel structure, e.g., both rely on capabilities for security and
isolation. Their architectures differ from traditional monolithic systems in several ways.

3.1.2.1.1 Memory management

Strong isolation is required between different user-level applications. To guarantee that components
may only access their assigned memory, each of them is placed in a Protection Domain (PD). This
kernel object has its own virtual memory and I/O mappings, similarly to a VM. Each PD can have
associated threads, called Execution Contexts (EC). A PD maintains a table of capabilities, referencing
other kernel objects such as PDs. This is the only way to access them. Capabilities are added to this
table whenever an object is created inside the PD, and can then be delegated to other PDs at will
through inter-domain communication.
Genode adds another layer of abstraction for memory management: only the root user-level compo-
nent interacts directly with memory pages. The other components can then obtain memory from it
through remote procedure calls: the root component creates a kernel object called a dataspace that
represents a contiguous address-space region, and sends the requester a capability to the dataspace.
Using this capability, the requester can map the dataspace into its local address space and access it.

3.1.2.1.2 CPU scheduling

In NOVA, an EC cannot be scheduled for execution on the CPU unless associated with a Schedul-
ing Context (SC). This kernel object defines a priority and a time quantum. The microhypervisor
implements a priority-based preemptive round-robin scheduling between the SC. Multiple SC can be
assigned to a single EC. An EC without SC can still be run if one is lent by another EC.

3.1.2.1.3 Inter-domain communication

NOVA only supports synchronous communications between protection domains using RPCs. To allow
others to communicate with it, a PD can create any number of kernel objects called portals, and
delegate capabilities to them. The communication is then initiated by an hypercall from a caller EC
specifying a capability to the targeted portal and various message-specific parameters. On the target
side, the portal is bound to a handler EC without SC. The kernel activates this handler by giving
the caller’s SC to him. Once the handling operation is finished, the handler returns the SC to its
original owner through another hypercall, along with the return values of the handling operation.
Genode uses this mechanism to implement remote procedure calls (RPC) between components, but
also asynchronous notifications and both synchronous and asynchronous bulk transfer.

3.1.2.1.4 User-level organization

In Genode, the organization of user-level components clearly benefits from the microkernel-based
architecture. When started, a component only has capabilities to its parent. A hierarchical structure
built recursively has the following benefits: (1) the behavior of components is position-agnostic; (2)
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only the policies regarding the transmission (or not) of capability delegation from other components
allows the parent to influence the activity of its children. Resource management follows the same
recursive pattern: each component is given a limited quota of physical resources by its parent when
created, taken directly from the quota of this parent. This mechanism enables strong isolation between
the different branches of the recursive hierarchy in terms of resource consumption. Moreover, because
a parent always retains the possibility to take back his resources by killing the child, the hierarchical
organization offers a useful abstraction for the management of isolated subsystems.
Interactions between components are handled through sessions, a user-level abstraction that extends
the kernel-level RPC mechanism and provides a secure client-server relationship implementation. Gen-
ode also permits safe resource delegation between components: resource exchange is allowed only be-
tween a parent and his direct child, but it can be extended by recursively relaying a change of quota
upstream from the sender until a common parent is found, and then downstream to the receiving
component. Such resource usage accountability ensures the robustness and the security of the system.
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Figure 3.4: Vertical Architecture Overview

3.1.2.2 Core components

The prototype architecture consists of several Genode components, interacting together via the pre-
viously described mechanisms. These components fall into three main categories: (A) launchers and
roots, (B) drivers and resource multiplexers, and (C) virtualization components (see Figure 3.1.2.1.4).

3.1.2.2.1 Launchers and roots

These components are responsible for instantiating hierarchically the different subsystems of the ar-
chitecture. They require the configuration of the subsystem to be provided (generally in the form of a
ROM module, whose content is formatted in XML), along with an appropriate amount of resources,
either by their parent or through a specific session.
Core is the root component of the Genode Framework. This is always the first to be built when a
system is started. It seats directly above the micro-kernel, and handles every interaction between
it and the user-level. As such, it is the only component to directly access the raw resources without
depending on Genode abstractions (services and sessions). It is however subject to the same standards
as any other user-level component in terms of resource usage accountability and isolation.
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Init is another base component of the Genode Framework. Second component to be created, directly
by Core, it is then responsible for instantiating the entire system. To that end, Init obtains every
available resources from its parent (Core) via sessions, and parses an XML file describing every com-
ponents to be created, and the resources that need to be allocated to them. Init is not necessarily the
child of a Core component, and would behave similarly elsewhere in a component hierarchy.

3.1.2.2.2 Drivers and multiplexers

The drivers are the interface between the physical devices and the system. They allow Genode
components to interact with the devices through dedicated sessions. Because a device driver only
allows one simultaneous session to be opened, in systems where several components must share a
physical resource, multiplexers must be added to seamlessly handle it.
In our prototype, the drivers include a platform driver for the PCI controller, an ACPI driver, a timer
driver (using NOVA semaphore mechanisms as back-end), an RTC driver, a NIC driver, and an AHCI
driver. Hard drive access multiplexing is provided by a block device partition server, and the file
systems are handled by a port from the rump kernels.

3.1.2.2.3 Virtualization components

The microhypervisor approach of NOVA removes the Virtual Machine Monitoring functions from the
privileged hypervisor. Running a virtual machine on NOVA thus requires a VMM to be executed as a
user application. A specific VMM named Vancouver was developed alongside NOVA, providing high
performance and a reduced code-base (around 20 KLOC). However, Vancouver is somewhat lacking
in features, and does not offer the same flexibility and wide support as more common technologies.
Genode includes a port of VirtualBox that runs entirely in user-level and supports hardware-assisted
virtualization.

3.1.2.3 Additional components

From this initial subsystem, were developed some more system services to address: (1) complete func-
tionality of virtualization system; (2) isolation of user and administrator domains; and (3) secure
remote control over deployed resources. Such new components (represented with dashed borders in
Figure 3.1.2.1.4) are briefly described next.

3.1.2.3.1 Launchers and roots

InitU and InitP are modified versions of the standard Init that we developed to mitigate some short-
comings consequent to its minimality. They are used as root of every user domain and of the provider
domain, thus representing the single interface for their interactions with the rest of the system. While
Init was already able to play that role, it lacks dynamicity. For example, the configuration of the
subsystem cannot be modified at run time without destroying it entirely and rebuilding it with the
modification. Our modifications help reach the high flexibility desired for our user-centric approach.
Because the requirements differ slightly between user and provider domains (for example the InitU of
the user domain is built and destroyed on the fly, whereas the life cycle of the provider’s InitP is the
same as the one of the system, we introduced two separate components.
The Domain Loader deals with the delegated instantiation of the user domains. To allow the launching
of a user domain from a provider-space service while protecting the launched domain from interference
by the provider, we needed to delegate the actual instantiation to a trusted component outside of the
provider domain. The Domain Loader plays that role, obtaining the configuration of the subsystem
and the resources through a specific session. Because it is placed under all the InitU (and thus is
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parent to every user domain), the Domain Loader can control their interactions with the rest of the
system by choosing how to route their session requests.

3.1.2.3.2 Drivers and multiplexers

The Network Switch is a pure L2 software switch, which implements the backward learning algorithm
over multiple VLANs. A different instance is created in each U-Cloud to enable connectivity for user
nested VMs and hypervisors. A privileged instance of the switch has to be executed among the ad-
ministration services to multiplex NIC resources among different users.

3.1.2.3.3 Control logic and interfaces

For our architecture to be usable as a node in a multi-provider cloud, we needed to implement several
components that would allow a remote control of the system, while still maintaining the decentralized,
hierarchical structure characteristic of Genode. Our prototype includes two services to address this :

• Epimetheus is a minimal REST lwip-based web service that provides a simple way of remotely
controlling the system. For example, when an adequate PUT request is received, the web-service
opens a ephemeral session on Prometheus and use it to transfer the configuration options of the
requested subsystem. Epimetheus could be easily expanded to handle a variety of management
operations.

• Prometheus is the central component of the control logic in our system. It is the link between the
different control interfaces (in our prototype, Epimetheus instances) and the other components.
As such, the Prometheus instance implements several checks to ensure the validity of the requests
and the availability of the needed resources. Prometheus represents the single-point of control
for the administrator: Prometheus conserves an opaque handler to allocated resources leaving
the possibility to the administrator to kill a ”user” subsystem if detecting nasty activities.

3.1.3 Trust management

This part of the prototype provides a first implementation of the following components of the SU-
PERCLOUD Virtualization Architecture: Trust Management (management of cross-layer, and cross-
provider Chains of Trust) and Isolation (hardware-enforced using Intel SGX technology). Integration
with Self-Management components (using a framework like VESPA) will come in a second step.

3.1.3.1 Design goals

Currently, two elements seem to be missing for a comprehensive trust management and isolation
framework for multi-clouds:

• A first requirement is to establish and verify the integrity of the link between a virtual machine
(VM) and hardware resources. The Trusted Computing Group introduced the Chain of Trust
(CoT) abstraction: integrity of a component may be verified by following the CoT to a root
of trust (RoT), usually a tamperproof hardware element such as a TPM [78]. Abbadi et al.
defined a model to describe CoTs in a multi-cloud infrastructure, both vertically (across layers)
and horizontally (across domains) [21]. However, it remains unclear how to map this model to
concrete cloud isolation technologies.

• A second requirement is to guarantee secure execution of VMs with hardware protection even
if some intermediate infrastructure layers are compromised. Intel’s Software Guard Extensions
(SGX) [64] through the enclave abstraction for a secure computation unit provides significant
enhancements compared to previous isolation solutions (e.g., [61, 78]): it guarantees VM security
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even if the hypervisor is completely compromised, reducing the TCB only to the CPU chip. This
isolation technology could provide a starting point towards a comprehensive security framework
handling both types of CoT, and supporting multiple isolation technologies. However, it remains
unclear how enclaves can be chained together practically.

This prototype proposes a protocol for establishing trust between chains of Intel SGX enclaves. The
protocol formalizes horizontal (single layer) CoT establishment for multi-cloud infrastructures accord-
ing to the model of [21], both when enclaves are located on the same and on remote Intel SGX
platforms. Attestation protocols have been implemented on the OpenSGX [51] Intel SGX emulator.
Preliminary evaluation results tend to show our protocols could scale to large CoTs, thus being appli-
cable to realistic multi-cloud infrastructures.

3.1.3.2 Chains of trust in a multi-cloud

Abbadi et al. proposed a simple architectural model to manage trust in a distributed cloud [21] (see
Figure 3.5).

Figure 3.5: Multi-cloud infrastructure model

• Vertically, the infrastructure is modeled as several layers, software and hardware containing
resources. The physical layer consists of computing (CPU, memory) and storage hardware re-
sources. The virtual layer contains the VMs (virtual CPU and memory) and virtual storage. The
application layer leverages virtualized resources to run applications. One or several virtualization
layers manage allocation of host resources among VM instances.

• Horizontally, the infrastructure is seen as a federation of provider domains that manage resources
within a given perimeter, and according to a common policy. Domain federations group together
domains in each layer.

In a Chain of Trust (CoT), the links between elements of the chain element represents confidence
between two entities: a Trustor and a Trustee. To establish this confidence, an assertion is needed in
order to demonstrate that a piece of software has been properly instantiated on the platform. This
process is known as attestation: it provides a Trustor with an authentic and fresh copy of the properties
of a Trustee. Thus, the Trustor can make timely decision of the ability of the Trustee to operate in
certain state.
A Root of Trust (RoT) is a component that must always behave in the expected manner: its mis-
behavior cannot be detected. The RoT set includes at least the minimal set of functions enabling a
description of the platform characteristics that affect its trustworthiness.
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A CoT provides an iterative means to extend the trust boundary from the RoT set to extend the
collection of trustworthy functions. Typically, a CoT could be built as follows. The first element of
the CoT (RoT) should be established from a trusted entity or an entity that is assumed to be trusted,
e.g., a tamper-evident hardware chip. The RoT then measures the trust status of the CoT second
element. As the verifier trusts the RoT, the verifier also trusts the RoT measurement of the second
element that is now fully part of the CoT. This process is continued to other elements of the CoT (see
Figure 3.6). This approach may be extended to manage trust relationships in the cloud using CoTs
that may cross layers (vertically) or domains (horizontally).

Figure 3.6: CoT concept

3.1.3.3 Intel SGX and OpenSGX

As discussed in Sect. 1.3, Intel’s Software Guard Extensions (SGX) is an extension to Intel architecture
for generating protected software containers, referred to as enclaves. Inside an enclave, software code,
data, and stack are protected by hardware-enforced access control policies that prevent attacks against
the enclave content. SGX allows part of an application code to run isolated inside an enclave. The
enclave region of the main memory is encrypted. The content is only decrypted inside the CPU
using processor-specific keys. The TCB (Trusted Computing Base) is restricted to the CPU and the
application running inside the enclave. Even an adversary with extensive control over the hardware
cannot access or modify the enclave. The enclave is protected from other software running in the host,
including the OS and the hypervisor.
SGX features allows building a CoT based on three elements:

• A RoT for storage materialized by the sealing keys for the enclave software to encrypt and
integrity-protect data.

• A RoT for measurement captured by two measurement registers, MRENCLAVE and MR-
SIGNER: MRENCLAVE returns an identity for enclave code and data; MRSIGNER returns
an identity of an authority over the enclave. These values are recorded when the enclave is
built, and are finalized before enclave execution begins. Only the TCB has write access to these
registers to reflect accurately the identities available when attesting and sealing.

• A RoT for reporting, equivalent to the report mechanism provided by EREPORT and EGETKEY
instructions: an evidence structure called REPORT is returned, cryptographically bound to the
hardware for consumption by attestation verifiers.

With Intel SGX, a trustor can gain confidence that the correct software is securely running within an
enclave on the trustee. In order to do this, SGX architecture produces an attestation assertion that
conveys: the identities of the software environment being attested, details of any non-measurable state
(e.g. the mode the software environment may be running in), data which the software environment
wishes to associated with itself and a cryptographic binding to the platform TCB making the assertion.
To build a CoT, enclaves will need to authenticate one another. The EREPORT instruction provided
by the SGX architecture will be particularly useful for this purpose. When invoked by an enclave,
EREPORT creates a signed structure, known as a REPORT. The REPORT structure contains the
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identities of the two enclaves, the attributes associated with the source enclave, the trustworthiness of
its hardware TCB, additional information to pass on to the target enclave (e.g., USERDATA), and a
message authentication code (MAC) tag.
OpenSGX [51] is a fully functional, instruction-compatible Intel SGX emulator to explore the soft-
ware/hardware design space. It is also a platform to develop enclave programs, providing additional
OS components, such as an enclave program loader/packager, and debug/performance monitoring
tools.

Figure 3.7: OpenSGX design overview

A packaged program (Wrapper) runs together with the Enclave Program together as a single process
in the same virtual address space. Figure 3.7 shows the memory state of an active Enclave Program
(grayed boxes are isolated enclave pages). As Intel SGX uses privileged instructions to initialize and
set up enclaves, OpenSGX introduces a set of system calls to service requests from the Wrapper pro-
gram.

3.1.3.4 CoT attestation protocols

Building a CoT implies a series of mutual attestations between neighboring elements of the chain to
build persistent links of confidence. Depending whether elements of the chain belong to enclaves within
the same SGX platform or to remote platforms, two attestation sub-protocols have been specified:
intra-platform attestation and remote attestation respectively – a complete CoT establishment being
a composition of the two protocols.
Intra-platform attestation protocol: This protocol establishes trust between two enclaves (A and
B) on the same Intel SGX platform. Each enclave authenticates the other. The protocol confirms
they both run on the same platform according to the SGX security model. The protocol steps are the
following, where A is the Trustee and B is the Trustor (see Figure 3.8):

1. Once communication paths between enclaves are established, enclave A obtains the identity of
enclave B (MRENCLAVE value).

2. Enclave A invokes the EREPORT instruction to create a signed REPORT sent to enclave B
(using the previous MRENCLAVE value) over the untrusted communication channel.

3. When it receives this REPORT, Enclave B calls the EGETKEY to retrieve its Report Key,
re-computes the MAC over the REPORT structure, and compares the result with the MAC
attached to the REPORT. A match in MAC values means that enclave A runs on the same
platform as enclave B.

4. Mutual authentication is achieved by Enclave B creating a REPORT for enclave A, using the
MRENCLAVE value from the REPORT it just received.
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Figure 3.8: Intra-platform attestation

5. This REPORT is sent to enclave A that can then verify it in a similar manner to confirm that
enclave B runs on the same platform as enclave A.

Remote attestation protocol: In case of remote platforms, SGX enables a special enclave called
the Quoting Enclave to be remotely created. This enclave verifies REPORTs from other enclaves on
the remote platform using the intra-platform attestation protocol described above. It then replaces
the MAC over these REPORTs. The output of this process is called a QUOTE. The protocol steps
are the following (see Figure 3.9):

1. Initially, the Trustor enclave establishes communication with the remote target (Trustee).

2. The Trustor issues a challenge to the target to obtain proof the Trustee can join the CoT. The
challenge contains a nonce for liveness purposes. It also contains the Quoting Enclave identity.

3. The target enclave generates an ephemeral public key for the Trustor to use in further commu-
nications with the target.

4. The target enclave generates a manifest that includes a response to the previous challenge. A
hash of this manifest is included as USERDATA for the EREPORT instruction that will generate
a REPORT binding the manifest to the enclave.

5. The target enclave then sends the REPORT to the Quoting Enclave for verification and signing.

6. Playing the role of challenger for the target enclave, the Quoting Enclave retrieves its Report
Key using the EGETKEY instruction and verifies the REPORT. The Quoting Enclave creates
the QUOTE structure, signs it, and returns it to the target enclave.

7. The target enclave forwards the QUOTE structure and any associated manifest of supporting
data to the Trustor enclave.
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Figure 3.9: Remote attestation

8. The Trustor uses certificate and revocation information or an attestation verification service to
validate the signature over the QUOTE. After checking manifest integrity, it checks the validity
of the response the initial challenge.

3.1.3.5 Prototype realization

The OpenSGX project provides mainly customized libc and lightweight cryptographic libraries, and
basic wrapper functions for SGX instructions. Our implementation is based on those libraries. It
provides a user API to build, verify, and study CoTs.
To guarantee attestation, SGX allows creating cryptographic keys (EGETKEY) and cryptographic
reports (EREPORT) to check the integrity of an enclave during exchanges with other enclaves. We thus
specify an interface to create keys, get reports from SGX, and check integrity of reports by comparing
the computed report with a received one. An additional interface manages communication channels
between elements of a CoT such as network connections between enclaves, and reading/writing to/from
enclaves. Finally, a user API is defined based on previously established APIs to perform the main
attestation protocol operations. Several procedures are distinguished depending on the type of SGX
platform (local or remote) and to the attestation role (challenger or target).
More details, as well as preliminary encouraging scalability results may be found here [54]. Those CoT-
building protocols are a first step towards distributed trust management for a plurality of enclaves.
Future work includes: (1) extending our framework to manage CoT vertically across infrastructure
layers; and (2) integration with a security self-management framework for distributed clouds such as
VESPA.
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3.2 Security Policy Modelling

The Security Policy Modelling prototype is built around the capabilities of the MotOrBAC editor,
which is used in SUPERCLOUD for setting up and updating security policies related to U-Clouds.

3.2.1 Security Modelling Tool: MotOrBAC Editor

The OrBAC model has an associated tool called MotOrBAC that was developed by Institut Telecom
(IT) to help to design and implement security policies using the OrBAC model. The current versions
of this tool can design, upload and store security policies and simulate them. The policy simulation can
be used to verify the consistency of a security policy. The tool can also detect potential conflicts and
help the designer eliminate them. MotOrBAC exists in two versions. The first version is completely
free and is distributed under GPL license. The second version, newer and more functional and actively
developed, is partially open source and is distributed under Mozilla license. Unlike the first version,
MotOrBAC V2 is implemented entirely in Java. It uses an API that has been specially developed
to incorporate features of the implementation of the OrBAC model in existing or under development
applications. This API, the OrBAC API, is not open source but can be requested on the official Web
site of OrBAC.

3.2.1.1 MotOrBAC Architecture

MotOrBAC uses the OrBAC application programming interface (API) to manage the policies displayed
in the graphical user interface (GUI). The OrBAC API can be used to programmatically create OrBAC
policies. The concrete security policy inferred by MotOrBAC can be translated to configure a security
component such as a firewall for example. Another solution to enforce an OrBAC security policy is to
use the OrBAC Java API, on top of which MotOrBAC is built. This API uses the Jena java library3
to represent an OrBAC policy as a RDF graph. It can be used to load MotOrBAC RDF policies and
interpret them, i.e. access control requests can be made on a loaded policy. Jena features an inference
engine which is used by the OrBAC API to infer the concrete policies and the conflicts.
The MotOrBAC architecture is defined in Figure 3.10.

When an OrBAC RDF policy is loaded by the API, the concrete policy can be inferred and stored
in memory. An instance of the OrbacPolicy java class which encapsulates an OrBAC policy uses a
cache of concrete security rules to enhance the performances when the policy is queried. Contexts
are evaluated upon a query; this feature is actually used in the MotOrBAC simulation tool to show
the contexts state. The contexts implementation can be easily extended in order to interface the API
with other applications and add new types of contexts. Integrating the OrBAC Java API into a Java
application can be done without modifying the application source code. Aspect Oriented Programming
(AOP) can be used to separate security concerns from other concerns relative to the application.

3.2.1.2 MotOrBAC Functionalities

MotOrBAC can be used to perform several tasks on OrBAC security policies:

• Edit Policies: the administrator can create the abstract entities he/she needs (organizations,
sub-organizations, roles, activities, views, contexts) and the abstract security policies. Hierar-
chies defined for these concepts are also defined. These different concepts and policies can be
expressed and defined through a graphical interface. Figure 3.11 shows the definition of hierar-
chies as a graphical tree. Many types of security rules can be specified using MotOrBAC. We
can define permissions, prohibitions and obligations. Figure 3.11 shows these different types.
Many types of contexts are available to express conditions of rules activation. Each type of
context define a specification language like Beanshell language (set of Java language), Prova (set
of Prolog).
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Figure 3.10: MotOrBAC tool architecture

Figure 3.11: Graphical hierarchy representation in MotOrBAC
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• Policy simulation: after having specified concrete entities (subjects, actions and objects), the
concrete policy can be inferred as shown in Figure 3.12. Subjects, actions and objects can have
attributes. The simulation interface is presented in Figure 3.13.

Figure 3.12: Example of abstract rules

Figure 3.13: Simulation of concrete OrBAC policy

• Policy consistency verification: abstract conflicts between abstract rules can be detected.
Once abstract conflicts have been detected, MotOrBAC is able to suggest the administrator
some solutions to solve them. Figure 3.14 presents an interface of possible managements of these
conflicts.

• Administrative rights management: the administrative rights of a subject or a role can be
specified in order to decentralize the policy administration. MotOrBAC is able to express the
administration policy using the same formalism. It can be used to specify the administration
policy, each AdOrBAC policy associated to each policy. AdOrBAC model implemented in API
OrBAC allows a decentralized administration of the policy. We can for example control creating
abstract entities, creating rules, etc. Figure 3.15 represents the definition of a view by specifying
the insertion of objects in the use teaching resource assignment view sub-view of the view
activity assignment view.
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Figure 3.14: Conflict management interface

Figure 3.15: View definition

• Delegation Mechanism: with MotOrBAC model two types of delegation are possible. It is
possible either to define delegation of some rule to someone without giving him a specific role
or it can be delegated the role itself, which implies that the whole set of rules belonging to that
role will be delegated. For example, considering the e-voting use case, it is supposed that the
client can delegate cryptographic operations to a trusted server during voting process.

– Rule delegation: is implemented in AdOrBAC by creating sub-views of the license del-
egation view. The policy subjects can delegate their rights to other users, by putting a
constraint on the new sub-view and giving a role/subject the right to insert licenses into it
as shown in Figure 3.16.

– Role delegation: is implemented in AdOrBAC by creating sub-views of the role delegation
view. The policy subjects can delegate their roles to other users, by putting a constraint on
the new sub-view and giving a role/subject the right to insert role assignment objects into
it. The approach of role delegation is very similar to rule delegation as shown in Figure
3.17.
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Figure 3.16: Rule delegation
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Figure 3.17: Role Delegation
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3.3 Security Policy Engine

3.3.1 Policy Decision Point

The security policy engine module represents the Policy Decision Point, we call it as OrBAC-PDP, of
the SUPERCLOUD architecture. It is the module that decides about the security rules to be enforced.
This module is invoked by the various Policy Enforcement Points (PEP)s when we are considering the
access control and it notifies PEPs when some usage control rules (obligations) are activated. It allows
to take a decision (allow/deny) according to specific actions to be applied within the SUPERCLOUD
framework and also trigger obligations for example in the case of usage control rule enforcement or
in the case of any security flaw detection. In SUPERCLOUD, the PDP might be located at different
locations than the PEP such as at Network later or at Application level. The PDP makes the decisions
about which entities are permitted to access the resources, based on the policy that is set for accessing
that resource. More specifically, once security policies are loaded in the OrBAC-PDP, the next step
is to dynamically control the enforcement of these security policies based on the changed occurring
in the environment. Whenever the PDP receives a request from the PEP, it checks it against the
corresponding policies defined in the PAP and comes up to a decision. After making the decision it
sends the reply back to the PEP. In order to provide access control and usage control for different levels
of granularity, we are considering multiple decision points in our architecture. Thus, we categories
OrBAC-PDP in two categories:

3.3.1.1 Autonomous PDP

The OrBAC-PDP usually acts autonomously in the domain where it is assigned. It makes decisions on
all authorization requests that it understands, which means, on all queries for which it has respective
policy available.

3.3.1.2 Distributed PDP

The OrBAC-PDP may additionally delegate decisions to further PDPs that are more specialized.
However, for interacting with other PDPs, we need to establish and verify their trust relationship and
communicate with each other at least using an authentic channel.

3.3.2 Policy Enforcement Point

The policy enforcement point (PEP) is the point that receives the request from the requester for
accessing that resource and enforces the access control and usage control decision.

3.3.2.1 Forward PEP

If we talk about a Forward PEP, the PEP simply acts as decision forwarder and hence forwards any
decision requests to OrBAC-PDP and returns PDPs answer to the local caller. This is the PEP default
implementation, which may have some temporal and/or contextual limitations.

3.3.2.2 Autonomous PEP

If we talk about Autonomous PEP, the PEP acts as ancillary PDP based on local or distributed
security policy decision database and security context information (general and/or promptly only) that
are available at the respective module or architecture layer implementing a PEP. The authorization
for local autonomous decisions is configured by PDP.
By default, PEP actively queries the PDM for every decision. However, in case the local PEP (i) has
some local security context information PDP does not have available or does not understand and/or
(ii) has very many time-critical decision requests than PEP could also come to decisions of its own
based on a policy database, which of course is pre-configured by PDP.
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3.3.3 Security Policy Enforcement Modes

In the SUPERCLOUD architecture, due to the dynamic changes in the contextual information the
set of active/inactive policies needs to be synchronized with the set of active/inactive rules which are
already enforced by the PEPs. For this purpose, we have defined an enforcement approach based on
the concept of push and pull modes as shown in Figure 3.18, depending on the type of the security
rules that we are considering.

3.3.3.1 Pull Enforcement

is a type of mode in which SDN controller invokes OrBAC-PDP to retrieve all the active rules related
to permissions and prohibitions. The PEP calls, using the variables <subject, action, object>, the
API method Is permitted in order to evaluate the access.

3.3.3.2 Push Enforcement

is a type of mode in which, instead of PEP, the OrBAC-PDP pushes the changes, that occur in the
security policy, to the PEP in the form of notifications to activate or deactivate different rules.

Figure 3.18: Security policy enforcement modes

Our core purpose to define push mode is to control obligation enforcement during the application
execution. As discussed in the previous section 3.2, these obligations can have different states (Acti-
vation, Deactivation, Violation, Fulfillment), during the whole lifecycle of the application execution.
In our approach, we enforce these different changes of obligation through considering and evaluating
different states of the context. For this purpose, the context and monitoring modules are actively
monitoring the changes happening in the environment and regularly notify the status of context to the
OrBAC-PDP. Once the OrBAC-PDP has been notified that a context is in a new state, an analysis
phase takes place in the OrBAC-PDP to check if there is any obligation that is activate, deactivate,
fulfilled or obligation is violated.
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Chapter 4 Use Case Prototypes

This chapter describes the Use Case Prototypes that demonstrate the use of SUPERCLOUD capa-
bilities in realizing actual SUPERCLOUD services. Two prototypes are presented, demonstrating
approaches for enforcing geolocation requirements for SUPERCLOUD services – Authenticated Dis-
covery Prototype described in Sect. 4.1, and covering the realization of Network Function Virtualization
(NFV) services on the SUPERCLOUD architecture – NFV Use Case Prototype discussed in Sect. 4.2.

4.1 Authenticated discovery for geolocation-restricted data replica-
tion

4.1.1 Related work

In this section, we analyze the state of the art related with the topic of data replication in VMs that
are placed in allowed geographical places. This state of the art consists of the topics of geolocation,
authenticated key agreement and grid resource discovery.

4.1.1.1 Geolocation

Geolocation of hosts on the Internet is currently achieved through a variety of evidence-gathering
practices, including mining data from “who is” databases and DNS records, using Internet topology
data, network metrics. The IP-based solutions alone provide geolocation with the accuracy of coun-
try reasonably reliably, but up to cities unreliably [44]. Example of IP geolocation services include
IP2Location1 and IPInfoDB2. Many more similar services are available paid or free. Other geolocation
solutions use metrics of the network connections like round-trip times, route (made of successive hosts,
which are named hops) and transit delays of packets across the Internet Protocol (IP) network. Landa
et. al [56] proposed a model for the analysis of Internet round trip time (RTT) and its relationship to
geolocation distance. However, this solution relies on a database and it does not take in consideration
the live nature of the global networks, possibly making this solution unable to cope with network
changes. In particular, Internet delays are known to violate the triangle inequality [44]. Katz-Bassett
et. al [53] present Topology-based Geolocation (TBG), an approach which estimates the geographic
location of arbitrary Internet hosts. The network round-trip delay is used as part of this solution.
The proposed approach is leveraging network topology, along with measurements of network delay,
to constrain host position. Furthermore, Huffaker et al. [45] make a comparison between the three
source of geolocation knowledge (database, delay, and topology) and the conclusion is that although
inconsistencies exist, aggregated results could prove useful for geolocation.
One other solution for addressing geolocation requirements is the use of service level agreements (SLAs)
that specify the geographic region of a service. Reliance on a contractual obligation, however, may
fail to detect misbehavior (malicious or accidental) on the part of the service provider. For example, a
careless service provider may move client data to an overseas data center, for cheaper IT costs. Benson
et al. [27] and Peterson et al. [70] independently proposed using proofs of data possession and host
geolocation to bind cloud data to a specific geographic location. Extending this work, Gondree et

1http://www.ip2location.com/
2http://www.ipinfodb.com/
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al. [44] proposed constraint-based data geolocation (CBDG), a data geolocation solution that builds
on constraint based techniques for host geolocation. This methodology is generic enough to use
any distance-latency model, including topology-aware models and semi-trusted landmarks at known
locations. Bartock et al. [25] proposes to tackle the problem of geolocation using hardware root of
trust, which is a combination of hardware and firmware that maintains the integrity of the geolocation
information. The solution uses a hypervisor configuration. The main disadvantage of such solutions
is that they require specific hardware or that require heavy integration efforts in multi-cloud systems.

4.1.1.2 Grid resource discovery

Resource discovery is a major challenge in multi-cloud environments. Most of the resource discovery
existing techniques utilize a centralized mechanism, where each cloud interacts with a central entity or a
meta-broker. However, a centralized approach to resource management and discovery does suffer from
shortcomings like performance vs. scalability, security vulnerabilities and single-point-of-failure [52].
Some instances of decentralized resource discovery are available in grid computing (e.g. InterGrid [38]).
Kocak and Lacks [55] propose to place the load of managing the network resource discovery inside
of the routers. In the proposed protocol, the routers contain tables for resources similar to routing
tables. These resource tables map IP addresses to the available computing resource values, which are
provided through a scoring mechanism. This solution needs to be integrated in routers and is requires
all the routers to adhere to the solution, which could prove difficult for integration in a multi-cloud
scenario. Wright et al. [82] propose a software abstraction layer for resource discovery by applying
a two-phase constraints-based approach to a multi-provider cloud environment. All these solutions
insert latency in the system, which can hinder the performance.

4.1.1.3 Authenticated key agreement

A wide variety of cryptographic authentication schemes and protocols has been developed to pro-
vide authenticated key agreement to prevent man-in-the-middle attacks. These methods generally
mathematically bind the agreed key to other agreed-upon data, such as public / private key pairs,
shared secret keys or passwords. Such protocols are: STS (station-to-station3), SRP (secure remote
password [83]), MQV (Menezes-Qu-Vanstone4) and AKEP2 (authenticated key exchange protocol 2).
The STS, SRP and MQV protocols are based or similar with the Diffie-Hellman protocol and the STS
and AKEP2 provide mutual entity authentication. These protocols are at least a three-pass protocol,
which inserts latency in the data replication process. Furthermore, if one decides to use one of these
protocols within a multi-cloud system, close integration needs to be done between sometimes maybe
different implementations of the same protocol.

4.1.2 Proposed solution

Figure 4.1: Authenticated discovery protocol

3https://en.wikipedia.org/wiki/Station-to-Station_protocol
4http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
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The proposed solution protocol, depicted in Figure 4.1, contains the following three steps:

• The origin broadcasts the message: Policy, EPolicy(sessionKey) to “All”:

– The origin is the node that decides to replicate data because of the reasons previously
specified in this document due to requirements regarding data query performance, load
balancing and disaster recovery. In Figure 2 the origin node is depicted as a full-black
circle.

• Targets, the rest of the nodes, receive the message broadcasted by the origin. They try to decrypt
the broadcast message using their respective private keys and their reply is one of the two values:

– Do not understand

∗ They do not have the required keys to decrypt the message. This implicitly means that
they do not satisfy the requested policy.

– OK, replication possible, EsessionKey(src, dst, Policy). This answer is sent by the “Candi-
dates”.

∗ They do have the required keys to decrypt the message. This implicitly means that
they do satisfy the requested policy as asserted by the various authorities.

∗ The target sends to the origin an ok message and a message encrypted with the session
key to show that it is placed in an allowed geographical position (according to the
policy).

• Origin selects one or more VMs where the data will be replicated, these being the “Selected” in
the above figure. Next the origin sends the sensitive data, encrypted with the session key pro-
posed in the beginning. Therefore the message sent to the replication VMs is: EsessionKey(DATA).

4.1.3 Architectural integration

This section describes the integration of the authenticated discovery protocol depicted in Figure 4.1
within a multi-cloud infrastructure (e.g. SUPERCLOUD, depicted in Figure 4.2). The integration
consists of deploying in every VM of the U-cloud (connected healthcare platform) a component that is
separately handling the data replication: “Data replication service”. Such a component is lightweight
and relies on being provisioned with a private key (when necessary). This is present in the compute
plane of the U-cloud. The “Data replication service” triggers the authenticated discovery protocol and
relies on the network plane of the U-cloud for broadcasting the discovery message (step 1). Next the
same “Data replication service” component from candidates VMs is answering to the discover message
(step 2). In step 3, the “Data replication service” sends the encrypted data to the selected VM for
replication. This arrow (3) goes through the Data abstraction plane signifies that this plane needs to
be aware of the replicated version of the data.
The previously described process is triggered when additional users (red “App”s) are using the App
and therefore load balancing is needed for a better performance of the system.

4.1.3.1 Types of data

The solution presented in this chapter can cope with any type of data. The data that needs to
be replicated should go through the following steps: packaging, encrypt package, transport package,
decrypt package and finally un-packaging. For example for a database, the proposed solution would
require a dump of the portion of the database that needs to be replicated (e.g. records and columns).
Next this dump file is encrypted, sent via the proposed authenticated discovery protocol to the place
where the data will be replicated. Then the received encrypted package is decrypted by the receiving
replication VM.
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Figure 4.2: SUPERCLOUD architectural integration

Within the SUPERCLOUD architecture, a connected health system would be deployed as a U-cloud
and therefore use the abstraction planes (compute, data, and network) as depicted in Figure 4.2. A
U-cloud, as defined in the SUPERCLOUD deliverable D1.1 “User-centric management of security and
dependability in clouds of clouds”, is a user-specific ensemble of computational, data and networking
services.[65] In Figure 4.2 the steps: 1, 2, 3 are map-able to the protocols steps described in Figure 4.1.

4.1.4 Validation

In this section we present the main features of the proposed multi-cloud authenticated discovery
prototype, together with the problems, featured by the state of the art solutions, which this solutions is
overcoming and a qualitative analysis about how this prototype affects the trust relationships between
the components.

4.1.4.1 Performance

Our solution performs a fast replication of data by relating on a shorter and therefore faster protocol.
The existent solutions which would comprise of three different protocol exchanges (discovery, authen-
tication, key agreement) contains more steps and therefore are less efficient than the solution proposed
in this paper. This can be observed easily in Figure 4.3. A default solution protocol would comprise
of 9 steps.

Figure 4.3: Default solution protocol
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In comparison with the default solution protocol, our solution can achieve a better performance because
it embeds discovery, authentication and key agreement in a single exchange, two-step protocol, which
is more efficient. Our solution needs only one protocol exchange, and this one exchange only has to
be finished by servers that satisfy the discovery broadcast. In our solution, the replication-VM is
authenticating itself to the origin by being able to decrypt the discovery message that is sent by the
origin. The decryption is based on getting a secret key from the geolocation attribute-based CAs.
The attributes of a replication-VM do not necessarily need to match perfect the geolocation, since it
is known that precise geolocation is difficult. A fuzzy approach can be leveraged and is explained in
an extension.

4.1.4.2 Multi-cloud integration

Usually replication in multi-cloud system, appended with other local hospital servers, means integra-
tion between these solutions for enabling existent solutions like for example: TLS protocols. This
problem is overcome by our proposed solution. The newly inserted platform-independent protocol
integrates easily with heterogeneous (e.g. multi-cloud scenarios) systems because it does not rely
on close integration between the computing providers. Our solution is based only on exchange of
encrypted content and peer-to-peer connected VMs without relying on possible communications and
specifics deployed for the multi cloud system. For example, the discovery phase relies on just sending
an encrypted message, which is not platform dependent.

4.1.4.3 Flexibility

Our proposed solution comes up with a discovery process that is relevant to the current topology at
the time of running the protocol, therefore automatically taking into account dynamic changes that
occurred in the past. Furthermore, the proposed solution allows decentralized discovery of places
(where data replication is allowed) without the need of having a central entity that orchestrates this
discovery.

4.1.4.4 Trust management

The solution proposed in this document does not need to trust the cloud or even a possible multi-
cloud deployment that the clouds/multi-cloud system will trustily enforce all the SLAs and use only the
allowed geographical regions for replication. Furthermore, for the geolocation ABE authentication, the
fuzzy authentication approach can split the trust between different CAs or semi-trusted landmarks
that release secret keys for different geolocation measurement (e.g. ping, hops, etc.). The trust is
dissipated even more by the usage of setting expiration dates on the secure tunnels created between
an origin and a replication node. When a secure tunnel expires, a new key is negotiated. This way
the security of the discovery process is enhanced. Furthermore, this expiration triggers a discovery
process that might reveal better (e.g. closer) replication VMs.
We are moving the trust from a mesh of clouds, their security solutions, and integration of the security
solutions, SLAs and collaboration SLAs to trusting a clear protocol. The simplicity and clarity of the
protocol minimizes the attack surface. This moves the trust to the certification authorities and the
key generation authorities.
sing a single CA that is fully trusted by all users and that reliably monitors user attributes is reasonable
in small systems. However, for large and distributed systems, such as a connected health system, this
is usually not the case. In the literature, Multi-Authority Key Generation Systems (MA-KGS) have
been proposed to tackle this problem [32, 67, 57]. In these systems, the task of generating parts of a
users secret keys relating to particular attributes is performed by so-called Key Generation Authorities,
or KGAs. Apart from a system-wide public key generated by a Certification Authority (CA), each
Key Generation Authority generates attribute public keys for each of its attributes. The user requests
secret key parts from each KGA for (a subset of) the attributes it is responsible for. Therefore, a
malicious KGA can issue secret keys for limited number of attributes. However, if the key material of
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a KGA is compromised, then this still poses a risk because this material can then be combined with
other user secret keys to obtain access to material that otherwise would not be accessible. [71]
For reducing the risk that the key material of the KGA is compromised, thereby reducing the level
of trust in KGAs that is needed, we propose to use the technique of Multi-Authority Key Generation
System. In such a system (exampled depicted in Figure 4) the user must receive secret keys from
multiple KGAs in order to be able to decrypt the discovery message. These pieces of the secret key
are associated with different subsets of geolocation attributes (e.g. ping time, hops number, IP address,
DNS). This fits also with the fuzzy approach mentioned above. A secure distributed key generation
solution [71] could also be leveraged for provisioning of the replication machines with the secret keys
(depicted in red in Figure 4.4).

Figure 4.4: Authenticated discovery protocol using a Multi-Authority Key Generation System

4.1.5 Conclusions

This prototype can be used when replication of data is needed and when this data should be replicated
only in allowed locations. The proposed solution can be generalized for just authenticated discovery,
since it allows agreeing on a key by sending the encrypted key to the place where the data needs to
be replicated. The encryption can be done using attributes that are different from geolocation and
fuzzy authentication can be leveraged. The proposed solution is well suited for systems as the one that
the SUPERCLOUD project is building because it does not rely on developing new integrated solution
between the computing providers (e.g. cloud providers, hospital server), but only on a cryptographic
protocols which are platform independent.
From a trust point of view the solution presented in this section represents an alternative to trusting
the clouds with enforcing the SLAs and use only the allowed geographical regions for replication.
Furthermore the geolocation ABE authentication can split the trust between different CAs or semi-
trusted landmarks that release secret keys for different geolocation measurements (e.g. ping, hops,
etc.). The proposed solution moving the trust from a mesh of clouds, their security solutions, and
integration of the security solutions, SLAs and collaboration SLAs to trusting a clear and easy to audit
protocol. The simplicity and clarity of the protocol minimizes the attack surface therefore enhancing
the trust in the fact that the data will be stored only in allowed geographical location.
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4.2 NFV use case prototype

This prototype, part of OPNFV [68], illustrates an NFV-oriented use case based on the SUPER-
CLOUD architecture. It demonstrates security architecture and services for NFV applications such
as federation of identity and authorization, and cross-provider security policy management (using the
Moon framework [69], see Figure 4.5), network isolation, etc. Possible extensions include attribute-
based encryption for data management. The underlying infrastructure should be OpenStack and
OpenDayLight-based.

4.2.1 Use case

The considered use case features a Cloud Service Provider (CSP) proposing a cloud services solution to
its customer: it provides networks, storage and computing resources to enable them to create their own
cloud virtual machines and software containers. The CSP provides several distributed infrastructures
to enable its clients to create their own cloud resources according to their geographic preferences (e.g.,
for improving the availability of a service to one area or for mirroring). In this context, multi-tenancy
refers to the use of the same infrastructure by multiple but independent customers, and multi-cloud
refers to the fact that various cloud infrastructures collaborate together to meet customer requirements.
Since different types of resource should be protected and these resources can be dynamically created,
removed or scaled up/down, the corresponding protection should also adapt to this dynamic aspect.
For our use case, users or applications create VMs, data stores and virtualized networks across the
distributed infrastructure. For the protection of VMs, an access control mechanism enables to restrict
manipulations on VMs. For storage, an attributed-based encryption mechanism is used. For virtualized
networks, a firewalling mechanism protects each created sub-network. Finally, diverse resources are
pooled into tenants which will be coordinated by security policies in order to avoid misconfiguration
among security mechanisms. A user defines one security policy for each tenant, and this policy is
enforced through different security mechanisms as discussed previously.
During execution, the security policy may be modified. Corresponding enforcement mechanisms are
then able to adapt to this modification dynamically. New security mechanisms may also be inserted,
and be self-configured through the security policy.

Figure 4.5: Moon authorization system
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4.2.2 Prototype architecture

From implementation point of view, our prototype will apply a micro-service architecture. All security
mechanisms will be implemented in containers (managers in Figure 4.6). This approach enables easy
activation, configuration and update. Different security protection mechanisms can then be integrated
through a well-defined northbound security management interface. Elementary enforcement agents
(PEP in the Figure) will be deployed through the whole infrastructure, and controlled through a
southbound security management interface.

Figure 4.6: Prototype preliminary architecture
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Chapter 5 Technology Demonstrator Prototypes

This chapter describes the Technology Demonstration Prototypes that explore dedicated novel tech-
nology solutions which can be integrated into the overall SUPERCLOUD architecture to provide new
or improved computational capabilities for realizing SUPERCLOUD services or platform features.
Two prototypes are presented, covering low-level isolation enabled by new hardware-security tech-
nologies like Intel SGX – Computation Environment Isolation Prototype described in Sect. 5.1 – and
FPGA-based hardware mechanisms for optimized computations of virtual machines in user clouds –
Cloud FPGA Prototype presented in Sect. 5.2.

5.1 Computation Environment Isolation Prototype

SUPERCLOUD is intended to be a self-managed system which requires a minimal amount of admin-
istrative efforts. One of the requirements to achieve this goal is the property of self-managed security.
As described under [D1.1 4.3.1.2], in the concept of SUPERCLOUD the self-e of security is based on
particular security services including isolation.
Intel Software Guard Extensions (SGX), introduced with Intel’s latest Skylake processor generation,
is a promising technology which can be used to isolate the processes of different users from each other.
SGX refers to extensions to the processor’s instruction set architecture. The aim of these extensions is
to enable developers to integrate a protected execution environment, called enclave, in their software.
Protecting an enclave is performed by the processor due to a memory protection system. Further, the
integrity of an enclave can be proven upon an attestation scheme. Figure 5.1 shows two possibilities
to implement the isolation service using the SGX technology.
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L0 Virtualization Layer (Hypervisor)

L1 Virtualization Layer 

Host Process
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Syscall-Iface

Syscall-
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Figure 5.1: SUPERCLOUD Computation Environment Isolation Concept
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Both variants are build on top of the virtualization layer. In the design depicted by the upper left
part of the diagram, more than one application can be executed in an enclave whereas in the other
design each application runs in a separate enclave. Since Intel SGX introduces a new execution and
protection model, applications which are not developed for this technology can not be executed in an
enclave without further ado.

5.1.1 Technical Challenges

There are three main aspects that are important to support the execution of legacy applications1 within
an enclave: Operating system services, virtual memory management, and inter-process communication.

5.1.1.1 Operating System Services

With regards to operating system services, the challenge arises from the fact that privileged execu-
tion, i.e., supervisor mode instructions, cannot be executed when the processor is in enclave mode.
Therefore, the standard system-process interaction via system calls is not possible from within an
application running inside an enclave. This interaction includes input, output, memory management,
file system, and networking functionality. Usually, an application would issue the SYSENTER or
SYSCALL instructions along with the necessary parameters, which would cause the CPU to transi-
tion to supervisor mode and trap into the kernel. Upon finishing the requested service the system
would then return to user mode and continue executing the application.

5.1.1.2 Virtual Memory Management

Virtual memory isolation poses another challenges when dealing with code executing inside an enclave.
In particular, individual processes on a regular system are isolated from each other through different
virtual address spaces. This means that the same virtual address might be mapped to a different
physical address from within two separate processes. This indirection ensures that memory that is
not shared between two processes is exclusive to the respective process and cannot be accessed by
the other one. Usually, enclave memory is assigned to a process on a per-page basis. The enclave
page becomes part of the address space of the host process. This is impractical in the scenario of
executing real world applications within exclusively in enclave mode, because there is no application
code running in the host process.

5.1.1.3 Inter-Process Communication (IPC)

The third technical challenge is represented by inter-process communication (IPC). It often is required
that processes communicate with each other and with that share some sort of data. However, the
established mechanisms for performing IPC are either based on operating system services which are
not available in an enclave or violate the security assumptions of SGX.

5.1.2 Solution Alternatives

To address the above-mentioned challenges related to the isolation of computation environments within
enclaves, there are various technical options for realizing a solution. In the following, we discuss these
potential solution alternatives.

5.1.2.1 System Call Interface

While the issue with the system call interface could in theory be addressed through binary rewriting
techniques similar to para-virtualization, this interface is standardized and implemented in practice
not by the application itself, but by common system libraries, such as libc under Linux. Therefore,

1Applications designed without the Intel SGX development and execution model in mind.
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implementing the system call interface via a proxy library represents an alternative approach towards
addressing this issue.
In particular, we propose replacing the standard system call functionality within the C library that is
usually linked to applications dynamically at runtime, with an SGX-aware proxy implementation, that
forwards privileged execution to a non-SGX implementation within the host process. The non-SGX
end of this system call proxy would need to retrieve the arguments, service the actual system service
request, and return its results to the enclave.

5.1.2.2 Virtual Memory Management

There are two different possibilities for implementing the virtual memory management for enclave
memory. The first possibility is to have maintain one single host process for all the running enclave
applications. The benefit of this solution is that the memory management functionality can be im-
plemented within this host process by claiming all possible SGX memory, and assigning it to the
applications through standard memory allocation implementations.
The drawback of this possible implementation scenario is that the applications running in enclave
mode would not be separated through virtual memory anymore, but become part of the same address
space. With regards to the threat model, this would not represent a major problem though, because
individual applications running in enclave mode have to be considered trusted already.
The second possible implementation strategy is to assign every application its own host process. The
problem with this is that the host process would only be created to have enclave memory assigned to
its virtual address space, but would not be executing any application code. The performance overhead
introduced by this solution would therefore be expected to be higher than in the first solution.

5.1.2.3 Inter-Process Communication

The most straightforward way to realize IPC in the context of SGX is to execute applications enclaves
which communicate with each other. To achieve this goal, the local attestation mechanism, introduced
by the SGX technology, can be used to reliably establish the trust between enclaves. However, having
a separate enclave per application could cause a considerable overhead for the overall system. This
factor could motivate the implementation of a new IPC mechanism for processes being executed in
parallel in the same enclave.

5.1.3 Prototype Realization

We decided to leverage an existing higher-level language, Python, to provide isolation between various
components (Python modules), as shown in Figure 5.2. It is possible, then, to develop a number of
different modules and deploy them in a Python interpreter that lives inside a single SGX enclave.
Communication to this enclave (including deployment of further modules) is performed via TLS-
encrypted sockets, while local storage of data is protected by an encrypted file system.
We decided to handle system calls using a custom version of an existing MIT-licensed libc implementa-
tion, musl. Instead of issuing the syscall directly, our version calls a proxy located outside the enclave,
which forwards the parameters to the kernel and returns the return code to the enclave. When a
parameter is a pointer to some other data (e.g., for the system call write) we take care of copying the
data itself from or to the enclave.

5.2 CloudFPGA

In the SUPERCLOUD framework, CloudFPGA serves as an accelerator resource in the CSPs infras-
tructure, similarly to other compute, storage, and network resources. Since heterogeneous devices,
such as FPGAs and GPUs are not yet common in public cloud offerings, at first, this may only be
valid for private cloud service providers.
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Figure 5.2: Python VM inside an SGX enclave.

5.2.1 Use Cases

Once the CloudFPGA becomes available in CSP infrastructure, the SUPERCLOUD framework can
use it in two ways: (i) to accelerate workload processing in the abstract planes, and (ii) to accelerate
SUPERCLOUD management tasks.

(a) Acceleration of Abstract Planes In the SUPERCLOUD framework, the CloudFPGA is ver-

tically mapped across the three abstract planes as shown in Figure 5.3. CloudFPGA accelerates
compute, data, and network processing in the corresponding abstract planes. In the compute abstract
plane, user workloads are accelerated. For example, acceleration of medical record classification using
text analytics in healthcare applications. In the data abstraction plane, the access to user data is
accelerated. For example, using FPGA-based mem-cached appliances. In the network abstraction
plane, various network virtualization functions can be accelerated. For example, by implementing
VLAN tagging, packet re-writing, and tunneling (VXLAN) functions in FPGA.

(a) Acceleration of Management Functions CloudFPGA executes the management functions of

the SUPERCLOUD platform. For example, security functions, such as data encryption, decryption,
and monitoring can be executed in FPGA.

Figure 5.3: CloudFPGA in SUPERCLOUD
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5.2.2 Technology Overview

FPGAs (Field Programmable Gate Arrays) are making their way into data centers (DCs) and are
used to ofoad and accelerate specic service-oriented tasks, such as web-page ranking [73] , memory
caching [29] , and high-frequency trading [59] . But these FPGAs are not yet available to general cloud
users who want to get their own workload processing accelerated. This puts the cloud deployment
of compute-intensive workloads at a disadvantage compared with on-site infrastructure installations,
where the performance and energy efciency of FPGAs are increasingly being exploited. CloudFPGA
solves this issue by offering FPGAs to the cloud users as an IaaS resource. Using the CloudFPGA
system (Figure 5.4), cloud users can rent FPGAs, similarly to renting VMs in the cloud, and get their
workload processing accelerated.

Figure 5.4: CloudFPGA System

5.2.3 System Architecture

The CloudFPGA system is built based on 3 main concepts: (i) standalone FPGA, (ii) hyperscale
infrastructure, and (iii) OpenStack accelerator service. In this section, the CloudFPGA system archi-
tecture is explained based on those three concepts.

5.2.3.1 Standalone FPGA

The concept of standalone FPGA is built on two main initiatives: (i) changing the traditional way
of attaching an FPGA to a CPU by moving from PCIe-attachment to network attachment, and (ii)
making the FPGA self-managed without needing to have a host server for the management. This
section explains the concept of standalone FPGA.

(a) Fundamental Shift from PCIe-Attachment to Network-Attachment

Mainly, there are three approaches for connecting an FPGA to a CPU. One option is to incorporate the
FPGA onto the same board as the CPU when a tight or coherent memory coupling between the two
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devices is desired (Figure 5.5-(a)). Such a close coupling is not expected to be generalized outside the
scope of very specic applications, because, first, it breaks the homogeneity of the compute module in
an environment where server homogeneity is sought to reduce the management overhead and provide
exibility across compatible hardware platforms. Second, in large DCs, failed resources can be kept
in place for months and years without being repaired or replaced, in what is often referred to as a
fail-in-place strategy. Therefore, an FPGA will become unusable and its resources wasted if its host
CPU fails.
The common approach for deploying FPGAs in a server is by tightly coupling one or two FPGAs to
the CPU over the PCIe bus (Figure 5.5-(b)). However, this PCIe-attachment has two major issues
in DC deployment. First, the power consumption of a server is order of magnitude higher than that
of an FPGA. Hence, the power efciency that can be gained by ofoading tasks from the server to
1 or 2 FPGAs is very limited [42] . Second, in DCs, the workloads are heterogeneous and run at
different scales. Therefore, the scalability and the exibility of the FPGA infrastructure are vital to
meet the dynamic processing demands. With PCIe-attachment, a large number of FPGAs cannot
be assigned to run a workload independently of the number of CPUs, and also those FPGAs cannot
be connected in exible user-dened topologies. Some large-scale FPGA deployments [73] get around
this issue of scalability and exibility to a certain extent by having a secondary dedicated network
connecting multiple PCIe-attached FPGAs together. However, a dedicated secondary network breaks
the homogeneity of the DC network, and increases the infrastructure management overhead.
The other approach for deploying FPGAs is by attaching them directly over the DC network (Figure
5.5-(c)), which signicantly improves the scalability and the exibility of the FPGA infrastructure com-
pared with the PCIe-attachment. There are few previous attempts [2] [3] [6] ,which directly attach an
FPGA to the network. Even though those attempts provide a network connection, the FPGA always
remains physically attached, hosted and controlled by a dedicated server. Instead, the authors of [81]
at IBM Research Zurich proposed the concept of standalone network-attached FPGA to completely
disaggregate the FPGA resource from the server. This approach frees the FPGA from the traditional
CPU-FPGA attachment and tightly couples the network and application processing in the same FPGA
device. We believe that this is the key enabler for large-scale deployments of FPGAs in DCs.

Figure 5.5: Approaches for Connecting an FPGA to a CPU

(b) Standalone Network-Attached FPGA

The high-level architecture of the standalone network-attached FPGA concept proposed in [81] is
shown in Figure 5.6. It contains an FPGA and an optional off-chip memory. The FPGA is split into
three main parts: i) a user logic part used for implementing customized applications, ii) a network
service layer (NSL), which connects with the DC network, and iii) a management layer (ML) to run
resource-management tasks.
User Application: One or more user applications can be hosted on a single physical FPGA (pFPGA),
somehow similar to one or more VMs running on the same hypervisor. Each user gets a partition of the
entire user logic and uses it to implement its applications. This partitioning is achieved by a feature
called partial reconguration, a technology used to dynamically recongure a region of the FPGA while
other regions are running untouched. We refer to such a partition of user logic as a virtual FPGA
(vFPGA).
Network Service Layer (NSL): The NSL provides the network connection for vFPGAs to commu-

SUPERCLOUD D2.2 Page 53 of 68



D2.2 - Secure Computation Infrastructure and Self-Management of VM Security

Figure 5.6: Standalone Network-Attached FPGA

nicate with servers and other vFPGAs over the DC network, similarly to the power service layer (PSL)
of IBMs coherent accelerator processor interface (CAPI), which provides a PCIe-based communication
link for its accelerator function units for communicating with SW applications. The NSL consists of
(a) an application interface layer (AIL) and (b) a network protocol stack (NPS). The AIL executes
two main tasks: (i) It serves as a switch that multiplexes and de-multiplexes incoming and outgoing
data path and control path network payloads to and from vFPGAs. (ii) It offers multiple FIFO-based
TCP and UDP network interfaces to the vFPGAs through the vFPGA IF. The AIL can have one
or more vFPGA IFs, so that the standalone network-attached FPGA can run multiple applications
simultaneously. The NPS contains a network interface and a TCP/IP protocol stack to connect the
FPGA to the DC network.
Management Layer (ML): The management layer contains a memory manager and a management
stack. The memory manager enables access to memory assigned to vFPGAs and the management stack
enables the vFPGAs to be remotely managed by a centralized management software. The memory
manager contains a memory controller and a virtualization layer. The memory controller provides the
interface for accessing memory from the vFPGAs. The virtualization layer allows the physical memory
to be partitioned and shared between different vFPGAs in the same device. This layer is congured
through the management stack according to the vFPGA memory requirements. The management
stack runs a set of agents to enable the centralized resource-management software (see section 5.2.3.3)
to manage the FPGA remotely. The agents include functions such as device registration, network and
memory conguration, FPGA reconguration, and a service to make the FPGA nodes discoverable.

(c) Potentials of Standalone FPGA The standalone FPGA introduced above can be used to

build applications that need only one (Figure 5.7-(a)) or several independent FPGAs (Figure 5.7-
(b)). For applications that need to setup a large number of FPGAs, the architecture scales to large
multi-FPGA fabrics (Figure 5.7-(c) and (d)). These multi-FPGA fabrics are created on-demand in a
software-defined manner, hence we call it Software-Defined Multi-FPGA Fabric (SDMFF). We have
seen the success of large-scale SW-based distributed applications such as those based on MapReduce
and deep learning [36]. To run those kind of applications in an energy-efficient manner at a high
bandwidth and a low latency, these multi-FPGA fabrics provide a scalable reconfigurable compute
fabric.
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Figure 5.7: Use Cases of Standalone Network-Attached FPGA

5.2.3.2 Hyperscale Infrastructure

This section explains how the standalone FPGA concept introduced in Section 5.2.3.1 is mapped
to real HW in DCs. In DCs, the straightforward way to build an FPGA cluster that consists of
above-mentioned standalone FPGAs is using off-the-shelf HW. For example, such a cluster can be
arranged by placing multiple off-the-shelf FPGA cards, which are connected to the DC network, in
a PCIe-expansion chassis. By vertically placing multiple such chassis, an FPGA cluster with around
100 FPGAs per rack can be built. But, since those off-the-shelf HW are not purposely built for such
a task, the scalability is poor in terms of the HW cost, the infrastructure cost and the physical space.
The IBM hyperscale infrastructure proposed in [60] [81] solves this issue by redesigning the FPGA
cards and the chassis base boards from the ground up. The next two subsections explain those two
components: (i) hyperscale FPGA module and (ii) hyperscale base board.

(a) Hyperscale FPGA Module (FMKU2595) IBM hyperscale FPGA module (Figure 5.8) is

called FMKU2595, which features a Xilinx KintexUltraScale FPGA with two independent DDR4
memory channels (816GB each). The FMKU2595 card is in the size of a double-height dual inline
memory module (DIMM - 140 mm 62 mm). The card provides x8 PCIe Gen3, six 10G Ethernet links
and two SATA interfaces. The card provides an extension connector that adds 128 Gbps of bandwidth
over 8 lanes, and two I/O connectors for plugging an I/O mezzanine. For more information on
FMKU2595, refer to the data sheet [48].

Figure 5.8: IBM Hyperscale FPGA Module (FMKU2595)

(b) Hyperscale Base Board (BB#2) IBM hyperscale base board (Figure 5.9) is a carrier SLED

designed to host a cluster of above-mentioned FMKU2595 modules. Thirty two FMKU2595 modules
plug into the SLED and are interconnected over 10GbE to the south side of an Intel FM6364 Ethernet
switch (Figure 5.10), for a total of 320 Gb/s of aggregate bandwidth. The north side of the FM6364
switch connects to eight 40GbE uplinks, which expose the SLED to the data center network with
another 320 Gb/s. This provides a uniform and balanced (no over-subscription) distribution between
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the north and south links of the Ethernet switch, which is desirable when building large and scalable
fat-tree topologies (a.k.a. folded Clos topology). Two SLEDs fit a 19 ” 2U liquid cooled chassis, and
16 chassis fit a rack. This amounts to 1,024 compute modules in a single rack which provides a total
of 16 TB of DRAM and 2.7M Xilinx DSP slices. For more information on BB#2, refer to the data
sheet [47].

Figure 5.9: IBM Hyperscale Base Board (BB#2)

Figure 5.10: Arrangement of 64 FMKU2595 Modules in 2 BB#2 Base Boards. (Two BB#2 boards
are hosted by a 2U chassis to build an FPGA cluster with 1024 FPGAs/Rack)

5.2.3.3 OpenStack Accelerator Service

Standard OpenStack does not provide services to integrate and provision heterogeneous devices such
as FPGAs in the cloud. Therefore, we introduce and build a new service into OpenStack, which we
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call accelerator service, to make the FPGA cluster explained in section 5.2.3.2 available in the cloud.
This section explains the OpenStack accelerator service.
In previous work, FPGAs [30] [33] and GPUs [35] have been integrated into OpenStack by using the
Nova compute service in OpenStack. In those cases, heterogeneous devices are PCIe-attached and
are usually requested as an option with virtual machines or as a single appliance, which requires a
few simple operations to make the device ready for use. In our deployment, in contrast, standalone
FPGAs are requested independent of a host. Therefore, similar to Nova, Cinder and Neutron in
OpenStack, which translate high-level service API calls into device-specic commands for compute,
storage and network resources, we build the accelerator service shown in Figure 5.11, to integrate
and provision FPGAs in the cloud. In the gure, the parts in red show the new extensions we build
for OpenStack. To setup network connections with the standalone FPGAs, we need to carry out
management tasks. For that, we use an SDN stack connected to the Neutron network service, and
we call it the network manager. Here we explain the high-level functionality of the accelerator-service
and the network-manager components.
Accelerator Service: The accelerator service comprises an API front end, a scheduler, a queue,
a data base of FPGA resources (DB), and a worker. The API front end receives the accelerator
service calls from the users through the OpenStack dashboard or through a command line interface,
and dispatches them to the relevant components in the accelerator service. The DB contains the
information on pFPGA resources. The scheduler matches the user-requested vFPGA to the user logic
of a pFPGA by searching the information in the DB, and forwards the result to the worker. The
worker executes four main tasks: i) registration of FPGA modules in the DB; ii) retrieving vFPGA bit
streams from the Swift object store; iii) forwarding service calls to FPGA plug-ins, and iv) forwarding
network management tasks to the network manager through the Neutron service. The queue is just
there to pass service calls between the API front end, the scheduler and the worker. The FPGA
plug-in translates the generic service calls received from the worker into device-specic commands and
forwards them to the relevant FPGA devices.
Network Manager: The network manager is connected to the OpenStack Neutron service through
a plug-in. The network manager has an API front end, a set of applications, a network topology
discovery service, a virtualization layer, and an SDN controller. The API front end receives network
service calls from the accelerator-worker through the Neutron and exposes applications running in
the network manager. These applications include connection management, security and service level
agreements (shown in red in the network manager in Figure 5.11). The virtualization layer provides
a simplied view of the overall DC network, including FPGA devices, to the above applications. The
SDN controller congures both the FPGAs and network switches according to the commands received
by the applications through the virtualization layer.
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Figure 5.11: OpenStack Accelerator Service
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Chapter 6 Summary and Conclusion

In this document we have described the technical implementations of components realizing the secure
computation infrastructure and self-management of VM security in the SUPERCLOUD architecture.
The presented prototypes address a broad spectrum of aspects necessary for deploying the architecture
on a real computation infrastructure. These include the orchestration of computational environments
deployed over the physical infrastructure of several different cloud providers as well as the manage-
ment of trust across different layers of architectural abstractions. Also low-level aspects of computation
environment isolation utilizing hardware mechanisms and enabling access to hardware-based compu-
tation services were discussed. In addition, two use case prototypes related to the management of
the geolocation of services as well as realization of network function virtualization were introduced.
The self-management of security in SUPERCLOUD was addressed through two prototypes related to
security policy modelling and enforcement.
In future work, the technical insights related to these prototypes focusing on the computational aspects
of SUPERCLOUD will be developed further and integrated with components of other sub-architecture
layers of the overall SUPERCLOUD architecture. Through this prototyping-centric approach we
envisage to create a solid technical basis for an integrated technical prototype architecture fulfilling
the technical requirements set towards the SUPERCLOUD system in deliverable D1.1.
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Chapter 7 List of Abbreviations

ACPI Advanced Configuration and Power Interface

AHCI Advanced Host Controller Interface

AIK Attestation Identity Key

AIL Application Interface Layer

AOP Aspect-Oriented Programming

API Application Programming Interface

BIOS Basic Input/Output System

CA Certification Authority

CAPI Coherent Accelerator Processor Interface

CoT Chain of Trust

CPU Central Processing Unit

CSP Cloud Service Provider

DB Database

DDR Double Data Rate

DC Data Centre

DIMM Dual In-line Memory Module

DRTM Dynamic Root of Trust Measurement

EC European Commission

EE Execution Environment

EINIT token Enclave Initialization Token

EK Endorsement Key

FIFO First-In First-Out

FPGA Field-Programmable Gate Array

GB Gigabyte

Gb Gigabit

GbE Gigabit Ethernet

GPU Graphics Processing Unit

GUI Graphical User Interface

HW Hardware

Hypapp Hypervisor Application
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I/O Input / Output

IPC Inter-Process Communication

ISVPRODID Unique Product ID

ISVSVN Security Version Number

KGA Key Generation Authority

KLOC Kilo Lines of Code

LE Launch Enclave

LAN Local Area Network

MAC Message Authentication Code

MA-KGS Multi-Authority Key Generation System

MD5 Message-Digest Algorithm 5

µTPM Micro Trusted Platform Module

NFV Network Function Virtualization

NIC Network Interface Card

NPS Network Protocol Stack

NSL Network Service Layer

OS Operating System

PAL Piece of Application Logic

PCI Peripheral Component Interconnect

PCR Platform Configuration Register

PD Protection Domain

PDP Policy Decision Point

PEP Policy Enforcement Point

PSL Power Service Layer

RAM Random Access Memory

RDF Resource Description Framework

ROM Read-Only Memory

RoT Root of Trust

RPC Remote Procedure Call

RSA Rivest-Shamir-Adleman

RTC Real-Time Clock

SATA Serial Advanced Technology Attachment

SC Scheduling context

SDK Software Development Kit

SDN Software-Defined Networking

SGX Software Guard eXtensions

SHA Secure Hash Algorithm

SIGSTRUCT Enclave Signature Structure

SLA Service Level Agreement

SoC System-on-a-Chip
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SRK Storage Root Key

SRTM Static Root of Trust Measurement

SW Software

TB Terabyte

TCB Trusted Computing Base

TCG Trusted Computing Group

TCP/IP Transmission Control Protocol / Internet Protocol

TEE Trusted Execution Environment

TPM Trusted Platform Module

TRTM TrustVisor Root of Trust Measurement

TVMM Trusted Virtual Machine Monitor

U-Cloud User Cloud

VM Virtual Machine

VMM Virtual Machine Monitor

VPN Virtual Private Network

VXLAN Virtual Extensible LAN

vTPM Virtualized Trusted Platform Module

XMHF eXtensible and Modular Hypervisor Framework
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Toward dynamic virtualized network services in telecom operator networks. Computer Networks,
2015.

[32] Melissa Chase. Multi-authority attribute based encryption. In Proceedings of the 4th Conference
on Theory of Cryptography, TCC’07, pages 515–534, Berlin, Heidelberg, 2007. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=1760749.1760787.

[33] Fei Chen et al. Enabling FPGAs in the cloud. In Proceedings of the 11th ACM Conference on
Computing Frontiers, CF ’14, pages 3:1–3:10, New York, NY, USA, 2014. ACM. doi:10.1145/

2597917.2597929.

[34] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, Report
2016/086, 2016. http://eprint.iacr.org/.

[35] S. Crago et al. Heterogeneous cloud computing. In 2011 IEEE International Conference on
Cluster Computing (CLUSTER), pages 378–385, Sept 2011. doi:10.1109/CLUSTER.2011.49.

[36] Jeffrey Dean et al. Large scale distributed deep networks. In Neural Information Processing
Systems, NIPS 2012.

SUPERCLOUD D2.2 Page 64 of 68

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://csrc.nist.gov/publications/drafts/ir7904/nistir_7904_second_draft.pdf
http://csrc.nist.gov/publications/drafts/ir7904/nistir_7904_second_draft.pdf
http://doi.acm.org/10.1145/2046660.2046677
http://doi.acm.org/10.1145/2046660.2046677
http://dx.doi.org/10.1145/2046660.2046677
http://www.crypto.com/papers/policymaker.pdf
http://www.crypto.com/papers/policymaker.pdf
http://dx.doi.org/10.1109/.40
http://dl.acm.org/citation.cfm?id=1760749.1760787
http://dx.doi.org/10.1145/2597917.2597929
http://dx.doi.org/10.1145/2597917.2597929
http://eprint.iacr.org/
http://dx.doi.org/10.1109/CLUSTER.2011.49


D2.2 - Secure Computation Infrastructure and Self-Management of VM Security

[37] Beniamino Di Martino, Dana Petcu, Roberto Cossu, Pedro Goncalves, Tams Mhr, and Miguel
Loichate. Building a mosaic of clouds. In Euro-Par 2010 Parallel Processing Workshops, volume
6586. 2011.

[38] Marcos Dias de Assunção, Rajkumar Buyya, and Srikumar Venugopal. Intergrid: A case for
internetworking islands of grids. Concurr. Comput. : Pract. Exper., 20(8):997–1024, June 2008.
URL: http://dx.doi.org/10.1002/cpe.v20:8, doi:10.1002/cpe.v20:8.

[39] B. Kauer et al. Recursive Virtual Machines for Advanced Security Mechanisms. IEEE DSNW’11.

[40] D. Williams et al. Plug into the Supercloud. IEEE Internet Computing, 17(2), 2013.

[41] A. Fishman, Mike Rapoport, Evgeny Budilovsky, and Izik Eidus. Hvx: Virtualizing the cloud.
In HotCloud’13.

[42] H. Giefers et al. Analyzing the energy-efficiency of dense linear algebra kernels by power-profiling
a hybrid cpu/fpga system. In 2014 IEEE 25th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pages 92–99, June 2014. doi:10.1109/ASAP.

2014.6868642.

[43] GlobalPlatform Inc. GlobalPlatform Device Specifications. http://www.globalplatform.org/

specificationsdevice.asp. Last accessed: 31st of May 2016.

[44] Mark Gondree and Zachary N.J. Peterson. Geolocation of data in the cloud. In Proceedings of the
Third ACM Conference on Data and Application Security and Privacy, CODASPY ’13, pages 25–
36, New York, NY, USA, 2013. ACM. URL: http://doi.acm.org/10.1145/2435349.2435353,
doi:10.1145/2435349.2435353.

[45] B. Huffaker, M. Fomenkov, and k. claffy. Geocompare: a comparison of public and commercial
geolocation databases - Technical Report . Technical report, Cooperative Association for Internet
Data Analysis (CAIDA), May 2011.

[46] Michael Hüttermann. Infrastructure as code. In DevOps for Developers, pages 135–156. 2012.

[47] IBM. Base Board #2 for Zurich Microserver System, Aug 2016. Rev. 1.0.

[48] IBM. FPGA Module for Zurich Microserver System, Aug 2016. Rev. 0.8.

[49] Intel Corporation. Intel software guard extensions programming reference.
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf, oct 2014. Last
accessed: 31st of May 2016.

[50] Intel Corporation. Intel software guard extensions (intel sgx).
https://software.intel.com/sites/default/files/332680-002.pdf, jun 2015. Last accessed: 31st
of May 2016.

[51] P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin, T. Kim, B. B. Kang, and D. Han.
OpenSGX: An Open Platform for SGX Research. In Network and Distributed System Security
Symposium (NDSS), 2016.

[52] L. Kapoor, S. Bawa, and A. Gupta. Hierarchical chord-based resource discovery in intercloud
environment. In Utility and Cloud Computing (UCC), 2013 IEEE/ACM 6th International Con-
ference on, pages 464–469, Dec 2013. doi:10.1109/UCC.2013.91.

[53] Ethan Katz-Bassett, John P. John, Arvind Krishnamurthy, David Wetherall, Thomas Ander-
son, and Yatin Chawathe. Towards ip geolocation using delay and topology measurements. In
Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC ’06, pages 71–
84, New York, NY, USA, 2006. ACM. URL: http://doi.acm.org/10.1145/1177080.1177090,
doi:10.1145/1177080.1177090.

SUPERCLOUD D2.2 Page 65 of 68

http://dx.doi.org/10.1002/cpe.v20:8
http://dx.doi.org/10.1002/cpe.v20:8
http://dx.doi.org/10.1109/ASAP.2014.6868642
http://dx.doi.org/10.1109/ASAP.2014.6868642
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://doi.acm.org/10.1145/2435349.2435353
http://dx.doi.org/10.1145/2435349.2435353
http://dx.doi.org/10.1109/UCC.2013.91
http://doi.acm.org/10.1145/1177080.1177090
http://dx.doi.org/10.1145/1177080.1177090


D2.2 - Secure Computation Infrastructure and Self-Management of VM Security

[54] H. Kazari and M. Lacoste. Towards Management of Chains of Trust for Multi-Clous with Intel
SGX. In Second ComPAS Workshop on Security in Clouds (SEC2), 2016.

[55] Taskin Kocak and Daniel Lacks. Design and analysis of a distributed grid resource discov-
ery protocol. Cluster Computing, 15(1):37–52, 2012. URL: http://dx.doi.org/10.1007/

s10586-010-0147-2, doi:10.1007/s10586-010-0147-2.

[56] R. Landa, J. T. Arajo, R. G. Clegg, E. Mykoniati, D. Griffin, and M. Rio. The large-scale
geography of internet round trip times. In IFIP Networking Conference, 2013, pages 1–9, May
2013.

[57] Allison Lewko and Brent Waters. Decentralizing Attribute-Based Encryption, pages 568–588.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. URL: http://dx.doi.org/10.1007/

978-3-642-20465-4_31, doi:10.1007/978-3-642-20465-4_31.

[58] Yanhuang Li, Nora Cuppens-Boulahia, Jean-Michel Crom, Frédéric Cuppens, Vincent Frey, and
Xiaoshu Ji. Similarity Measure for Security Policies in Service Provider Selection. In 11th Inter-
national Conference on Information Systems Security (ICISS), pages 227–242. Springer Interna-
tional Publishing, 2015.

[59] J.W. Lockwood et al. A low-latency library in FPGA hardware for high-frequency trading (HFT).
In 2012 IEEE 20th Annual Symposium on High-Performance Interconnects (HOTI), pages 9–16,
Aug 2012. doi:10.1109/HOTI.2012.15.

[60] R.P. Luijten and A. Doering. The DOME embedded 64 bit microserver demonstrator. In 2013
International Conference on IC Design Technology (ICICDT), pages 203–206, May 2013. doi:

10.1109/ICICDT.2013.6563337.

[61] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: An Execution Infrastructure
for TCB Minimization. In 3rd ACM European Conference on Computer Systems (Eurosys), 2008.

[62] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor, and
Adrian Perrig. TrustVisor: Efficient TCB Reduction and Attestation. In IEEE Symposium on
Security and Privacy, 2010.

[63] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki.
Flicker: An Execution Infrastructure For TCB Minimization. In 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems, New York, New York, USA, 2008. URL: http:

//dl.acm.org/citation.cfm?doid=1352592.1352625.

[64] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue, and U. Sava-
gaonkar. Innovative Instructions and Software Model for Isolated Execution. In HASP, 2013.

[65] Markus Miettinen, Ferdinand Brasser, and Ahmad-Reza Sadeghi. SUPERCLOUD, D1.1 -
SUPERCLOUD Architecture Specification, 2015. URL: https://supercloud-project.eu/

downloads/SC-D1.1-Architecture-Specification-PU-M10.pdf.

[66] B. Merrihan Monir, Mohammed H. AbdelAziz, AbdelAziz A. AbdelHamid, and El-Sayed M. EI-
Horbaty. Trust Management in Cloud Computing: A Survey. In IEEE Seventh International
Conference on Intelligent Computing and Information Systems (ICICIS’15), 2015.

[67] Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert. Distributed Attribute-Based Encryption,
pages 20–36. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. URL: http://dx.doi.org/
10.1007/978-3-642-00730-9_2, doi:10.1007/978-3-642-00730-9_2.

[68] Open Platform for NFV (OPNFV). Available: https://www.opnfv.org/.

SUPERCLOUD D2.2 Page 66 of 68

http://dx.doi.org/10.1007/s10586-010-0147-2
http://dx.doi.org/10.1007/s10586-010-0147-2
http://dx.doi.org/10.1007/s10586-010-0147-2
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1109/HOTI.2012.15
http://dx.doi.org/10.1109/ICICDT.2013.6563337
http://dx.doi.org/10.1109/ICICDT.2013.6563337
http://dl.acm.org/citation.cfm?doid=1352592.1352625
http://dl.acm.org/citation.cfm?doid=1352592.1352625
https://supercloud-project.eu/downloads/SC-D1.1-Architecture-Specification-PU-M10.pdf
https://supercloud-project.eu/downloads/SC-D1.1-Architecture-Specification-PU-M10.pdf
http://dx.doi.org/10.1007/978-3-642-00730-9_2
http://dx.doi.org/10.1007/978-3-642-00730-9_2
http://dx.doi.org/10.1007/978-3-642-00730-9_2


D2.2 - Secure Computation Infrastructure and Self-Management of VM Security

[69] Montida Pattaranantakul, Ruan He, Ahmed Meddahi, and Zonghua Zhang. SecMANO: Towards
Network Functions Virtualization (NFV)-based Security MANagement and Orchestration. In
15th IEEE International Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom), 2016.

[70] Zachary N. J. Peterson, Mark Gondree, and Robert Beverly. A position paper on data sovereignty:
The importance of geolocating data in the cloud. In Proceedings of the 3rd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’11, pages 9–9, Berkeley, CA, USA, 2011. USENIX
Association. URL: http://dl.acm.org/citation.cfm?id=2170444.2170453.

[71] D. Pletea, S. Sedghi, M. Veeningen, and M. Petkovic. Secure distributed key generation in
attribute based encryption systems. In 2015 10th International Conference for Internet Technol-
ogy and Secured Transactions (ICITST), pages 103–107, Dec 2015. doi:10.1109/ICITST.2015.
7412067.

[72] G. J. Popek and R. P. Goldberg. Formal Requirements for Virtualizable Third Generation Ar-
chitectures. Commun. ACM, 17(7), 1974.

[73] Andrew Putnam et al. A reconfigurable fabric for accelerating large-scale datacenter services. In
Proceeding of the 41st Annual International Symposium on Computer Architecuture, ISCA ’14,
pages 13–24, Piscataway, NJ, USA, 2014. IEEE Press.

[74] Kaveh Razavi, Ana Ion, Genc Tato, Kyuho Jeong, Renato Figueiredo, Guillaume Pierre, and
Thilo Kielmann. Kangaroo: A tenant-centric software-defined cloud infrastructure. In IEEE
International Conference on Cloud Engineering, 2015.

[75] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted Execution Envi-
ronment: What It Is, and What It Is Not. In IEEE Trustcom/BigDataSE/ISPA, 2015.

[76] Joo Soares, Miguel Dias, Jorge Carapinha, Bruno Parreira, and Susana Sargento. Cloud4nfv: A
platform for virtual network functions. In CLOUDNET’14, pages 288–293, 2014.
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