
D3.3
Proof-of-Concept Prototype for Data

Management

Project number: 643964

Project acronym: SUPERCLOUD

Project title:
User-centric management of security and dependability in clouds of
clouds

Project Start Date: 1st February, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Demonstrator

Reference Number: ICT-643964-D3.3/ 1.0

Work Package: WP3

Due Date: May 2017 - M28

Actual Submission Date: 31st May, 2017

Responsible Organisation: FFCUL

Editor: Alysson Bessani

Dissemination Level: PU

Revision: 1.0

Abstract:

This deliverable describes the data management software components
produced in the SUPERCLOUD project. Besides briefly presenting
the components, we describe how these components can be obtained
and used.

Keywords:
data management, fault tolerance, security, anonymization, encryp-
tion, replication, blockchain, cloud storage

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 643964.

This work was supported (in part) by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 15.0091.

D3.3- Proof-of-Concept Prototype for Data Management

Editor

Alysson Bessani(FFCUL)

Contributors (ordered according to beneficiary numbers)

Mario Münzer (TEC)
Sébastien Canard, Nicolas Desmoulins, Marie Paindavoine (ORANGE)
Marko Vukolic (IBM)
Alysson Bessani (FFCUL)
Daniel Pletea (PEN)

Disclaimer

The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.
This document has gone through the consortium’s internal review process and is still subject to the
review of the European Commission. Updates to the content may be made at a later stage.

SUPERCLOUD D3.3 Page I

D3.3- Proof-of-Concept Prototype for Data Management

Executive Summary

This report describes the software components produced in SUPERCLOUD WP3, which is responsible
for proposing techniques, methods, and tools for designing data management services in a cloud-of-
clouds environment. In this document we describe three types of components: a file storage service
built on top of existing public cloud storage services (e.g., Amazon S3, Windows Azure, Google
Storage), a framework for developing decentralized blockchain applications on top of state of the art
Byzantine consensus algorithms, and tools and libraries for integrating advanced privacy-preserving
features on cloud applications. These components comprise most of the research contributions of WP3,
many of them published in top conferences and journals.
The presented components can be used either together, complementing each other capabilities, or as
standalone software packages integrated to applications.
Besides presenting a brief description of the components, this report also describes how to obtain and
use the software, in many cases pointing to open-source repositories.

SUPERCLOUD D3.3 Page II

D3.3Proof-of-Concept Prototype for Data Management

Contents

Chapter 1 Introduction 1
Chapter 2 Janus Storage Service 2

2.1 Introduction . 2
2.2 Component Description . 2
2.3 Code/Component Access . 4
2.4 Documentation . 4

Chapter 3 Hyperledger Fabric 5
3.1 Introduction . 5
3.2 Component Description . 5
3.3 Code/Component Access . 6
3.4 Documentation . 6

Chapter 4 Anonymization 7
4.1 Introduction . 7
4.2 Component Description . 7

4.2.1 Software Development . 8
4.2.2 Procedure . 8

4.3 Code/Component Access . 11
4.4 Documentation . 11

Chapter 5 Trinocchio 12
5.1 Introduction . 12
5.2 Component Description . 12

5.2.1 Tools . 13
5.2.1.1 genkey . 13
5.2.1.2 lpqap . 13
5.2.1.3 combine . 13
5.2.1.4 eval . 13
5.2.1.5 ver . 13

5.2.2 Execution example . 14
5.3 Code/Component Access . 14
5.4 Documentation . 14

Chapter 6 Attribute-based Encryption 15
6.1 Introduction . 15
6.2 Component Description . 15
6.3 Code/Component Access . 16
6.4 Documentation . 16

Chapter 7 Conclusions 18
Bibliography 19

SUPERCLOUD D3.3 Page III

D3.3Proof-of-Concept Prototype for Data Management

List of Figures

2.1 Janus architecture. 2
2.2 Janus web interface. 3

4.1 Selection of unique- and quasi-identifier attributes . 8
4.2 Generation of lattice based on maximum generalization level [4,1,5] 9
4.3 Calculation of anonymity level and precision based on medical data records and its

maximum generalization level [4,1,5] . 9
4.4 Calculation of optimal anonymization node by means of OLA algorithm based on

anonymity level boundary of k = 500 . 10
4.5 Representation of the final outcome of the data anonymization tool by applying the

node [1,0,3] . 10

5.1 Trinocchio data flow . 12
5.2 Trinocchio experiment qap-2-2 script . 13

6.1 SUPERCLOUD-ABE code example . 17

7.1 SUPERCLOUD data management architecture. 18

SUPERCLOUD D3.3 Page IV

D3.3- Proof-of-Concept Prototype for Data Management

Chapter 1 Introduction

The WP3 of SUPERCLOUD is responsible for designing and implementing secure and dependable
data management services in a cloud-of-clouds environment. The overall architecture envisioned for
the project data management, and the main contributions in this context were described in a previous
deliverables [5, 6]. In a nutshell, this architectures considers many different instantiations of data
management services. This includes the use of existing public cloud service like Amazon S3 and
Rackspace Files for storing files and support cheap disaster recovery, the design of custom blockchain-
like multi-cloud services, and new tools and programming libraries for implementing advanced security
features in existing applications.
This short report presents the main software components developed in WP3, and is part of D3.3,
which is a “demonstrator” deliverable containing this components. More specifically, here we describe
the five main software systems that integrate most of the contributions developed in WP3, namely:

• Janus (Chapter 2) is a cloud-backed storage service that can be configured on the web, by
specifying workloads and requirements for data storage, and them using a proxy locally to
transfer this data to/from a set of cloud storage services selected by the system.

• Hyperledger Fabric (Chapter 3) is a permissioned blockchain framework that employs Byzantine-
resilient consensus on its core. Although Hyperledger Fabric is not 100% supported by SUPER-
CLOUD, we are contributing with several alternatives for implementing the agreement on the
ordering of blocks.

• WP3 also produced a K-anonymization tool (Chapter 4) that can be used to remove privacy-
sensible information from datasets that need to be stored in the cloud.

• Trinocchio (Chapter 5) is a secure multi-party computation middleware that can be used to sup-
port private computations in distributed applications spanning over mutually untrusted parties.

• SUPERCLOUD-ABE (Chapter 6) is a framework for implementing attribute-based encryption.
This allows the encryption of data records in such a way that only parties satisfying certain
attributes can decrypt such records.

Each of these chapters gives a short overview of these components (whole descriptions can be found
in D3.1 [5] and D3.2 [6]), together with information about how to obtain and use the component.
We finish this report with a short conclusion and some notes about how the components can be used
together (Chapter 7).

SUPERCLOUD D3.3 Page 1 of 20

D3.3- Proof-of-Concept Prototype for Data Management

Chapter 2 Janus Storage Service

2.1 Introduction

Janus is a cloud-of-clouds storage system that maintains data in a dependable and secure way using
multiple cloud providers as storage backends. The system employs several Byzantine-resilient replica-
tion and coding algorithms [8] to spread the stored data in multiple cloud storage services (Amazon
S3, Google Storage, Rackspace Files, etc.) in such a way that fault tolerance and confidentiality
is preserved even if a fraction of these providers is compromised. These providers are selected and
configured by the Janus platform, using the user-specified workloads and/or requirements.

2.2 Component Description

Janus allows the creation of virtual disks (volumes) backed by cloud storage services selected in
accordance with a set of specifications defined by the users. More specifically, a user could have as much
volumes as he wants, each one with a different configuration to attend different data requirements.
The architecture of the platform – presented in Figure 2.1 – is designed to improve storage efficiency
in terms of management effort, costs, and performance, while ensuring the compliance with user
requirements.

Janus
Volume
specs.

driver

… 68

❶

❷

❸

❹

Figure 2.1: Janus architecture.

Figure 2.1 also describes the required steps until a user can get a ready-to-use volumes, i.e., a virtual
disk with specific storage requirements. First, the user contacts the Janus server to provide his
requirements and constraints (1) (part of the interface for this is shown in Figure 2.2). Then, the
server finds the best possible storage profiles for that request and shows them to the user (2), which
picks one of them. After that, the driver with the chosen profile (which includes the cloud storage
accounts generated by Janus) is then downloaded and installed in the client’s local machine (3). Lastly,
all the data present in the Janus virtual disk is stored in the clouds according to the user-defined
requirements (4).

SUPERCLOUD D3.3 Page 2 of 20

D3.3- Proof-of-Concept Prototype for Data Management

The Janus platform is essentially composed of two components:

• janus server is responsible for finding the most adequate storage configurations given the volume
specifications. This server is also responsible for the creation and management of the cloud
accounts, and for maintaining the information about the available clouds updated (i.e., available
locations, latency, prices, etc.). Figure 2.2 shows two of the web forms users interact for defining
its requirements when creating a volume.

• virtual disk driver accommodates all the different storage volumes of the client and is responsible
for managing the system’s data-plane. The driver can be installed either as an NFS proxy in
the same site as the clients or directly on the client’s machines (as files systems or dropbox-like
applications).

Figure 2.2: Janus web interface.

This platform design allows the system to have some interesting capabilities in terms of privacy,
performance and fault tolerance. The fact the virtual disk driver is serverless, i.e., it interacts directly
with the clouds without contacting the Janus server. This allows the system data-plane to operate
directly with the cloud services without requiring any mediation or coordination/security anchor. This
enables the virtual disk, in one hand, to be not dependent of the availability of the Janus server, and

SUPERCLOUD D3.3 Page 3 of 20

D3.3- Proof-of-Concept Prototype for Data Management

in the other, to achieve better performance (as there is no server bottleneck). Moreover, since the
cloud accounts are created and managed by the Janus server, the clouds will never know the identity
of the client. Note that, although Janus has access to the data client stores in the clouds, all the data
is encrypted at the client-side with a key only he knows, ensuring that only the client has access to
the original (unencrypted) data.

2.3 Code/Component Access

In this section we describe how Janus can be installed as a NFS server inside a Docker container.
The server is implemented using Java, so it can be deployed in any operating system that supports
Docker. More specifically, we make available a deploy-ready Janus NFS Docker image, that can be
easily integrated with other SUPERCLOUD components, in particular with the network virtualization
element being developed in WP4. The commands below are for Windows deployment, but they are
almost the same for the other OSs. For instance, for Linux based OSs, you should use the .sh shell
scripts we provide instead the .bat ones. Moreover, you may need to run the commands with sudo
capabilities.
In the following we present a short overview of the steps required for running the system. Nevertheless,
before going into the steps, you must first request a Janus account by sending an email to anbessani@

ciencias.ulisboa.pt.

1. Login into the Janus platform at http://janus.lasige.di.fc.ul.pt;

2. Download the Janus NFS Docker image on the “Download” tab on the left side;

3. Uncompress janus-nfs.zip;

4. Open the terminal, and go to the uncompressed janus-nfs folder;

5. Load the Janus NFS image by running docker load -i janus-nfs.docker;

6. Run the container by running run.bat;1

7. Wait until the output of running status.bat be “RUNNNING”;

8. (On Windows) Install the “Services for NFS” package, which is part of “Windows Features”);

9. Mount the Janus NFS share by running mount-janus-nfs.bat;

10. Open “Explorer”, go to “This PC” and there you will find a “Janus” network location which is
the Janus NFS share.2

Note. All the steps and scripts provided were tested only in Ubuntu 16.04 and Windows 10 (Build
14393). We are working on the Docker container for MacOS 10.12.4. However, the Janus NFS server
(undockerized) works in all of these platforms.

2.4 Documentation

A more complete description of the system can be found in Chapter 10 of SUPERCLOUD D3.2 [6].
Further documentation about the software, as how to use a private keystore to encrypt the data or
how to add the volumes on the system, is distributed together with the zip file describe above.

1This container will have a default volume configured to spread the data across the globe and in different storage
providers.

2Note that it is impossible to write to the root folder of the Janus NFS folders, you can only work in volumes’ folders.

SUPERCLOUD D3.3 Page 4 of 20

anbessani@ciencias.ulisboa.pt
anbessani@ciencias.ulisboa.pt
http://janus.lasige.di.fc.ul.pt

D3.3- Proof-of-Concept Prototype for Data Management

Chapter 3 Hyperledger Fabric

3.1 Introduction

In general, blockchains are distributed ledgers (typically immutable and totally ordered) of transac-
tions pertaining to distributed applications. Distributed applications may be cryptocurrencies (such
as Bitcoin) but also general applications (i.e., state machines, sometimes called smart contracts). Per-
missioned blockchains [12, 13] are those blockchains in which the membership of the nodes that hold
copies of the ledger is restricted and managed in some way.
Permissioned blockchains work across multiple administrative domains and are a good match for
SUPERCLOUD project goals and its data management requirements. SUPERCLOUD project con-
tributes to the Hyperledger Fabric open-source blockchain project and benefits from it. Hyperledger
Fabric (HLF)1 is an open-source project within the Hyperledger umbrella project under the auspices
of the Linux Foundation. HLF is a modular general-purpose permissioned blockchain system which
can be also seen as a distributed operating system for permissioned blockchains.
SUPERCLOUD project contributes to HLF project by influencing its overall architecture, including
approach to handling non-determinism in the system [2]. It also serves as an integration vector
for State-machine replication related components of SUPERCLOUD as described in SUPERCLOUD
Deliverable D3.2. Notably these include:

• Component that treats non-determinism when replicating arbitrary applications when replicas
can fail in an arbitrary (i.e., Byzantine) way [2].

• Component that introduces a novel model for developing reliable distributed protocols called
XFT [4].

• Component that empirically evaluates latency-optimization for state-machine replication in WANs
and informing the design of novel state-machine replication protocols [10].

• Component that introduces a generic state-transfer tool for partitioned state-machine replication
that enables elasticity [7].

The integration of the last two components is done via integration of HLF and BFT-SMaRt library [1]
in which the two mentioned components were implemented.

3.2 Component Description

The architecture of the component is described in the main architecture document https://github.
com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.

md. This overall architecture has been developed in part in the SUPERCLOUD project.
Other lower level architecture design documents are available at https://wiki.hyperledger.org/

community/fabric-design-docs. With the exception of the SBFT consensus, which was developed
in the context of the SUPERCLOUD project, other components have been devloped outside SUPER-
CLOUD, by the community.

1https://github.com/hyperledger/fabric

SUPERCLOUD D3.3 Page 5 of 20

https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.md
https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.md
https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.md
https://wiki.hyperledger.org/community/fabric-design-docs
https://wiki.hyperledger.org/community/fabric-design-docs
https://github.com/hyperledger/fabric

D3.3- Proof-of-Concept Prototype for Data Management

3.3 Code/Component Access

The Hyperledger Fabric v1 code is accessible at https://github.com/hyperledger/fabric/. The
integration between Hyperledger Fabric v1 and BFT-SMaRt is still under work2. Meanwhile, the code
for BFT-SMaRt is available on http://bft-smart.github.io/library/.

3.4 Documentation

The documentation is available at https://hyperledger-fabric.readthedocs.io/en/latest/

2Recall that HLF is not only a SUPERCLOUD component, but a large and complex project with many stakehold-
ers. Therefore, adding a new component in its codebase is complex process which requires the development of several
performance and integration tests.

SUPERCLOUD D3.3 Page 6 of 20

https://github.com/hyperledger/fabric/
http://bft-smart.github.io/library/
https://hyperledger-fabric.readthedocs.io/en/latest/

D3.3- Proof-of-Concept Prototype for Data Management

Chapter 4 Anonymization

4.1 Introduction

Anonymization techniques open the possibility of releasing personal and sensitive data, while pre-
serving individual’s privacy. Therefore, data anonymization guarantees that revealed data cannot be
assigned to a natural person nor inferences to user’s identity can be made. There are several techniques
known, which are applicable for data anonymization, as described in the SUPERCLOUD deliverable
D3.2 [6]. The characterized data anonymization tool within this chapter is among others based on
k-anonymity, whereby the focus is put on the irreversibility of released data.
The aim of the data anonymization tool is to meet the goal of k-anonymity regarding irreversibility.
As a result of this, the disclosure of sensitive data (e.g. health data) is impossible and the opening of
data is enabled, whereby each data record is at least k – 1 from other records indistinguishable with
respect to the quasi-identifier. However, the tool is not simply performing calculations on medical
data and anonymizing them. Moreover, the tool aims to calculate the best solution for the given data
in terms of cost-efficiency. This is done by means of so-called cost metric calculation as well as the
Optimal Lattice Anonymization (OLA) algorithm, as described in D3.2 in detail.
Privacy-enabling mechanisms for untrusted cloud(s) represent an explorative subdomain of the SU-
PERCLOUD architecture. Therefore, data anonymization techniques, such as k-anonymity, were from
the beginning of the project under consideration in the overall architecture design (depicted in SU-
PERCLOUD’s deliverable D3.1 [5]). In the architecture proposal of WP3 of SUPERCLOUD, the
data anonymization tool is used to enable the release of medical-related sensitive data. In order to
guarantee a secure storage as well as a trusted health data exchange, the tool will be integrated within
the SUPERCLOUD data management architecture, and in particular with the Janus storage service.

4.2 Component Description

As already mentioned, the data anonymization tool is among others based on k-anonymity. Therefore,
generalization and suppression is used, as described in detail in the previous deliverable D3.2 [6]. While
suppression deletes uniquely identifying attributes, generalization is necessary in order to obtain k-
anonymity, respectively to obtain k-identical values by generalizing the pre-selected attributes (a
set of these attributes is called quasi-identifier in the following). One further element of the data
anonymization tool is the precision cost metric algorithm by Sweeney [11]. Besides the achievement
of the anonymity level (k) for given medical data, the precision of each applicable node has to be
calculated. As a result, the height and depth of the generalization hierarchy will be considered and
the ratio between applicable and total generalization steps determined. As mentioned previously, the
main goal of the data anonymization tool is to (besides the irreversible anonymization and opening of
data) determine the best solution in terms of cost-efficiency with most minimal information loss for the
given data. Hence, a potential solution is given by its k and precision. However, there could be several
potential solutions available with same characteristics based on anonymity level and precision only.
Therefore, the data anonymization tool includes one more important element in order to determine
the optimal solution for the provided medical data. The OLA algorithm [3] is the last element of the
anonymization tool and is responsible for determining efficiently the optimal solution, respectively the
optimal node in the so-called lattice, by means of divide-and-conquer technique. The detailed steps of

SUPERCLOUD D3.3 Page 7 of 20

D3.3- Proof-of-Concept Prototype for Data Management

the Optimal Lattice Anonymization as well as a pseudo code of all including functions of the algorithm
can be found in deliverable D3.2 [6].
Since the OLA algorithm has to traverse through all possible solutions, a list of nodes, also known as
lattice, is required as input. The lattice represents a stepped generalization of the given data in form
of a node list and contains the current generalization step, the k and the information loss, respectively
the cost metric precision. The lattice itself is built automatically within the anonymization tool based
on the quasi-identifier and its total possible generalization steps, respectively the total generalization
step of each attribute. The OLA algorithm traverses through the lattice according to the divide-and-
conquer principle and marks all non-applicable as well as already traversed nodes with tags for best
efficiency. The detailed procedure of the lattice traverse can be found in the previous SUPERCLOUD’s
deliverable D3.2 [6] as well.

4.2.1 Software Development

The software development of the data anonymization tool was completely done in Microsoft’s object-
oriented programming language C#. Therefore, a graphical user interface (GUI) was made as well
in order to support the user’s input and control. Since the software tool was built by means of
Microsoft’s Visual Studio default libraries (included in .NET 4.x framework), such as System.IO ;
System.Windows.Forms; System.Threading ; System.Data; etc, there is no further external or third-
party library necessary to run the program. The final software tool is resulting in an executable
program (*.exe), which is supported on computers with Windows operating system only. Further
details about the tool access can be found at the end of this chapter (section 4.3).

4.2.2 Procedure

The data anonymization tool is composed of three main components: k-anonymity calculation; cost
metric computation; OLA algorithm. Therefore, the procedure from the input of plain health data to
the output of irreversible anonymized data records is straightforward. The tool accepts as input plain
data records in comma-separated values (CSV) file format. Given a valid source file, the user then has
to select the unique-identifying attribute(s) as well as the quasi-identifier, as it is depicted in Figure
4.1 (selected quasi-identifier attributes highlighted in green).

Figure 4.1: Selection of unique- and quasi-identifier attributes

SUPERCLOUD D3.3 Page 8 of 20

D3.3- Proof-of-Concept Prototype for Data Management

By means of look-up tables (LUTs), the tool automatically checks the total generalization level of each
selected quasi-identifier attribute1. Based on the quasi-identifier and its total generalization level, the
node list (lattice) can be built, which is depicted in Figure 4.2.

Figure 4.2: Generation of lattice based on maximum generalization level [4,1,5]

Since the OLA algorithm requires for the calculation of the best/optimal solution the k (anonymity
level) and the precision (information loss), a further computation has to be done. The resulting output
can be found in Figure 4.3

Figure 4.3: Calculation of anonymity level and precision based on medical data records and its maxi-
mum generalization level [4,1,5]

Besides the plain health data and identifier selection, the user has to select the lower bound for the
anonymity level (k). In the end of the procedure, the OLA algorithm based on the valid inputs (source
file with data records; quasi-identifier; total generalization level; lattice; anonymity level boundary)
can be applied. At this stage, the OLA algorithm computes the best-fitting node of the lattice based
on the provided characteristics and the optimal solution will be displayed. However, the calculation is
performed on the lattice only, so no anonymization on the provided data will take place at this time.
Therefore, the user has now the possibility to apply the optimal solution on all loaded data records or
decline the result, as seen in Figure 4.4.

1If there is no pre-defined LUT for the selected quasi-identifier attribute, a default value will be assumed

SUPERCLOUD D3.3 Page 9 of 20

D3.3- Proof-of-Concept Prototype for Data Management

Figure 4.4: Calculation of optimal anonymization node by means of OLA algorithm based on
anonymity level boundary of k = 500

The final outcome of the data anonymization tool is illustrated in Figure 4.5. Within the stated
example, the OLA algorithm resulted for anonymization level boundary of k = 500, the node [1,0,3]
is resulting. Since the quasi-identifier is composed of Age, Gender and ZIP Code, consequential the
age is generalized once, the ZIP code three times and the gender not once at all. Therefore, the
information loss is about 28% and the anonymization level is at k = 2049. Thus, there exist (at least)
2049 (out of 100,000) data records, which are not distinguishable from each other (considering the
selected quasi-identifier attributes only).

Figure 4.5: Representation of the final outcome of the data anonymization tool by applying the node
[1,0,3]

The subsequent listing sums up the necessary steps of the data anonymization tool, as described in
this chapter.

1. Input of valid data records

2. Selection of unique- and quasi-identifier attributes

3. Generation of node list (lattice)

4. Calculation of anonymity level (k) and information loss (precision)

5. Set of lower anonymity level boundary

6. Calculation of optimal anonymization by means of OLA algorithm

SUPERCLOUD D3.3 Page 10 of 20

D3.3- Proof-of-Concept Prototype for Data Management

4.3 Code/Component Access

The data anonymization tool is accessible as an executable software at SUPERCLOUD’s project
website: https://supercloud-project.eu/project-results/toolbox. The tool provided within
the Toolbox of the project website includes the executable file (.exe) as well as sample data files (.csv)
serving as the (plain) data input, which are required by the tool.

4.4 Documentation

As already mentioned, a more detailed description of all included elements of the data anonymization
tool can be found in Chapter 13 of SUPERCLOUD’s deliverable D3.2 [6].

SUPERCLOUD D3.3 Page 11 of 20

https://supercloud-project.eu/project-results/toolbox

D3.3- Proof-of-Concept Prototype for Data Management

Chapter 5 Trinocchio

5.1 Introduction

Verifiable computation allows a client to outsource computations, while receiving a cryptographic
proof of correctness of the result. Recently, the Pinocchio system achieved faster verification than
computation in practice, but Pinocchio and other efficient verifiable computation systems require
the client to disclose the inputs to the workers performing the computations, which is undesirable
when preserving the privacy of the owners’ data is at stake. Trinocchio is a system that distributes
Pinocchio to three (or more) workers without the workers learning the inputs that they are computing
on. Trinocchio fully exploits the almost linear structure of Pinocchio proofs, letting each worker
perform the work for a single Pinocchio proof, while verification by the client remains the same. We
created a SUPERCLOUD prototype for this approach and integrated it within the SUPERCLOUD
architecture.

5.2 Component Description

In a connected and collaborating system like SUPERCLOUD, the Trinocchio workers are be deployed
in the compute resources of the cloud providers. The data that is sent to the workers are the shamir
shares of the input (e.g. [[s]], [[t]]) (step 1 in Figure 5.1). Next, the secure multi-party computation
component from each of the workers is performing the needed computations on the received input data
(step 2). Within the same VM of the cloud provider, the data is transferred as shamir shares to the
Pinocchio System for computing shares (e.g. [[y]], [π]) of the cryptographic proof of the computation
(step 3). The cryptographic proof is generated using the evaluation key received from the pinocchio
key generation component (step 0). Later the data owner, which outsourced the computation to the
workers, reconstructs the results of the requested computations using the shamir secret shares that he
received from the workers ([[y]], step 4). For verifying the outsourced computation, the data owner
uses the verification key received from the pinocchio key generation component (step 0).

Figure 5.1: Trinocchio data flow

SUPERCLOUD D3.3 Page 12 of 20

D3.3- Proof-of-Concept Prototype for Data Management

5.2.1 Tools

5.2.1.1 genkey

Usage: genkey <qapfile> Generate evaluation and verification keys from a given QAP (quadratic
arithmetic program); output both to standard output.

5.2.1.2 lpqap

Usage: lpqap <n> <m> <l> Generates a QAP to prove optimality of the solution to a n-by-m linear
program, using bitlength l.
Given a LP (A, b, c) and solution x, p, q to the LP and its dual, the proof consists of, in order: the
(n+ 1)-by-(m+ 1) tableau, consisting of A, b, and c [9]; the values of q, x, and p; a bit decomposition
of q; partial sums of cx−pb; partial sums of qb−Ax; bit decompositions of qb−Ax; bit decompositions
of x; partial sums of qc− pA; bit decompositions of qc− pA; and bit decompositions of p.

5.2.1.3 combine

Usage: combine Read proofs proof1, proof2, and proof3, and combine them into one overall proof.
This combines all blocks from the parts given in the respective proof files.

5.2.1.4 eval

Usage: eval <qap> <evalkey> <wires> Produces a ZK-QAP proof based on the given wire values
and randomness. <qap> is a QAP file, and <evalkey> an evaluation key produced by genkey. <wires>
contains the values for all wires of the QAP, followed by 19 randomness values: shares of δv,i for
i = 1, 2, 3; shares of δw,i for i = 1, 2, 3; shares of δy,i for i = 1, 2, 3; and shares of δv,4, δw,4 and δy,4; and
finally, seven shares of zero used to randomise the circuit wires. Prints the proof to standard output.

5.2.1.5 ver

Usage: ver <qap> <evalkey> <proof> Verify a QAP proof. Currently takes as input an evaluation
key because genkey does not separately output the verification key, but this could be easily changed.

Figure 5.2: Trinocchio experiment qap-2-2 script

SUPERCLOUD D3.3 Page 13 of 20

D3.3- Proof-of-Concept Prototype for Data Management

5.2.2 Execution example

To reproduce the experiments from [9], the following three experiments, accessible via the link men-
tioned in section 5.3.

sh timings-qap-2-2.sh

sh timings-qap-5-8.sh

sh timings-qap-5-10.sh

These scripts generate log files in the logs subdirectory from which timing information can be ex-
tracted. In the first phase of the first experiment, each of the workers evaluates a random polinomial of
degree 2 and with 2 different variables (as depicted in Figure 5.2). Next the key material is generated
with the genkey tool and the proofs are generated. Later the proofs are combined into one proof which
is verified.

5.3 Code/Component Access

The Trinocchio code is accessible at https://zenodo.org/record/60295#.WSUyl8akJaQ. The Trinoc-
chio software component was prototyped and tested on Linux, mingw-w64.For installation the following
steps should be followed:

• Installing TUeVIFF-local (http://security1.win.tue.nl/ meilof/files/verifiability/local.tar.gz)

• Installing ate-pairing following the instructions from https://github.com/herumi/ate-pairing.

• Setting the file locations in the first lines of the Makefile

• Compiling need to be updated and compiling is done using the command make.

• Testing the Trinocchio component using QAPs of various sizes contained in the Trinocchio dis-
tribution: qap-2-2, qap-5-8, qap-5-10.

5.4 Documentation

A more complete description of the system can be found in Chapter 2 of SUPERCLOUD D3.2 [6].
Further documentation about the software is distributed together with the zip file describe above.

SUPERCLOUD D3.3 Page 14 of 20

https://zenodo.org/record/60295#.WSUyl8akJaQ
https://github.com/herumi/ate-pairing

D3.3- Proof-of-Concept Prototype for Data Management

Chapter 6 Attribute-based Encryption

6.1 Introduction

SUPERCLOUD-ABE is a Scala cryptographic library which implements an Attribute Based Encryp-
tion (ABE) scheme, in which the encryption and decryption are based on some user’s attributes. More
precisely, in such a system, each end user possesses some characteristic attributes. When uploading a
new data, the depositary chooses an access control policy, based on the existing attributes, and related
to the data. Then, only users having the set of attributes verifying the defined access control policy
will be able to decrypt and read the stored data. Concerning the access structure, the library permits
a fine-grained access control with a disjunctive normal form (DNF). More precisely, an access policy
is of the form B1 ∨B2 ∨ · · · ∨Bm, where each Bk is a clause of the form bk,1 ∧ bk,2 ∧ · · · ∧ bk,mk

, where
bk,j corresponds to an attribute.

6.2 Component Description

We have defined, within the SUPERCLOUD-ABE library, a set of classes and methods that can be
used to manage a complete ABE system.
At first, there are three main classes that are available within the library.

• ABEManager: entity which creates the system and manages attributes and users. It can add or
remove an attribute to a member and send him an update private key. For that purpose, it
manages a master secret key. Note that the ABE Manager has the knowledge of the member
private key.

• ABEUser: user with a set of attributes, who can encrypt and decrypt according to its attributes.

• ABETool: some utility methods related to the ABEUser. This class is mainly useful for tests.

Most classes have toBinary() and fromBinary() methods to serialize data to/from array of bytes.
We then detail the other classes of the library.

• ABEAttribute: it represents an attribute managed by the ABEManager. In this library, each
attribute label is associated to a random curve point (cf. Chapter 12 of SUPERCLOUD D3.2 [6]).
As this is just a library, the attribute configuration should then be done in accordance with the
use case for which SUPERCLOUD-ABE will be used.

• ABEAttributesUniverse: it represents the set of all the attributes known within the system.

• ABECipher: ABE cipher which will be sent in the cloud.

• ABEManagerElements: this is the result of ABEManager key and element generation. It contains
the ABEManagerPrivateKey, which must be known ONLY by the ABEManager, and ABEPublicElements

which contains public elements.

• ABEManagerPrivateElements: it corresponds to the ABEManager private key (a.k.a. as the
master secret key).

SUPERCLOUD D3.3 Page 15 of 20

D3.3- Proof-of-Concept Prototype for Data Management

• ABEPublicElements: it contains all the public elements needed by anyone using the system

• ABEUserPrivateKey: this is the ABE user’s private key, which can only be generated by
ABEManager.

• ABEUserPrivateKeyManagerPart: this corresponds to some elements of ABEUserPrivateKey

that should be stored by the ABEManager. These elements can then be used, later on, in order
to update, if relevant, the user’s private key. This is relevant if the set of attributes for the
corresponding user needs to be changed.

• AesAndABEencryptedKey: this is the result of data encryption. It contains a 128 bits symmetric
key (typically for AES symmetric cipher) which is used to encrypt the data and the corresponding
ABECipher to be shared.

The library also contains a set of methods that can be used after its installation. At first, the package
params contains classes representing keys, ciphers, etc. related to the ABE scheme.

6.3 Code/Component Access

Before going into the installation process, you should request the .jar library by sending an email to
sebastien.canard@orange.com or nicolas.desmoulins@orange.com. Before installing the library,
one needs to install a Java virtual machine 7 or earlier. The library and all its dependencies are
provided in the lib folder. Some Java source code is provided, containing JUnit tests and a main
method (JUnit jar is provided at the root folder and is only necessary for tests).
To compile the test class, one has to execute:

• javac -cp ./*:lib/* com/orangelabs/crypto/ABETestJ.java

Then, to run the test class, one has to execute:

• java -cp ./*:lib/*: com.orangelabs.crypto.ABETestJ

The sources are also provided, and the compilation can be done with SBT (http://www.scala-sbt.
org/). The compilation is done by exeuting

• sbt compile

Then, the generation of the jar file (stored in target/scala-2.11) is done by executing

• sbt package

Finally, the generation of the zip archive containing library and all dependencies (stored in target/u-
niversal) necessitates to execute:

• sbt universal:packageBin

6.4 Documentation

We provide in Figure 6.1 some code sample that shows how the library can be used in practice.
A more complete description of the system can be found in Chapter 12 of SUPERCLOUD D3.2 [6].
It also provides the way SUPERCLOUD-ABE can be integrated in the SUPERCLOUD framework.
Further documentation is also distributed with the library.

SUPERCLOUD D3.3 Page 16 of 20

sebastien.canard@orange.com
nicolas.desmoulins@orange.com
http://www.scala-sbt.org/
http://www.scala-sbt.org/

D3.3- Proof-of-Concept Prototype for Data Management

import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.orangelabs.crypto.abe.∗;
import com.orangelabs.crypto.abe.params.∗;
import com.orangelabs.math.PairingParams;
import com.orangelabs.math.pairing.PairingParametersFp12_BNAte;
import com.orangelabs.tools.ToolsByte;
import com.orangelabs.tools.CipherManager;
import scala.Option;
import scala.Tuple2;
// ...
// Fixed pairing parameters used for crypto (use a BN−256 curve −> ˜128 bit security)
PairingParametersFp12_BNAte pairParams = PairingParams.getParams_BN1_pairing();
SecureRandom rand = new SecureRandom();
// Define attribute universe
static String[] attU = new String[] { ”team1”, ”team2”, ”team3”, ”project1”, ”project2”, ”boss” };
ABEManagerElements elems = ABEManager.generateParameters(pairParams, ”SHA−256”, rand);
ABEManagerPrivateElements abePriv = elems.privElem();
ABEPublicElements pubElem0 = elems.pubElem();
// also test binary serialization of ABEPublicElements
ABEPublicElements pubElem = ABEPublicElements.fromBinaryJ(pairParams, pubElem0.toBinary());
// create instance of ABEManager
ABEManager abeManager = new ABEManager(abePriv, pubElem);
// add attributes
abeManager.addAttributesToUniverse(attU);
// The ABEUserPrivate will have to be sent to the user (in a confidential way!).
// The manager will have to keep the ABEUserPrivateKey and the ABEUserPrivateKeyManagerPart, which
// are needed to add (or remove) new attributes to a user.
Tuple2<ABEUserPrivateKeyManagerPart, ABEUserPrivateKey> user1Keys = abeManager.generateUserSecretKey(
”user1”, new String[] { ”boss”, ”project1” }, rand);
ABEUserPrivateKeyManagerPart manUser1 = user1Keys._1();
ABEUserPrivateKey user1PrivKey0 = user1Keys._2();
// also test private key binary serialization
ABEUserPrivateKey user1PrivKey = ABEUserPrivateKey.fromBinaryJ(pairParams, samPrivKey0.toBinary());
Tuple2<ABEUserPrivateKeyManagerPart, ABEUserPrivateKey> user2Keys = abeManager.generateUserSecretKey(
”user2”, new String[] { ”team1”, ”team2”, ”project1” }, rand);
ABEUserPrivateKeyManagerPart manUser2 = user2Keys._1();
ABEUserPrivateKey user2PrivKey = user2Keys._2();
// create ABEUser instances (normally on each client side)
ABEUser user1 = new ABEUser(user1PrivKey, pubElem);
ABEUser user2 = new ABEUser(user2PrivKey, pubElem);
// encrypt some data
// define access policy: boss or (team1 & team2)
String[][] accessPolicy = new String[][] { new String[] { ”boss” }, new String[] { ”team1”, ”team2” }};
AesAndABEencryptedKey resEnc = user1.genEncryptionKeys(accessPolicy, rand);
byte[] aesKey1 = resEnc.aesKey(); // aes key in the form of a 16−bytes array.
ABECipher abeCipher1 = resEnc.abeCipher();
// AES key must be used to encrypt the data
// ECB mode for AES should not be used. Other modes like CBC are better. But in this case
// the initialization vector must be a fixed value in the system.
// It is not a problem here because each file or set of data to encrypt will use a random AES key.
//
// The class CipherManager can help for AES encryption but is not mandatory.
byte[] data = ... // contain the data to encrypt
byte iv = new byte[16]; // 16 bytes ’0’ array can be used for initialization vector.
byte[] aesEncData = CipherManager.encrypt(data, aesKey1,iv);
// abeCipher1 is the corresponding ABECipher which can be shared on cloud with the data encrypted with AES
// also test serialization of cipher
ABECipher abeCipher1Enc = ABECipher.fromBinaryJ(pairParams, abeCipher1.toBinary());
Option<byte[]> aesKey1Dec = user2.decryptAESKey(abeCipher1Enc);
if (aesKey1Dec.isDefined()) {
byte[] key = aesKey1Dec.get();
// key is normally identical to aesKey1 and can be used to decrypt the data encrypted with AES.
byte[] decData = CipherManager.decrypt(data, key, iv); // using CipherManager class
} else {
// if we are here it means the user had not the appropriate attribute(s).
}

Figure 6.1: SUPERCLOUD-ABE code example

SUPERCLOUD D3.3 Page 17 of 20

D3.3- Proof-of-Concept Prototype for Data Management

Chapter 7 Conclusions

This report described the main software components produced in WP3. These components include
most of the research contributions produced in this work package. These components instantiate sev-
eral elements described in SUPERCLOUD data management architecture (see Figure 7.1), namely:
Janus can be used either through data accessors (DA) or proxies, exploiting cloud storage services;
Hyperledger, Trinochio, and SUPERCLOUD-AB must be instantiated as servers on top of SUPER-
CLOUD VMs, tightly integrated on distributed cloud applications; finally the K-anonymization tool
can be used in the client side to remove privacy-sensitive data from datasets to be stored in non-trusted
clouds.

Figure 7.1: SUPERCLOUD data management architecture.

All these components are implemented on the operating system level or above, therefore they can be
easily integrated with the VMs and containers being developed in the SUPERCLOUD project (WP2
and WP4). This integration will be demonstrated in the use cases under development in the project
(WP5).

SUPERCLOUD D3.3 Page 18 of 20

D3.3- Proof-of-Concept Prototype for Data Management

Bibliography

[1] Alysson Bessani, Joao Sousa, and Eduardo Alchieri. State machine replication for the masses
with BFT-SMaRt. In Proc. of the IEEE/IFIP International Conference on Dependable Systems
and Networks – DSN 2014, June 2014.

[2] Christian Cachin, Simon Schubert, and Marko Vukolić. Non-determinism in byzantine fault-
tolerant replication. In 20th International Conference on Principles of Distributed Systems,
OPODIS 2016, December 13-16, 2016, Madrid, Spain, pages 24:1–24:16, 2016.

[3] K. El Emam, F. K. Dankar, R. Issa, E. Jonker, D. Amyot, E. Cogo, J. P. Corriveau, M. Walker,
S. Chowdhury, R. Vaillancourt, T. Roffey, and J. Bottomley. A globally optimal k-anonymity
method for the de-identification of health data. Journal of the American Medical Informatics
Association, 16(5):670–682, 2009.

[4] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolić. XFT: practical
fault tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages 485–500, 2016.

[5] Mario Münzer, Sébastian Canard, Marie Paindavoine, Alysson Bessani, Caroline Fontaine,
Krysztof Oborzyńsky, Meilof Veeningen, and Paulo Sousa. D3.1 - Architecture for Data Manage-
ment. SUPERCLOUD, 2015.

[6] Mario Münzer, Sébastian Canard, Marie Paindavoine, Andre Nogueira, Antonio Casimiro, João
Sousa, Joel Alcântara, Tiago Oliveira, Ricardo Mendes, Alysson Bessani, Christian Cachin, Si-
mon Schubert, Caroline Fontaine, Daniel Pletea, Meilof Veeningen, and Jialin Huang. D3.2 -
Specification of Security Enablers for Data Management. SUPERCLOUD, 2016.

[7] Andre Nogueira, Antonio Casimiro, and Alysson Bessani. Elastic state machine replication. IEEE
Transactions on Parallel and Distributed Systems, March 2017. Accepted for publication.

[8] Tiago Oliveira, Ricardo Mendes, and Alysson Bessani. Exploring key-value stores in multi-writer
byzantine-resilient register emulations. In Proc. of the 20th International Conference On Princi-
ples Of DIstributed Systems – OPODIS?16, December 2016.

[9] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-preserving
outsourcing by distributed verifiable computation. In Applied Cryptography and Network Security
- 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings,
pages 346–366, 2016.

[10] Joao Sousa and Alysson Bessani. Separating the WHEAT from the chaff: An empirical design
for geo-replicated state machines. In Proc. of the 34th International Symposium on Reliable
Distributed Systems – SRDS’15, September 2015.

[11] Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst., 10(5):557–570, October 2002.

SUPERCLOUD D3.3 Page 19 of 20

D3.3- Proof-of-Concept Prototype for Data Management

[12] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication.
In Open Problems in Network Security - IFIP WG 11.4 International Workshop, iNetSec 2015,
Zurich, Switzerland, October 29, 2015, Revised Selected Papers, pages 112–125, 2015.

[13] Marko Vukolić. Rethinking permissioned blockchains. In Proceedings of the ACM Workshop on
Blockchain, Cryptocurrencies and Contracts, BCC ’17, pages 3–7, 2017.

SUPERCLOUD D3.3 Page 20 of 20

	Introduction
	Janus Storage Service
	Introduction
	Component Description
	Code/Component Access
	Documentation

	Hyperledger Fabric
	Introduction
	Component Description
	Code/Component Access
	Documentation

	Anonymization
	Introduction
	Component Description
	Software Development
	Procedure

	Code/Component Access
	Documentation

	Trinocchio
	Introduction
	Component Description
	Tools
	genkey
	lpqap
	combine
	eval
	ver

	Execution example

	Code/Component Access
	Documentation

	Attribute-based Encryption
	Introduction
	Component Description
	Code/Component Access
	Documentation

	Conclusions
	Bibliography

