
D1.2
SUPERCLOUD Self-Management of Security

Specification

Project number: 643964

Project acronym: SUPERCLOUD

Project title:
User-centric management of security and dependability in clouds of
clouds

Project Start Date: 1st February, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Report

Reference Number: ICT-643964-D1.2/ 1.0

Work Package: WP1

Due Date: Oct 2015 - M09

Actual Submission Date: 5th November, 2015

Responsible Organisation: IMT

Editors: Reda Yaich, Sabir Idrees, Nora Cuppens, Frédéric Cuppens

Dissemination Level: PU

Revision: 1.0

Abstract:

This deliverable describes the specification of Security Service Level
Agreement and Security Self-Management that will form the foun-
dations of security resource requests for customers, specifying their
security policy requests and negotiation capabilities as well as the
requested audit levels that provide information and feedback about
actual enforcement across service providers.

Keywords:
Multi-cloud, Self-Management, Security Service Level Agreement,
Authorization, Trust Management

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 643964.

This work was supported (in part) by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 15.0091.

D1.2- SUPERCLOUD Self-Management of Security Specification

Editors

Reda Yaich, Sabir Idrees, Nora Cuppens, Frédéric Cuppens (IMT)

Contributors (ordered according to beneficiary numbers)

Marc Lacoste, Nizar Kheir, Ruan He (ORANGE)
Khalifa Toumi (IMT)
Krzysztof Oborzyński (PH HC)
Meilof Veeningen (PEN)
Paulo Sousa (MAXDATA)

Disclaimer

The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.

This document has gone through the consortiums internal review process and is still subject to the
review of the European Commission. Updates to the content may be made at a later stage.

SUPERCLOUD D1.2 Page I

D1.2- SUPERCLOUD Self-Management of Security Specification

Executive Summary

In this document, we present a preliminary architecture of SUPERCLOUD security self-management.
We first identify and describe the design requirements of the user-centric self-management of multi-
clouds security. Then we review state-of-the-art looking for candidate solutions to address these
requirements. In this survey, we introduced basic concepts and existing approaches related to Security
Service Level Agreements, Authorization/Access Control and Trust Management. In the second part
of the document, we present a preliminary architecture of security self-management. We describe the
main building blocks we identified to address SUPERCLOUD use-cases requirements. We conclude
with a summary and a presentation of ongoing and future steps.

SUPERCLOUD D1.2 Page II

D1.2 SUPERCLOUD Self-Management of Security Specification

Contents

Chapter 1 Introduction 1
1.1 Motivation and Challenges . 1

1.1.1 User-Centric and Self-Managemed cloud Security 2
1.1.2 Organization of the document . 3

Chapter 2 Requirements Analysis 4
2.1 Introduction . 4
2.2 Healthcare requirements . 4

2.2.1 Healthcare Laboratory Information System . 4
2.2.2 Medical Imaging Platform . 5

2.3 Generic Requirements . 8
2.3.1 DR1: Availability . 8
2.3.2 DR2: Integrity . 8
2.3.3 DR3: User-Centric Security Control . 8
2.3.4 DR4: Fine-grained Access Control . 8
2.3.5 DR5: Horizontal and Vertical Privacy Preservation 8
2.3.6 DR6: Interoperability and Adaptiveness . 8
2.3.7 DR7: Isolation . 9
2.3.8 DR8: Location Awareness and Control . 9
2.3.9 DR9: Monitoring, auditing and investigation 9
2.3.10 DR10: Assurance, Guarantees and Remediation 9
2.3.11 DR11: Autonomic Security . 9
2.3.12 DR12: End-to-end Security . 10

2.4 Summary of Security Requirements . 10
Chapter 3 Background 12

3.1 Introduction to Service Level Agreement . 12
3.1.1 Foundations of SLAs . 12
3.1.2 Short Survey on SLA Languages, Standards and Frameworks 15
3.1.3 WS-Re2Policy . 16
3.1.4 Security in Service Level Agreement . 16

3.2 Introduction to Authorization and Access Control . 19
3.2.1 Mandatory Access Control . 19
3.2.2 Discretionary Access Control . 19
3.2.3 Role-Based Access Control . 19
3.2.4 Attribute Based Access Control (ABAC) . 21
3.2.5 Semantic-Web based Access Control . 22
3.2.6 Organization-Based Access Control . 24
3.2.7 Existing standards . 26
3.2.8 Single Sign-On (SSO) . 28
3.2.9 Access control In cloud computing . 29

3.3 An Introduction to Trust Management . 31
3.3.1 What is Trust? . 31
3.3.2 What is Trust Management? . 32

SUPERCLOUD D1.2 Page III

D1.2- SUPERCLOUD Self-Management of Security Specification

3.3.3 Foundations of Trust Management . 32
3.3.4 Automated Trust Negotiation . 35

3.4 Survey on Trust Management Systems and Models . 36
3.4.1 Authorisation-Based TMSs . 37
3.4.2 Automated Trust Negotiation Systems . 41
3.4.3 A Preliminary review of Trust Models in Cloud Computing 46
3.4.4 ”Hardware” Trust Management . 47
3.4.5 Secure Boot . 48
3.4.6 Trusted Execution Environment . 49

Chapter 4 Preliminary Self-Management Architecture 50
4.1 Overview of Self-Management Architecture . 50
4.2 Self-Management Building Blocks . 51

4.2.1 Security Service Level Agreement Management 52
4.2.2 Preliminary Security SLA architecture . 53
4.2.3 Authorization management . 56
4.2.4 Compute Security Manager . 59
4.2.5 Storage Security Manager . 61
4.2.6 Network Security Manager . 61
4.2.7 Trust Management . 62
4.2.8 Self-Management Agents . 63
4.2.9 Security Orchestration . 65
4.2.10 Orchestrator . 66
4.2.11 Planner . 66
4.2.12 Storage Manager . 66

Chapter 5 Summary and Conclusion 67
Chapter 6 List of Abbreviations 69
Bibliography 70

SUPERCLOUD D1.2 Page IV

D1.2 SUPERCLOUD Self-Management of Security Specification

List of Figures

3.1 Security SLA metrics . 17
3.2 RBAC model . 20
3.3 CIM Authorization model [26]) . 23
3.4 OrBAC model . 25
3.5 Illustration of the functioning of a trust management system 34
3.6 Functioning modes of a trust management system . 35
3.7 Architecture of the TrustBuilder TMS . 42

4.1 Self-Management of Security . 51
4.2 SSLA Management . 52
4.3 Preliminary SSLA Architecture . 54
4.4 Architecture of the OrBAC framework . 57
4.5 Flow diagram for application-level authorization . 59
4.6 VESPA Architecture . 60
4.7 Specification of the Trust Manager . 62
4.8 Self-Management Agents . 64

SUPERCLOUD D1.2 Page V

D1.2- SUPERCLOUD Self-Management of Security Specification

Introduction

Enabled by performant virtualisation techniques and broadband internet connectivity, cloud comput-
ing has evolved from technologies like grid computing and Web Services to demonstrate in few years
a clear advantage with respect to traditional on-premise solutions in term of scalability, elasticity and
cost reduction [10, 56]. Nevertheless, moving to the cloud, and especially to multi-clouds, brings to
discussion serious security and privacy risks with a high potential harm to customers’ and users’ data
and services [132].

In this deliverable we focus on security, trust and privacy issues to provide a preliminary specification
of Security Service Level Agreement and Security Self-Management that will form the foundations
of security resource requests for customers, specifying their security policy requests and negotiation
capabilities as well as the requested audit levels that provide information and feedback about actual
enforcement across service providers.

Motivation and Challenges

Along with the benefits mentioned above, migration to the multi-clouds poses serious risks that nat-
urally makes customers and users anxious about the integrity, confidentiality and availability of their
data and services. The security risks raised by multi-clouds are different than those faced in traditional
cloud solutions. Some of these issues are new (e.g., remote processing of sensitive data over multiple
providers), while others are just exacerbated by the multi-cloud approach [85]. Of course, the degree
of risk depends on many factors which makes migration to multi-clouds a very complex decision. For
example, deployment models, providers trustworthiness and data sensitivity are three different factors
that brings to discussion different security issues. In SUPERCLOUD, multiple factors are combined,
making the design of secure and trustworthy environment a highly challenging objective. Both se-
curity, privacy and trust issues are raised in more complex configurations with respect to traditional
systems [85, 132].

With respect to Security, multi-cloud configuration offers several challenges such as loss of control
for the customer/user, lack of interoperability between security policies and mechanisms offered
by each provider, and complexity of administration and management of security over multiple
security domains. In addition, threats such as denial of service attacks, side channel attacks, man-
in-the-middle attacks and inside-job attacks are generally exacerbated by cloud but not specifically
caused by [45, 44].

When it comes to Privacy issues in multi-cloud systems, the context becomes very important as the
risks differ according to the type of scenario. With respect to that, multi-clouds pose significant chal-
lenges to institutions that handle personal information. For instance, in the SUPERCLOUD project
use-cases, all scenarios raise significant challenges that relate to compliance with regulations and
legal standards (e.g., HIPAA) while collecting, transferring, processing, sharing and storing per-
sonal medical records. More generally, outsourcing of data and services is systematically associated
with decrease of data control. Any outsourced data or services are exposed risks due to loss, abuse
and manipulation resulting in violation of its integrity, confidentiality and/or availability [87].

SUPERCLOUD D1.2 Page 1 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Finally, Trust is also an important concern in multi-clouds. The infrastructure offered by an un-
trusted provider can be considered as an hostile environment wherein security objectives cannot be
guaranteed. Thus, despite deploying appropriate security mechanisms, cloud provider must adopt an
adequate trust management model to gain customers confidence. Trust is also required to manage
relations inside the cloud infrastructures, cross-layers within the same domain of trust, and cross-
providers to ensure the continuity of service in multi-cloud configurations.

User-Centric and Self-Managemed cloud Security

In the light of the challenges above, a user-centric control and management of security appears to be
a necessity more than a desire for multi-cloud customers. However, when the dynamic and complex
aspect of security management is coupled with the scalability and heterogeneity of muti-cloud envi-
ronments, it becomes very challenging for a human to manage them. A user-centric management of
security in multi-cloud systems is challenging at least for the three following reasons:

• Heterogeneity: security mechanisms deployed in cloud infrastructures differ from a provider
to another. Furthermore, the security solutions used within the same infrastructure are often
heterogeneous in terms of services (e.g., identity management, intrusion detection) and require
high agility to be coherently configured. As a consequence, the control of clouds that span
multiple providers is very challenging, and almost an impossible task for a human;

• Dynamicity: cloud systems evolve in dynamic environments where resources are unpredictably
created and updated, and users can join and leave the cloud at will. As a consequence, security
services need to be adapted constantly to fit environmental changes and continue achieving their
objectives;

• Scalability: Multi-clouds are distributed and decentralized systems that span several cloud
infrastructures administrated by distinct providers. The delivery of expect services implies a
seamless orchestration of several components that belong to distinct security domains. The
coordination and orchestration of such systems is a complex and error-prone task.

To that aim, the SUPERCLOUD project advocates the joint adoption of User-Centric and Self-
Managed security cloud infrastructure. While User-centricity aims at bringing back the control to of
security configuration to the user, Self-Management facilitate and automates this objectif by adapting
design principal to security. Autonomic computing is a good candidate for addressing the above
challenges as it enables software systems to manage themselves without or with a limited human
intervention. We assume that this can be achieved in SUPERCLOUD through four objectives that we
list hereafter.

• Self-Service Security aims to bring back to the user the control of the security of his resources.
This control shall be achieved in a fine-grained and flexible way.

• Self-Managed Security: to easily and in an automated manner instantiate security requirements
into actionable security mechanisms to detect and react to threats. The objective is also to build
a security management system that is able to manage itself with a minimal intervention of a
human via full automation of the security management process.

• End-to-End Security to overcome heterogeneity of security mechanisms and provide an uniform
control management to the customer.

• Resilience: to enhance the robustness of the multi-cloud and avoid relying on a single provider.

SUPERCLOUD D1.2 Page 2 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Organization of the document

The rest of this document is organized in four chapters. In Chapter 2, we identify and describe the
design requirements of the user-centric self-management of cloud security. Then in Chapter 3 we intro-
duce basic concepts and existing approaches that relate to Service Level Agreement and Security Ser-
vice Level Agreements (cf. Section 3.1), Authorization and Access Control (cf. Section 3.2) and Trust
Management (cf. Section 3.3). In Chapter 4 we present a preliminary architecture of self-management
of security. We describe the main building blocks we identified to address the requirements stressed
in Chapter 2. Finally, in Chapter 5, we conclude with a summary and a presentation of ongoing and
future steps.

SUPERCLOUD D1.2 Page 3 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Requirements Analysis

Introduction

Multi-clouds, as well as cloud federations, are demonstrating a clear advantage with respect to tra-
ditional mono-provider cloud solutions. However, this new cloud model further exacerbates security,
trust and privacy issues. In the meanwhile, multi-clouds raise new threats and issue that need to be
identified and addressed to enable its wide adoption.
In this section, we present and analyse security requirements that should adhered to during the spec-
ification of Self-Management architecture. A security requirement is a constraint on the functioning
of the system in order to achieve security goals. The decision to put all the attention of this section
on security, trust and privacy requirements stems from the criticality of theses aspects in the SUPER-
CLOUD project.

We first present requirements towards security properties of SUPERCLOUD based on use cases pro-
vided by Philips Healthcare and MAXDATA. Then we generalize these to cover others use-cases
such as Network function virtualization (NFV) scenario or any other scenarios wherein SUPERCLOUD
could be used.

Healthcare requirements

In this Section we describe the security objectives and requirements of two SUPERCLOUD partners,
namely:

• Philips Healthcare and Philips Research and their Medical Imaging Platform

• MAXDATA that provide the Healthcare Laboratory Information System CLINIdATA R©LIS

Healthcare Laboratory Information System

The healthcare laboratory information system, henceforth mentioned as CLINIdATA R©LIS, is a cross-
platform web application where server components may run on any common operating system (e.g.,
Linux, Mac OS X, Solaris, Windows) and relational database (e.g., MySQL, PostgreSQL, Oracle,
SQL Server). This system needs to integrate with dozens of other clinical and non-clinical information
systems (e.g., ICU, patient identification, billing, regional health portals) and includes a set of real-time
interfaces with physical electronic equipments, namely automated analysers.
CLINIdATA R©LIS computes and stores medical data along with other personal data, so the SUPER-
CLOUD infrastructure should comply with Directive 95/46/EC and the soon to come General Data
Protection Regulation (GDPR). This implies previously stated requirements regarding integrity, con-
fidentiality and privacy, and the following requirements:

• Location Self-Management Users should be able to self-manage the set of possible physical
locations, at country level, where users’ data may be stored and computed.

CLINIdATA R©LIS is used by different types of healthcare organizations, ranging from small labora-
tories with a few dozens of professionals and hundreds of transactions per day, to very large hospital

SUPERCLOUD D1.2 Page 4 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

clusters with thousands of professionals and tens of millions of transactions per day. Hence, these
organizations should be able to control how their resources are protected using SLAs including for
instance agreed levels of availability, redundancy, backup, disaster recovery, etc. This implies the
following requirement:

• Architecture and Data Self-Management The user should be able to self-monitor actively
its allocated resources, while enabling a high level of customizability of the computation / storage
/ network architecture and its services, including agreed levels of availability, redundancy, backup
and disaster recovery.

As mentioned before, CLINIdATA R©LIS includes a set of real-time interfaces with physical electronic
equipments, namely automated analysers. These interfaces are used mostly to send commands to
analysers and to receive exam results. Both communication flows have real-time requirements, involve
computation and need to get data from storage. This implies the following requirement:

• Self-Management of Real-Time Properties The user should be able to self-manage the
real-time guarantees of the computation / storage / network planes, including the definition of
predictable and bounded computation / communication / storage access times.

In order to ensure the correct operation of CLINIdATA R©LIS, the SUPERCLOUD self-management
infrastructure should ensure that it is able to deliver the agreed SLAs, and degrade in a graceful way
when it is not possible to comply with the SLAs. This implies:

• Automatic capacity management The SUPERCLOUD infrastructure should ensure that it
is able to deliver the agreed SLAs both in terms of computation, storage and network. When it is
not possible to deliver the agreed SLAs, services should degrade/adapt gracefully in a dependable
way, according to a set of predefined rules agreed with the user1.

Medical Imaging Platform

There are three main Philips Healthcare use-cases that aim at deployment into SUPERCLOUD in-
frastructure, namely:

• Cloud data storage and disaster recovery use-case

• Cloud data storage and processing use-case

• Distributed cloud data storage and processing use-case

Cloud data storage and disaster recovery use case

Cloud data storage and disaster recovery use-case focuses on helping hospital to ease management of
the patient data stored in the hospital archive. Current hospital archives are on-premise solutions that
need to handle all clinical data, especially imaging studies which can be as large as 1GB. Therefore,
it would be attractive to offload this data into cloud, such that storage size on-premise archive can be
limited. For example, the data from the last 6 months is stored on premise, whilst a cloud stores it
for a longer period (e.g., 10+ years). In this use-case, the cloud becomes an extension of the hospital
archive. The core value of this solution is to ensure that patient data is not lost. As a result the cloud
storage is also a disaster recovery solution for the hospital. The workflow of data extends to the cloud
but performance is not primary concern here, as patient data is always prefetched from the cloud to
the on-promise hospital archive prior to the scheduled examination.
From security self-management perspective it is needed to enable selection of:

1For instance, the user may define that in overload scenarios when computation power is not enough to answer
requests according to the agreed response time, a percentage of requests should be dropped to ensure that accepted
requests comply with the defined SLA, or in alternative the user may want to sacrifice response time and don’t drop any
request.

SUPERCLOUD D1.2 Page 5 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

• Compliance with security and privacy requirements such as the European Commission Directive
95/46 EC, the United States Health Insurance Portability and Accountability Act (HIPAA), etc.

• Medical data privacy measures

– Data is stored in such a way to minimize the security breaches leading to data tampering
and corruption

– Data must not be interpretable in transit and rest, covering various system layers, such as
disk, file system, and database;

– Role based access control

– Detailed audit trails and activity monitoring

• Medical data protection level against loss or corruption ensuring high availability

• Medical data location restriction

– Guaranteed cloud storage within certain countries or regions

– Distributed storage, across multiple cloud and countries, in a privacy compliant manner

Cloud data storage and processing use-case

Cloud data storage and processing use-case focuses on easier access of the medical personnel to the
medical data processing applications. The access to the applications can be possible then not only from
the hospital lab where the equipment is installed but also from PCs in the hospital/home or secured
mobile devices. This way the doctors collaboration can improve as well due to easier availability of
data. This use-case involves only a single hospital organization.
From security self-management perspective it is needed to enable selection of:

• The same security demands as in Cloud data storage and disaster recovery use-case

• Storage and processing isolation per hospital group

– Special permissions are required to access data outside own hospital context (role-based-
access control)

• Level of performance guaranties

– Latency of accessing data in the cloud by the clinical applications from various devices and
by various roles.

Distributed cloud data storage and processing use case

Distributed cloud data storage and processing use-case focuses on easier access of the medical personnel
to the medical data across hospitals, i.e., this use-case ensures patient centric view to the healthcare
professional by showing all data of the patient; so data is not only managed by the local hospital,
but also managed by other hospitals. This would enable providing the complete longitudinal patient
record. This use-case has highest complexity, as it involves multiple hospital organizations managing
patient data. Performance and latency are critical, as imaging results and user interaction must be
streamed semi real-time to the clinical user. The user may view mashup of data from multiple clouds
and hospitals, or search for comparable reference studies (across the clouds), to assist in diagnosis of
the treated patient. Advanced processing may even include comparing large study data, across clouds.
As a result, the identity management of the clinical user is becoming critical in this use-case, as it is
accessed from multiple organizations.
From security self-management perspective, it is needed to enable selection of:

• The same security demands as in Cloud data storage and processing use-case

SUPERCLOUD D1.2 Page 6 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

• Medical data privacy measures

– Identity management across clouds of healthcare professionals

– Auditing across clouds of accessed patient data

– Privacy of stored data, whilst access and queries are still supported

• Interoperability across clouds

– Data exchange should be possible between Philips managed cloud solutions and 3rd party
vendor solutions in full compliance with all agreed privacy and security measures

• Performance guarantees

– Search performance using privileges across clouds.

Detailed requirements summary:

General:

Standard compliance: security and privacy requirements coming from the following standards
are mandatory:

– European Commission Directive 95/46 EC,
– United States Health Insurance Portability and Accountability Act (HIPAA).

Security operational management: Storage must be robust against any security breaches
by proper security patch management, secure data sanitization, etc.

Privacy:

Distributed storage: storing data across multiple clouds and countries has to be done in
privacy compliant manner.

Availability:

Data availability: 99.99%.

Data lifespan: Storage must ensure data availability for agreed period, i.e.,10+ years.

Data location: Data has to be guaranteed to stay in prescribed legal boundaries.

Efficient data access: guaranteed search performance while using access control across clouds.

Fault tolerance: Data may not get tampered and must be complete and correct.

Confidentiality:

Data security: Data must not be interpretable in transit and storage, covering: disk, file
system and database layers.

Data access monitoring: Detailed audit trails and activity monitoring.

Interoperability:

Distributed data access: Queries of ANY data over available clouds shall be possible in
compliance with privacy and security rules.

Multivendor data access: supporting Philips managed cloud solutions and 3rd party vendor
solutions.

User control:

Data access control: Special permissions are required to access data outside own hospital
context (role-based-access control).

Data identification: Identity management across clouds of healthcare professionals.

SUPERCLOUD D1.2 Page 7 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Generic Requirements

In this section, we extend the requirements provided by SUPERCLOUD partners with general and
generic design requirements for Self-Management of Security.

DR1: Availability

Availibility is a key property in terms of quality of service and provisioning. The security objective
here consist in minimizing the risk of threats that can impact the ability of the system to deliver
services to its users. This objective can be easily quantified but the metrics and mechanisms used
to evaluate are often disputable and need to be redefined and/or adapted for the SUPERCLOUD
purpose. We list hereafter the different requirements to achieves Availbility.

DR2: Integrity

Users should be able to trust the system in preventing any non authorized alteration of their data
and resources. In the context of SUPERCLOUD, it is important that data and services that run on
cloud providers infrastructures remain integer. The integrity of the network communication with and
between the different components of the SUPERCLOUD architecture is also important and must be
guaranteed.

DR3: User-Centric Security Control

When dealing with the quality of protection required by data and services to be run on a multi-cloud,
it is not normal to accept that a single level of security fits the needs of all customers. As it is
very difficult to sample beforehand customers security requirements, SUPERCLOUD providers shall
provide facilities for customers to define personalized self-security services settings to be deployed in
the user’s clouds (U-Cloud). Thereby users can control the protection level of their cloud resources.
As previously identified by Philips, User-Control include control over Data access (already covered
by Fine-grained Access control requirement) and control over identification, which include identity
management mechanisms.

DR4: Fine-grained Access Control

SUPERCLOUD shall facilitate granting differential access rights to a set of customers, tenants and
infrastructure components such as virtual Machines. Such fine grained access control brings high
flexibility in specifying access rights. Several techniques are known to implement fine grained access
control [51, 5].

DR5: Horizontal and Vertical Privacy Preservation

Data of SUPERCLOUD customers shall be encrypted and accessed by authorized users only. The
data shall be self-protected and have security parameters both the provider (vertical privacy) and
other customers. Unauthorized entities, including the cloud service provider, cannot gain access to
data or gain metadata about the data, when authorized operations are carried out on the data.

DR6: Interoperability and Adaptiveness

In current cloud ecosystems, cloud providers are using different SLA specification mechanisms making
their comparison, execution and interoperability difficult. Shifting from classical one-to-one Customer-
Provider partnerships to one-to-many complex contracts call for more sophisticated SLA specification
languages. Multi-cloud and Federation of clouds call also for interoperability of security of mechanisms
to facilitate the uniform deployment of customers security requirements.

SUPERCLOUD D1.2 Page 8 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

The SUPERCLOUD self-management infrastructure should provide users with mechanisms to react to
new threats or SLAs violation. These mechanisms could include for instance activation or deactivation
of policies, remediation actions and/or life migration tools.

DR7: Isolation

Due to the multi-provider and multi-tenancy nature of SUPERCLOUD architecture design (cf. D1.1
and D1.2), data, services and resources of different users can be hosted in in the same location. Such
situations increases the risk of security breaches and exacerbates the feeling of distrust among users.
The system should deploy strong and flexible isolation technologies to guarantee clouds integrity and
confidentiality while allowing collaboration and resources sharing.

DR8: Location Awareness and Control

Compliance with legal requirements impose to some cloud customers to control the location of their
data. To that aim, SUPERCLOUD must provide mechanisms for customers and users to control where
their data and services are processed and stored at country and/or continent level. The control of
location could not be complete without providing mechanisms that allow users/customers to monitor
the current location and eventually any transfer of its data.

DR9: Monitoring, auditing and investigation

SUPERCLOUD self-management infrastructure need to provide a sound and trustworthy monitoring
mechanisms that are able to collect all relevant information to detect and predict violation of active
SLA. This calls also for a mechanisms to extract monitoring objectives from active SLAs. The mech-
anisms shall allow automatic conversion of Service Level Objectives into Monitoring, auditing and
investigation objectives.

DR10: Assurance, Guarantees and Remediation

Use cases addressed in SUPERCLOUD include Health-care systems. In theses systems, the manipu-
lated data is very sensitive which disclosure is governed by hard legal requirements. However, current
SLA standards, protocols and frameworks do provide sufficient mechanisms to prevent and manage
security and privacy violations.
The designed Security Service Level Agreement architecture shall provide adequate assurance and
remediation mechanisms to incite provider to comply with legal texts.

DR11: Autonomic Security

Distributed cloud infrastructures take complexity to the next level compared to single clouds. Such
complexity is in turn source of many vulnerabilities. Vertically, vulnerabilities across infrastructure
layers add up to heterogeneity of defenses, which must now also be considered horizontally across cloud
providers. Corresponding protection mechanisms only have partial view of threats, either in layers, or
across providers2. To mitigate such complexity, security automation is required.
Autonomic security management has been gaining momentum as simpler, faster, and more flexible
approach to respond to threats. Automation can cover different aspects such as policy generation and
policy execution and deployment. It may also address detection and reaction to attacks without, or with
a minimum of external intervention. SUPERCLOUD being both a multi-provider and multi-layered
infrastructure, autonomic security management requires coordination of multiple security feedback
loops according to both such dimensions, with seamless unification to elaborate the security response.

2For instance, SUPERCLOUD will leverage on heterogeneous network infrastructures coming from multiple providers.
Each provider may have a partial view of network security incidents that may affect the SUPERCLOUD users, while an
attack could leverage the same artifacts across providers. This requires a comprehensive approach for attack remediation
to coordinate counter-measures across providers.

SUPERCLOUD D1.2 Page 9 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

DR12: End-to-end Security

Security technology heterogeneity across layers and cloud providers hampers uniform security SLA
guarantees. Therefore, the self-management framework should provide an end-to-end response from
SLA specification to threat detection, elaboration of mitigation strategy, and enforcement. In addition,
the infrastructure cannot be fully trusted, many layers being highly vulnerable. Multi-provider security
service heterogeneity is also source of threats. Self-management should thus also manage trust to
guarantee authenticity and integrity of the link between a VM and its cloud resources, across layers,
provider domains, and between users, e.g., by composing chains of trust.

Summary of Security Requirements

Multi-clouds or distributed cloud infrastructure (DCI) face major security challenges that are slowing
down its wide adoption by stakeholders. The requirements listed above are especially challenging how
security, privacy and trust are managed in current cloud systems. The fulfilment of these requirements
involve many disciplines, ranging from Service Level Agreements (SLA) to Intrustion detection and
prevension.
In Table 2.1, we map the aforementioned requirements to the security related disciplines they are
challenging. The focus have been put on six disciplines, namely Service Level Agreement (SLA) Access
Control (AC), Trust Management (TM), Cryptography (CR), Fault Tolerance (FT) and Intrusion
detection and Prevension (IDS/IPS). Of course, multi-clouds are challenging additional security related
disciplines, but the focus is put in the next Chapter on these disciplines, as they play a central role in
achieving user-centric and self-managed control of security advocated in the SUPERCLOUD project.

SLA AC TM CR FT IDS/IPS

DR1: Availability 7 7 7 7

DR2: Integrity 7 7 7 7

DR3: User-Centric Security Control 7 7 7 7 7 7

DR4: Fine-grained Access Control 7 7 7 7

DR5: Hor. and Ver. Privacy Preservation 7 7 7

DR6: Interoperability and Adaptiveness 7 7 7 7 7

DR7: Isolation 7 7

DR8: Location Awareness and Control 7 7

DR9: Monitoring, auditing and investigation 7 7 7 7

DR10: Assurance, Guarantees and Remediation 7 7 7

DR11: Autonomic Security 7 7 7 7

DR12: End-to-end Security 7 7 7 7

Table 2.1: Initial design requirements for Self-Management of security in Multi-clouds.

• Availbility is already managed by current SLA technologies. However, when multiple and com-
plex security mechanisms has to be executed within multi-clouds, this requirement can be hard to
fulfil. Thus one of the main challenges in SUPERCLOUD would be to preserve availbility while
applying in a decentralized way access control, trust management, cryptography, fault tolerance
and intrusion detection.

• Integrity is a complex concept that needs to be well defined in SLAs. In addition, this requirement
calls for new decentralised access control mechanisms that combines fine-grained authorizitions.
For Cryptography and Intrusion detection, this requirement only exacerbates exiting challenges,
notably with respect to the highly distributed and decentralised nature of multi-clouds.

SUPERCLOUD D1.2 Page 10 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

• User-Centric Security Control will necessarily take into account the definition of user security
needs. Thus the challenge for SLAs would be the ability to capture all users needs. Further,
users will have a natural desire to manage security by themselves. This has two significant
consequences: Cloud providers may receive contradicting demands and Users will need tools that
may interfere with the infrastructure. This significantly impacts the traditional ways of enforcing
security at all levels.

• Fine-grained Access Control has a strong impact on how Access Control is achieved in existing
models. A more fine-grained approach to cover the different resources’ abstractions at compute,
storage and network levels is needed. This requirement has also many impacts on the definition of
SLAs as a mean of capturing access control requirements, as well as on cryptography mechanisms
to achieve self-protected data.

• Horizontal and Vertical Privacy has an important impact on how these aspects are specified
in the SLAs, and how based on these SLAs, access control and cryptography mechanisms are
coordinated to ensure privacy with respect to providers (vertical) and customers (horizontal) at
the same time. The combination of both aspects of privacy preserving mechanisms is a challenge
for both disciplines.

• Interoperability and Adaptiveness are complementary requirements. For SLAs, it is important to
be able to make customers’ and providers’ specifications interoperable, and if not to envision the
appropriate adaptation mechanisms. Similarly, multi-cloud will make several providers cooperate
in order to execute the cloud services of a single client. If their access control, Trust Management,
Cryptography and Intrusion Detection mechanisms are not interoperable, this objectives could
not be guaranteed.

• Isolation can be achieved using Access Control. In the meanwhile, it can impede the proper
enforcement of Acess Control mechanisms. So Multi-clouds raise the challenge of enabling Access
Control and Isolation coexist in the same environment. Isolation is also challenging Trust
Management as mechanisms for building chains of Trust has to be adapted in order to stablish
trust across isolated domains.

• Location Awareness and Control imposes additional constraints and reduces possibilities to Fault
Tolerance mechanisms as they have to guarantee the same availability level with less resources.
Its is also a challenging issue for Access Control as appropriate schemes need to be enforced to
permit data processing only in allowed locations.

• Monitoring, auditing and investigation. The distributed and decentralized nature of multi-clouds
makes difficult the collection and processing of monitoring data. In addition, it is very hard to
monitor security mechanisms. For instance, how to monitor encryption of data at rest or under
processing.

• Assurance, Guarantees and Remediation This requirements is related to the previous one. It is
very difficult to provide assurance and/or guarantees when we can hardly monitor and assess
the respect of these guarantees.

• Autonomic Security. Current technologies provide limited automation capabilities. The chal-
lenge in SUPERCLOUD would be the integration of all aspects of security in a system that
requires minimum intervention of humans.

• End-to-end Security calls for a seamless coordination of all disciplines to overcome heterogeneity
of security technologies across infrastructures and to manage trust relationships between different
layers and across cloud providers. This unified user experience of security has not been achieved
yet because considered as utopic in many scenarios. But in SUPERCLOUD, this objective reveal
to be a necessity more than a desire.

SUPERCLOUD D1.2 Page 11 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Background

In this chapter, we provide a background on basic aspects of security disciplines that need to be devel-
oped to achieve Self-Management of user-centric Security. We will also review state-of-the-art looking
for candidate solutions to address the requirements presented in the previous chapter.

Concretly, we will see in Section 3.1 how the consideration of security issues, and thus almost all the
design requirements, are still at their infancy in Service Level Agreement mechanisms. In Section 3.2,
we review existing models to select the one that best fits user-centric (DR3) fine-grained (DR4) and
interoperable (DR6) requirements. Similarly, in Section 3.1 we will survey existing Trut Management
mechanisms. With respect to Cryptography and Fault Tolerance we rely on the Deliverable D3.1
wherein an extended review of the literature has been provided. Likewise, Intrusion Detection and
Prevention systems has been presented in the Deliverable 4.1.

Introduction to Service Level Agreement

In cloud computing, as in any other service oriented model, Service Level Agreements (SLAs) are
becoming progressively more common way to manage the quality of services with and within orga-
nizations. In this Section, we review existing literatures on Service Level Agreement technologies.
We split down this section into three sub-sections. In subsection 3.1.1, we present basic concepts
that constitute the foundations of Service Level Agreement Technologies, then in Section 3.1.2 we
present dominant SLA standards, languages and frameworks. Finally, in Section 3.1.4 we present
what have been done up to know in the consideration of security requirements in SLAs and highlight
the challenges facing this objective.

Foundations of SLAs

Given the diversity of disciplines using SLAs and the numerous interpretations that have been proposed
in recent years, we propose to start by presenting essential concepts that are necessary to understand
this review and later the SLA management architecture we propose in the SUPERCLOUD project.

Service Level Objectives

A Service Level Agreement outlines a specific service quality commitment between SLA actors. For
instance, in the SUPERCLOUD SLAs can be a Cloud Service Provider and a Cloud Service Cus-
tomer. The SLA includes languages describing expected service quality in terms of technical and
non-technical metrics. These individual metrics represent the Service Level Objectives (SLO), called
also terms. From our literature review, we identify two types of Service Level Objectives, Performance
Level Objectives and Security Level Objectives.

Performance Level Objectives reflect traditional Quality of Service metrics which have been extensively
investigated in the last decades. For illustration purpose, we provide hereafter some examples of
Performance Level Objectives.

SUPERCLOUD D1.2 Page 12 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

1. Availability

2. Capacity

3. Response Time

4. Capability

5. Support

6. Reversibility

Security Level Objectives reflect the Quality of Protection [49] offered by the CSP. With respect to
that, Bernsmed and colleagues [17] proposed a framework for security in Service Level Agreements
for Cloud computing. In this work, the authors classified Security SLO into five categories; Secure
resource pooling, Secure elasticity, Access control, Audit, verification and compliance and incident
management & response.

We present here after an extended list of Security Service Level Objectives, which most of them
originate from [33]:

1. Reliability

2. Authentication

3. Authorization

4. Encryption

5. Intrusion Detection

6. Incidents Management

7. Logging and Monitoring

8. Auditing and Security verification

9. Vulnerability Management

10. Data classification

11. Fault Tolerance mechanisms (mirroring,
backup and Restore)

12. Data lifecycle Management

13. Data locality awareness and management

14. Data portability

15. Purpose specification

16. Data minimization

17. User-controlled use, retention and disclosure
of data

18. Transparency

19. Accountability

20. Intervenability

We refer the reader to the guidelines [33] for a detailed description of each Service Level Objective.

Specification

SLA specification details the strategy and processes of specifying the agreement terms in a specific
format. The specification implies the use of specification languages such as WSLA, WS-Agreement,
or SLAng (cf. Sections 3.1.2, 3.1.2 and 3.1.3).

Service Level Templates

SLA templates are generally used by Service Provider to advertise the type of offers they are willing
to offer.

Service Level Offer

An SLA offer represent an adaptation of an SLA template to meet the customer specific requirements.
The SLA offer can also be built from scratch to allow customer to express freely his requirements
without being burdened by a particular SLA Template.

SUPERCLOUD D1.2 Page 13 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Service Level Negotiation and re-negotiation

The process of negotiation tries to ensure an optimum service provision arrangements. All SLA
aspects should be negotiated including responsibilities and penalties. With respect to Hiles [58],
SLA negotiation facilitates the growing understanding of requirements and the constraints of entities
involved in the SLA process (i.e. Providers and Customers).

Service Level Agreement

Negotiation should result in an agreement. An agreement is a description of the expected service
quality delivered by a provider to a customer. The service quality is expressed in terms of technical
and non-technical parameters and the related metrics with which provision of theses requirements is
being measured [38].

Service Level Execution

Service Level Execution consist in converting Service Level Objective specified in SLAs into config-
uration parameters to be enforced in order to make the agreement effective. The execution of SLAs
often involve an SLA execution manager that handles the extraction of SLO and their conversion into
operational commands.
The execution of an SLA consist also in developing monitoring techniques that guarantee the appro-
priate enforcement of SLA greements. This aspect will be detailed hereafter.

Service Level Monitoring

The secret of a successful service level agreement depends greatly on the ability of the provider to
provide the customer with comprehensive and accurate mechanisms to measure the performance of the
service his is using [105]. So Monitoring calls and motivates the needs for adequate trust management
mechanisms as this process relies on credible and reliable information that the provider can offer to its
customers. The more monitoring mechanisms are accurate the more the provider will gain credibility,
and hence trust with respect to its customers.
Service Level Monitoring means also that Service Level objectives must be meaningful, measurable
and monitored constantly. In this process, the current levels of service are to be regularly compared
with agreed levels.

Service Level Arbitration

In case of discrepancy between monitored service levels and agreed service levels both Customers and
Providers are expected to identify and resolve the reason(s) for disputes. If the problem is not resolved,
dispute resolution may involve the implication of an arbitrator. An arbitrator is a neutral third party
that tries to identify the responsibilities of SLA conflicts.

Rewards and Sanctions

The detection and resolution of a conflict may include the application of a reward and/or a sanction.
The reward could represent a compensation to the entity that suffered from the SLA violation, whereas
Sanctions and penalties can be applied to the responsible of these violations. Rewards and Sanctions
may include reduced or increased resource allocations or the ability to retain income.

SLA Lifecycle

A clearly defined lifecycle is essential for effective realisation of an SLA [120]. An early research [95], on
SLAs defined SLAs lifecycle in three high level phases, which are the creation phase, operation phase,
and removal phase. In the same period, Sun Microsystems Internet Data Center Group [121] defines

SUPERCLOUD D1.2 Page 14 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

a practical SLA lifecycle in six steps, which are ”discover service providers”, ”define SLA”, ”establish
agreement”, ”monitor SLA violation”, ”terminate SLA”, and ”enforce penalties for violation”.

More recently, the Telemanagement Forum [47] identified in their Handbook Solution Suite a six
phases SLA lifecycle, these cycles include template development, negotiation, preparation, execution,
assessement, and termination and decomission. Even though the lifecycle description was originally
destined to telecommunications industry, its generic nature open doors to its adoption in other disci-
plines. Especially because of the explicit mention to negotiation phase and an important step priore to
SLAs execution. In 2011, Bernsmed and colleagues [16] defined a similar SLA lifecycle in six phases;
”publishing”, ”negotiation”, ”commitment”, ”provisioning”, ”monitoring” and ”termination”.

After this short review of existing SLA lifecycle approaches, we believe that 3 steps1 are clearly not
sufficient to cover all steps of an SLA process. At the opposite, it appears that their is currently an
agreement on the minimums steps required to establish an SLA that are six steps. Even if their names
differ, we believe that the authors refer to more or less the same phases. Finally, the six steps SLA
lifecycle is more reasonable and provides detailed fine grain information, because it includes important
processes, such as re/negotiation and violation control.

Short Survey on SLA Languages, Standards and Frameworks

In this section, we provide a short literature review on existing SLA languages and frameworks.

WSLA

Proposed by IBM in 2001, Web Service Level Agreement (WSLA) [68] allow the specification, enforce-
ment and monitoring of SLAs. WSLA language is based on XML and (defined as an XML schema)
and allows the creation of machine-readable SLAs in Web Services environments.However, the WSLA
language is extensible to deal with other service-based technologies and other technical fields such as
Cloud computing or any other inter-domain agreements management. The WSLA framework com-
prises several monitoring services that can be replaced with services developed by third parties.

An SLA created using the WSLA language typically contains the following sections: a description of
the parties and the interfaces they expose to the other parties, a definition of the services and their
operations, obligations of the agreement, action guarantees, and other information such as pricing or
penalties.

WS-Agreement

WS-Agreement [8] is a specification, a language and a protocol developed by the Open Grid Forum
(OGF)2. WS-Agreement defines an XML-based language for specifying agreements as well as a protocol
for advertising offers (i.e., service capabilities) of providers. The specification defines also a monitoring
compliance mechanism.
WS-Agreement agreement specification is represented as an XML Scheme that defines the overall
structure of an agreement. Moreover, the protocol allows automatic negotiation and SLA establish-
ment. The specification consists of three parts which may be used in a composable manner: a schema
for specifying an agreement, a schema for specifying an agreement template, and a set of port types
and operations for managing agreement life-cycle, including creation, expiration, and monitoring of
agreement states.
Unlike WSLA, WS-Agreement language is quit extensible and allow the definition of domain-specific
service level objectives. In WS-Agreement, Templates and offers are created to embody customizable

1such as defined by Ron and Alika [95]
2http://cloudindustryforum.org

SUPERCLOUD D1.2 Page 15 of 78

http://cloudindustryforum.org

D1.2- SUPERCLOUD Self-Management of Security Specification

aspects of an agreement. However, in WS-Agreement it is not possible to specify metrics to be
associated with the parameters that specifies SLOs in the agreement.

WS-Re2Policy

Web service requirements and reactions policy language (WS-Re2Policy) [93] is a policy language for
distributed SLA monitoring and enforcement. WS-Re2Policy language is based on Event-Condition-
Action (ECA) rules paradigm to specify requirements and reactions in a single policy. In addition, a
supportive architecture to implement WS-Re2Policy in the areas of Web services and SOAs is proposed.
The WS-Re2Policy language was designed as an extension to the World Wide Web Consortiums WS-
Policy framework. The language is compliant to WS-Policy and can be extended by other WS-Policy
compliant languages like WS- SecurityPolicy.

RBSLA

Rule-Based Service Level Agreements (RBSLA) [91] is a project that uses knowledge representation
concepts for the specification of SLAs. It provides a set of abstract language constructs (based on
RuleML) represent, manage, enforce and automatically monitor Service Level Agreements. The rule
based SLA approach consists of three layers: (i) The logical core, an expressive KR combining several
logical formalisms, (ii) A declarative, high-level Rule Based SLA language (RBSLA) extending RuleML
in order to address interoperability with other rule languages and tool support, and (iii) The Rule Based
Service Level Management tool is divided into two partitions: the Contract Manager (CM) and the
Service Dashboard (SD). The CM is used to manage, write, maintain and update SLA rules and
supports different roles such as the (rule) expert or the business practitioner. The SD visualizes the
monitoring and enforcement process in the contract life cycle and supports further SLM processes.

SLAng

SLAng [103] is an XML based service agreement language. SLAng defines seven different types of SLA
(i.e., Application, Hosting, Persistence, Communication, Service, Container and Networking). These
types are used to regulate the possible agreement between the different types of parties involved in the
agreement (e.g., application, web service, component, container, storage and network). The authors
differentiate between horizontal and vertical SLA. Horizontal SLAs are contracted between different
parties providing the same kind of service. For example, two VMs can collaborate for replication
purpose. Vertical SLAs regulates the support parties get from their underlying infrastructure.

CSLA

Cloud Service Level Agreement language (CSLA) is a language that allows to specify SLAs in any
language for any cloud service (XaaS) [71, 72]. CSLA addresses intrinsically (i) QoS uncertainty in
unpredictable and dynamic environment and (ii) the cost model of Cloud computing. CSLA is based
on the Open Cloud Computing Interface (OCCI) and the Cloud Computing Reference Architecture
of the National Institute of Standards and Technology (NIST).

Security in Service Level Agreement

Even tough traditional Quality of service objectives that focus on performance are known to be key
issues, all recent surveys on the adoption of cloud technology highlight trust and security as the main
barrier for Customers. Thus, is appears to be natural that Service Level Agreements should explicitly
state the obligation of the providers in terms of implemented security mechanisms, their effectiveness
and the implication of possible mismanagement [16]. The ability of a Provider to deliver Cloud services
that comply with a set of security and legal requirements is called Quality of Protection [16, 17, 39].

SUPERCLOUD D1.2 Page 16 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Security SLAs tries to address questions such as How to allocate cloud resources according to security
requirements and how to check compliance and detect eventual violations to theses requirements.
There have been some initiatives that consider security aspects in SLAs. In this section, we review
this works and try to identify main obstacles towards the achievement of this objective.

Initiatives

The Cloud Security Alliance [7] is a non profit organization that aims at promoting the use of best
practice to increase the security level of Cloud infrastructures. The most relevant initiative of CSA
has been the Cloud Assessment Initiative Questionnaire (CAIQ). The questionnaire destined to Cloud
Providers to document the implemented security measures. This questionnaire will help Cloud Ser-
vices Customers to understand security coverage and guarantees of cloud offers. CSA proposed also
the Cloud Controls Matrix (CCM). This matrix is used by Cloud Customers to evaluate the risk im-
plied in leveraging a particular cloud service provider.

In Cloud Security Level Agreements (SecLA) [83], the authors proposed a method to benchmark (both
quantitatively and qualitatively) Cloud Security SLAs of one or several Providers with respect to the
Customer requirements. Both Providers and Customers SLAs are expressed using the SecLA lan-
guage. The authors used Quantitative Policy Tress (QPT) as data structure to represent and reason
on Security Level Agreements.

In [17], the authors provided a framework for security in SLAs for Cloud computing. The objective of
the framework twofold; to help potential Cloud customers to identify necessary protection mechanisms
and, in the next step, to facilitate automatic service composition based on a set of predefined security
requirements.

Figure 3.1: SLA metrics with respect to Security Objectives [17, 16]

In [16], the same authors build on this framework and described how to manage the security SLA
lifecycle with the aid of a framework for security mechanisms as input to contract requirements. The
purpose of their proposal was to facilitate rapid service compositions and agreements for hybrid Clouds
based on the necessary security requirements and establish trust between the customer and provider.

SUPERCLOUD D1.2 Page 17 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

In 2014, the European Commission published standardization guidelines for cloud computing service
level agreements (SLAs) between cloud providers and cloud service customers [33]. The guidelines
provide general recommendations to Cloud Customers and Providers about what they could agree on
using SLAs. Representatives from companies including Amazon, Google, IBM, Microsoft, SAP and
Salesforce helped develop the 41 pages guidelines within a sub-group of the Cloud Select Industry
Group (CSIG). CSIG was set up by the Commission with the aim of developing standardised cloud
computing contract terms that could be used by businesses hoping to enter into outsourcing agree-
ments with cloud providers.

Chen-Yu Lee and colleagues described in [79] and Ontology for representing security SLAs (SSLA).
The proposed Ontology can be used to understand the security agreements of a provider, to negotiate
desired security levels, and to audit the compliance of a provider with respect to federal regulations
such as HIPAA standards.

Finally,the International Organization for Standardization (ISO) released in 2015 a standard to of-
fer information security advice for both cloud service customers and cloud service providers, offering
guidance on the information security elements of cloud computing, recommending and assisting with
the implementation of cloud-specific information security controls.

Challenges

The lack of common standard vocabulary for both security and Cloud concepts has been up to now the
principal limit for the adoption of security SLAs in Cloud computing. SLA-Aware Cloud computing is
a new architectural design that involves a high degree of self-management. This architectural pattern
requires complex and intense performance, security, automation and adaptation mechanisms.

The main challenges to be addressed within the SUPERCLOUD project include the enhancement
and/or extension of existing SLA standards and frameworks to leverage Security requirements. A
second challenge consist in designing comprehensive and efficient negotiation strategies to enable end-
to-end Service Level Agreements. Theses strategies should take into account the critical aspect of
security requirements when achieving negotiations. Indeed, negotiation strategies tries often to reach
a trade-off that maximizes the satisfaction of both CSP and CSC but making concessions in security
requirements should be managed in a different way.

Finally, we need also to build appropriate monitoring and feedback mechanisms to observe the com-
mitments met by an SLA, and the development of adaption strategies to mitigate the effects of possible
SLA violation.

SUPERCLOUD D1.2 Page 18 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Introduction to Authorization and Access Control

Access control, more precisely authorization, is a basic and critical mechanism often used for operating
systems. Usually presenting as a software module, access control provides a control solution for some
entities (called subjects) to access some other entities (called objects) through some actions in the
system.

In the context of cloud computing, subjects are cloud users, objects are cloud resources and actions
are different ways of accessing resources. A cloud user is a digital embodiment of a human, system or
service who consumes cloud resources. A cloud resource is a virtual component of limited availability
within the cloud infrastructure, such as an instance, a volume, a public IP address, etc.

A cloud platform can include an authorization module to control the access to cloud resources. An
authorization module is usually composed of a customizable access control policy/model and a corre-
sponding implementation. Even in a single cloud platform, various authorization mechanisms might
be applied for different cloud resources. For example, remote access to a VM is controlled by an SSH
server in the VM; the network-level access is configured in various firewalls and gateways. It is an
open question whether a single authorization module is needed for a cloud platform to coordinate the
access to all cloud resources.

Currently elaborated access control models notably include Access Control Lists (ACL) [100], Role-
Based Access Control (RBAC) [101], Organization-Based Access Control (OrBAC) [66], Attribute-
Based Access Control (ABAC) [131, 77].

In this section, we will present the different models and language that allow to design and specify
authorization and access control policies. The objective of this section is twofold; first, we provide the
reader basic concepts that we build upon in the specification of authorization management mechanisms
within the Self-Management framework (cf. Chapter 4). Second, we exacerbate the drawbacks and
benefits of each approach in order be able to choose the one that best fits SUPERCLOUD requirements
(cf. Chapter 2) with respect to Authorisation and Access Control.

Mandatory Access Control

Mandatory Access Control (MAC) is a centralized solution. Only the administrator controls access to
any object. It provides a security level to the user and for the object (classification). Then, autho-
rization is a relation between these two levels. For example, the common government classifications of
their objects are: unclassified, confidential, secret, and top secret []. The subject will grant access to
the object only if the security level of the subject is higher than the security level of the object. This
model is very used by military and government organizations.

Discretionary Access Control

Discretionary access control (DAC) is one of the most widespread access control models. It is a
decentralized solution. Each object is controlled by its owner. An object has an owner and this owner
can allow subjects (or users) to access to this object or not. Any rules is written as (S, A, O) which
means that the subject S can do the action A on an object O. These two models are static and have
a low level of abstraction. As a result, it is difficult to administrate and it needs a lot of memories
when we have many users.

Role-Based Access Control

Role-Based Access Control (RBAC) [101] is widely used. A number of concepts are defined in this
model such as role, hierarchy, separation of duties and session. Role is a set of users which can be

SUPERCLOUD D1.2 Page 19 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

assigned to the same security rules. For example: Fredric, Robert, Matthieu are doctors in the hospital
of EVRY; they will be able to execute same actions on any resources. Consequently, it will be simpler
to assign rules to the role doctor and not to each user. Moreover, it is possible to assign several roles
(doctor, head of department) to one subject. This model offers a higher level of abstraction than MAC
and DAC. RBAC uses also the concept of hierarchy which is a relation between two roles. It offers
the possibility of rules derivation. A role A inherits from role B means that permission given to the
role B is automatically assigned to the role A. RBAC defines two types of hierarchy:

• Organizational hierarchy is a relationship between an expert and a super-expert in the same
branch. The super expert can control and evaluate the tasks of the expert. RBAC offers the
possibility to inherit the expert permissions e.g., head of department and employee.

• Specification /Generalization hierarchy is defined between roles A and another role B if this
latter can do all actions of A. For instance, role A can be doctor and role B can be a cardiologist.
This notion facilitates the design and the management of the policy security.

RBAC also proposes two types of duties separation concept:

• Static Separation of Duties (SSD) ensures the assignment inability of two opposite roles to the
same user.

• Dynamic Separation of Duties (DSD) offers the possibility to have two contradictory roles for
one user. However, they cannot be activated simultaneously.

Moreover, the concept of session is introduced in RBAC. A session is a unique context associated
with a user, within which the user activates a subset of assigned roles. Consequently, every activated
role belongs to one session, and each session belongs to a unique user. Moreover, RBAC has an
administration model which is ARBAC. The RBAC Model is presented in figure 3.2 where UA is user
assignment and PA is permission assignment.

Figure 3.2: RBAC model

To resume, RBAC has a higher level of abstraction than MAC and DAC. Administration also is
simpler (it has also an administration model ARBAC). Although, the concept SSD and DSD offer
a possibility to create a dynamic policy, RBAC does not introduce solutions to interact with the
environment. Finally, it does not address to the problem of collaboration. To ameliorate RBAC,
various models are proposed. In the following, we detail some of them.

SUPERCLOUD D1.2 Page 20 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Temporal Role Based Access Control and Geographic Role Based Access Control

Temporal Role Based Access Control (TRBAC) and Geographic RBAC (Geo-RBAC) aim to ameliorate
the dynamism of RBAC. For a same user, access to the resource can be authorized or denied in
function of time condition in TRBAC and location condition in Geo-BAC. Note also that another
model is designed based on TRBAC which is GTRBAC in order to solve possible conflicts in the
policy. However, these solutions have not an administration model.

Team-based Access Control

Team-based Access Control (TMAC) [114] is also based on RBAC. It defines new notions to improve
the collaboration criteria of RBAC.It represents a team work. This model defines a way to identify
roles which contribute in a team. User will be assigned to a team according to its role. Teams interact
to accomplish a mission. However, this model suffers from several problems. First, it deals with
the problem of a local collaboration; the team definition can be used in only one system. Secondly,
writing rules for a team and a role may create conflicts (permission assigned to a role which cannot be
authorized in its team). Resolving this type of conflict is not clear in TMAC. TMAC extension, which
is CTMAC, is proposed in order to interact with environment. Time, location and other contexts are
used in CTMAC. These models offer a solution to achieve a mission. They do not address the general
problem which is the collaboration between different entities. Administration in these models will be
harder than RBAC since they have not an administration model.

Coalition Based Access Control

Coalition Based Access Control (CBAC) [32] incorporates aspects of RBAC and TCAC: team, task
and role. It also defines the notion of organization to address the issue of collaboration between two
or more systems. CBAC defines two new notions Organization; Coalition (OC) and mission. OC is
formed by a set of organizations and mission is the task that needs to be done by an organization. A
relationship must be defined between OC and missions. However, with these different new concepts,
its management is complicated and hard since it has not an administration model.

Attribute Based Access Control (ABAC)

Attribute-Based Access Control (ABAC) [131, 77] is an authorization model that provides dynamic
and context-aware access control. Rules specify conditions under which access is granted or denied.
ABAC uses attributes as building blocks in a structured language that defines access control rules
and describes access requests. In ABAC, access decisions are based on attributes of the requester
and resource, and users need not be known by the resource before sending a request. Attributes
are sets of labels or properties that can be used to describe all the entities that must be considered
for authorization purposes. Usually, each attribute consists of a key-value pair. Each entity has
attributes that define the identity and characteristics of the corresponding entity. Some of the most
relevant attributes that can be described are:

• Attributes of the resource: may include resource name or the identifier.

• Attributes of the requester: may contain the identifier, the name or the organization.

• Attributes of the service: may include the service name and address

• Attributes of an action: can be an action name.

• Attributes of the environment: may be the current date or time.

This approach might be more flexible than RBAC because it does not require separate roles for
relevant sets of subject attributes, and rules can be implemented quickly to accommodate changing

SUPERCLOUD D1.2 Page 21 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

needs. However, although ABAC is easy to set up, analyzing or changing user permissions can be
problematic because of the complexity of cases that could be considered in the system. i.e there could
be many combinations in the rule conditions.

Semantic-Web based Access Control

The Common Information Model (CIM) [26] created by the DMTF provides a common definition of
management information for systems, networks, applications and services designed also for vendor
extensions. CIM’s common definitions allow to describe information systems in an implementation
independent way, enabling vendors to exchange semantically rich management information between
systems throughout the network. XML-encoded specifications do not embody the constructs for
facilitating tasks like parsing, logical deduction or semantic interpretation. Semantically-rich policies
introduce ontology based representation that permits such tasks. Adopting a formal representation
of CIM, several reasoning processes become available in order to check, validate, simulate or detect
conflicts in information systems. Using OWL [55] as language to represent CIM, the semantic of the
Description Logic (DL) can be applied in the reasoning processes. DL is closely related to Semantic
Web technologies, in which information is constantly being discovered, modified and updated. The
CIM model is independent of any encoding and it can be represented on different languages including,
from XML to RDF and from MOF to OWL. Thus, a Semantic-Web based access control approach
can use the CIM represented in OWL as ontology, and Semantic Web Rule Language (SWRL) [56] to
express the rules which define the behavior of the system. The combination of OWL ontologies and
the SWRL to specify policy rules offers users the advantage of allowing automated reasoning. This
is carried out by what is called a reasoner, referring to a specific piece of software which performs
reasoning processes. Jena or Pellet are example of this kind of reasoners. These processes constitute
a remarkable added value of the usage of Semantic Web technologies, since they are able to infer new
knowledge, that is, deriving additional information not explicitly specified in the ontology. Moreover,
they also perform a formal validation and verification of the domain constraints which are specified in
the ontology to assure they are fulfilled. The representation of the policy and domain information used
in this authorization system is based on these Semantic Web concepts and technologies, providing the
following set of features as added value for the policy language:

• The use of an ontology based representation of CIM model to describe a management system. It
provides a solution that facilitates the system management tasks and related reasoning processes
about policies.

• Separation between domain description and policy description. This approach separates the
concepts that are necessary to describe the domain to be protected and the rules which use such
concepts to create policies expressing the desired security for the administered services. The
separation of domain description and policy description permits to manage both specifications
individually using different techniques.

• Reasoning capabilities about domain descriptions. The management representations are done
in the form of an ontology, allowing reasoning processes to check constraints and query the in-
formation. This CIM representation and its OWL encoding incorporate semantic expressiveness
into the management information specifications to ease the tasks of validating and reasoning
about the policies which definitely help in handling the security management complex tasks like
conflict detection and resolution. This is due to the fact that OWL is based on description logics.
This simple and yet powerful kind of first order-like logic allows to perform reasoning tasks not
only on individuals but also on the structure of the base information model which holds the
instances.

• Reasoning capabilities about policy description. Policy rules are created in the form of horn like
rules, enabling reasoning capabilities for policy conflict analysis techniques. Policies are defined

SUPERCLOUD D1.2 Page 22 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

by managers as if-then rules and they are encoded by Semantic Web Rule Language (SWRL)
which extends the set of OWL axioms to include a high-level abstract syntax for Horn like rules
that can be combined with an OWL knowledge base. A useful restriction in the form of the rules
is to limit antecedent and consequent atoms to be named classes, where the classes are defined
purely in OWL.

• Interoperability. The use of standards and ontological representation eases the interpretation
and integration of the information. This enables advanced capabilities like concept alignment
between heterogeneous domains, allowing the combination of concepts from the different domains
of the organizations.

In CIM, the basic components of an authorization decision (or privilege) are subjects, actions, and
targets. This access control approach allows RBAC and ABAC models since authorization decisions
can be taken based on roles and attributes of any kind. The attribute limitation is on the ontology
definition but CIM is able to modeling almost any IT system feature.
A sample authorization decision would be read as follows: it is permitted for subject(s) S to perform
action(s) A in the target(s) T. To model the concepts that related to an authorization decision, this
solution makes use of the set of CIM concepts depicted in figure 3.3.

Figure 3.3: CIM Authorization model [26])

Privilege is the base concept for all types of activities which are granted or denied to a subject for a
target. AuthorizedPrivilege is the specific subclass defining current privileges which result of apply-
ing the authorization policy rules. The association of subjects to AuhorizedPrivilege is accomplished

SUPERCLOUD D1.2 Page 23 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

via the authorizedSubject association. The entities that are protected (i.e. targets) can be similarly
defined via the authorizedTarget association.

To illustrate these concepts, let us consider an academic organization in which some exams are done
with computers. But these exams can only be done in computers belonging to a controlled network
whose computers are inside invigilated zones to avoid students cheating the exams. The domain de-
scription for this example can be represented using a CIM based ontology and it may be composed by
a role that represent the set of students [Student], the controlled examination network [ExamNetwork],
the examination service [ExamService], the privilege to access the exam [AccessExam] and finally the
subject [JohnDoe].

This semantic web authorization mechanism has been deployed twice as proof of concept Access Con-
trol services. In [113], authors have adopted this approach enabling the dynamic management of
authorization by combining the Semantic Web technologies with Grid authorization systems. The
authorization service acts as a Policy Decision Point (PDP) which take authorization decisions based
on the reasoning over the policies. Likewise, a similar deployment of the semantic-aware access control
system has been applied in Cloud Computing environments.

However, when it comes to performance, the semantic-web based approach still lacks of enough effi-
ciency in some use cases. This is mainly because of the reasoning time required by the reasoner engine
in a ”live” inference scenario like the ones proposed in SUPERCLOUD project. The complexity of
the ontology and the size of the knowledge base could lead to an unfeasible reasoning time. Moreover,
in some particular scenarios where the computing and consumption requirements are quite limited by
the hardware, a semantic-web access control system couldn’t be the most advisable solution. Thus,
for the SUPERCLOUD project, it could be considered the usage of this access control approach but
employing a more lightweight rule-based system instead of a semantic web engine based on OWL and
SWRL.

Based on CIM concepts, a security policy language (SPL) [94] has been defined. It is a high-level
language defined in XML aimed to define the desired security behavior of the networked systems and
applications.

It was devised in the bounds of the POSITIF European project and later extended in DESEREC
EU project. It is mainly based on the security policies, concepts and parameters already defined in
the Common Information Model (CIM) [] from the DMTF, but in a high level fashion avoiding the
complexity of CIM. It is defined in XML due to the ease with which its syntax and semantics can be
extended and the widespread support that it enjoys from all the main platform and tool vendors. SPL
supports different types of security policies and it allows grouping, priority and classify these policies.
The SPL definitions are composed of a set of attributes and three groups of elements. The Common
Elements, which represent common concepts, the Policies, which define the set of security policies,
and the PolicyGroups that provide a mechanism to group and classify policies.

Organization-Based Access Control

Organization Based Access Control (OrBAC) [67, 65] is becoming largely used for modelling access
control policies. It integrates various concepts defined in the previous work such as role, hierarchy,
and context. Also OrBAC adds extension to enhance its use in a collaborative system.

The main concept of OrBAC is the entity organization. The policy specification is completely pa-
rameterized by the organization. This notion encourages researcher to handle simultaneously several
security policies associated with different organizations. It is characterized by a high level of abstrac-
tion. Instead of modeling the policy by using the concrete and implementation-related concepts of

SUPERCLOUD D1.2 Page 24 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Figure 3.4: OrBAC model

subject, action and object, the OrBAC model suggests reasoning with the roles that subjects, actions
or objects are assigned in the organization. Thus, a subject is abstracted into role which is a set of
subjects to which the same security rule apply. Similarly, an activity and a view are respectively a set
of actions and objects to which the same security rule apply.

Figure 3.4 describes the OrBAC model which introduces two security levels (concrete and abstract).
OrBAC defines context concept. It is a condition that must be satisfied to activate a security rule.
A mixed policy can be offered in OrBAC which define four types of access: Permission, prohibition,
obligation and recommendation. Rules conflicts can appear in this policy. This problem may be
resolved by affecting a coefficient to each rule. Several types of contexts can be used as temporal,
geographical (physical and logical), pre-request, declared, etc. Also, we may have contexts which
depend on the application. The hierarchy notion which facilitates the tasks of the administrator is
also used in OrBAC. In the same way as RBAC, two type of hierarchy (specialization / generalization
and organizational) are defined. Moreover, this hierarchy can be used between different roles, different
views, different activity or different contexts.
The OrBAC model defines four predicates:

• empower : empower(s, r) means that subject s is empowered in role r.

• consider : consider(b, a) means that action b implements the activity a.

• use: use(o, v) means that object o is used in view v.

• hold: hold(s, b, o, c) means that context c is true between subject s, action b and object o

Access control rules are specified in OrBAC by quintuples that have the following form:

• SR(decision, role, activity, view, context)

SUPERCLOUD D1.2 Page 25 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

which specifies that the decision (i.e. permission or prohibition) is applied to a given role when
requesting to perform a given activity on a given view in a given context. We call these organizational
security rules.
OrBAC has its administration model AdOrBAC. It uses the same logical formalism and the same
concepts of ORBAC. As a result, OrBAC is a self-administrated model. Otherwise, a management
and policy specification tool MotOrBAC [4] was implemented for OrBAC. It is designed to allow
analyzing and simulating a security policy conforming to ORBAC. It also offers a conflict resolution
and enables an administration of ORBAC (since it implements the AdOrBAC model). Policies created
with MotOrBAC can be integrated into an application to secure it. MotOrBAC may easily extended
by adding a specific plug-in.
To resume, ORBAC offers a generic and dynamic security policy with high level of abstraction. It
reduces the cost of the administration of access control policies. The work in [] demonstrates that
OrBAC leads to significant reduction of the management complexity. All of these features encourage
researchers to propose interoperability security policy based on OrBAC. For these reasons, we will
present in the next section some derivatives of OrBAC model that are used in similar environments
as the SUPERCLOUD project.

Existing standards

eXtensible Access Control Markup Language (XACML)

The eXtensible Access Control Markup Language (XML) [59, 34] is an access control policy language
specified by the Organization for the Advancement of Structured Information Standards (OASIS). It
is based on XML and defines a common security policy language as well as the processing model that
describes how to interpret the policies. It also includes a request/response protocol to express queries
about whether a particular access should be allowed and describes answers to those queries.

The policy language provides a common means to express subject-target-action-condition access con-
trol policies. The main concept in XACML is the Policy, which represents the basis for an authoriza-
tion decision. Policies are formed of Rules, which are the fundamental elements that can be evaluated.
Moreover, policies can be also grouped in PolicySets. In order to know the policies that apply to a
given request, Targets can be explicitly specified for Rules, Policies, and PolicySets. A Target defines
the set of resources, subjects, and actions to which these will apply. Moreover, Policies and Policy-
Sets may optionally be associated with Obligations. They contain a FulfillOn attribute that specifies
whether they should be applied when the containing policy evaluates to Permit or Deny.

Another essential concept in XACML is Attributes. They are named values that describe properties of
subjects, actions, resources, and the environment of the decision request. Attributes are typed and may
contain multiple values. Examples of attributes are subject role memberships, subject email addresses
and the time of day environment attribute. Attributes can be referenced by attribute designators or
attribute selectors. The former specify a name and a type and can refer to subjects, resources, actions,
and the environment of the request context, while the latter allow attribute lookup by an XPath query.

Regarding policy evaluation, the Rules of a policy have an associated effect, which defines the conse-
quence of the rule (permit or deny) if it is evaluated to true. Rules may optionally contain a Condition,
which consists in a Boolean expression that further limits the rule applicability. To decide the result
of a composed element, Policy Combining Algorithms are used. They enable to determine the decision
result of a Policy given the evaluation results of its rules or the decision result of a PolicySet given
the evaluation results of its policies. XACML includes the following standard combining algorithms,
although it allows users to define their own ones: Deny-overrides, Permit-overrides, First applicable
and Only-one-applicable. An access control decision finally results in a value that can be Permit,
Deny, NotApplicable and Indeterminate. The last two values are returned when an error occurred and

SUPERCLOUD D1.2 Page 26 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

no decision can be made or when the request cannot be answered by the queried service, respectively.

In XACML based access control environments, it is often assumed that the following components are
deployed:

• Policy Administration Point (PAP): manages and defines the policies that will apply.

• Policy Decision Point (PDP): evaluates and issues authorization decisions.

• Policy Enforcement Point (PEP): intercepts user access requests to a resource and enforces PDP
decisions.

• Policy Information Point (PIP): provides external information to a PDP, such as LDAP attribute
information.

The model also defines a Context Handler entity, which is the system entity that converts decision
requests in the native request format of the access requester to the XACML format and also converts
XACML authorization decisions to the native response format. In a typical XACML usage scenario,
a subject (i.e. user or software application) wants to take some action on a particular target (i.e.
resource). The subject submits its query to the entity managing the resource (PEP). It forms an
XACML request message based on the attributes of the subject, action, target, and any other relevant
information, and sends it to the policy decision point (PDP). The PDP analyzes the request and
determines whether access should be granted or denied according to the XACML policies that are
applicable to this request. Then, an XACML response message is returned to the PEP, which will
then enforce the obligations and allow or deny access to the subject.

Security Assertion Markup Language (SAML)

The Security Assertion Markup Language (SAML) [27] is an XML-based framework that enables the
exchange of authentication, entitlement, and attribute information between entities. It is developed
by the Security Services Technical Committee of the Organization for the Advancement of Structured
Information Standards (OASIS). The specification defines different kinds of assertions, protocols and
bindings to exchange this information. Assertions are statements issued by an entity that declares
some authentication information or attributes of a given subject. SAML defines the following three
types of assertions:

• Authentication Assertion: an assertion containing information about a user authentication, e.g.,
type of authentication, timestamp, username. Authentication Assertions are usually sent from
an Authentication Authority at an Identity Provider to a Service Provider to prove the user
identity.

• Attribute Assertion: this assertion is used to transfer a user attributes. SAML does not specify
which attributes may be transferred. Attribute Assertions are usually sent from an Attribute
Authority at an Identity Provider to a Service Provider to provide the user attribute information.

• Authorization Decision Assertion: an assertion to transfer authorization decision statements
(e.g., permit, deny). Authorization Assertions, which are less used than Authentication and
Attribute Assertions, are usually sent from the Policy Decision Point at a Service Provider to
the accordant access control entity.

Besides the assertions, SAML also defines a set of protocols that specify the messages used to request
and to send these assertions, as well as several bindings using standard communication protocols
(e.g., SOAP, HTTP) used to transmit those protocol messages. SAML is currently mostly used for
Single Sign-On and for attribute-based authorization. In these cases, authentication assertions are
used to transfer authentication information from the authenticating entity (e.g., Identity Provider)

SUPERCLOUD D1.2 Page 27 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

to the requesting entity (e.g., Service Provider) to avoid a new authentication of the user at the
Service Provider. For attribute-based authorization, attribute assertions are used to send attribute
information from an attribute authority, e.g., being part of an Identity Provider, to a deciding entity,
providing the users attributes are stored centrally.

Single Sign-On (SSO)

There are several Identity Management solutions, standards and enabling technologies in the literature
that support Single Sign-On (SSO) mechanisms in order to ease and improve the user interaction with
the provided services.

Shibboleth [14] is a package of several supporting functions for Web Single Sign-On across or within
organizational boundaries. It is based on the Security Assertion Markup Language (SAML) and rep-
resents one of the most used federation supporting packages in the academic context. A Shibboleth
federation typically consists of Identity Providers (IdP), which host user data and Service Providers
(SP), which offer restricted resources to users. Shibboleth supposes that users access the restricted
resources by using a web browser and the infrastructure is built on the idea of a browser-based inter-
action between the federation parties. Although Shibboleth does not specify how the trust within the
federation shall be established, it is usually statically established by signing contracts with the feder-
ation manager or with every participant. Moreover, participants share X.509 certificate information
that is accessible in the federation meta-data. This meta-data should be updated regularly by the
federation members to ensure security and its handling is part of the Shibboleth bundle.

The OAuth Authorization Framework [106] is an open framework that enables a user to authorize a
client application to get limited access to some resources stored in a server without having to reveal
his credentials. In OAuth, an authorization token is issued to the client application by an autho-
rization server. This token is issued upon the approval of the resource owner and it provides limited
access to the resource (e.g. specific lifetime). The client application uses this token to access the
server storing the resources without presenting any user credential. The current version OAuth 2.0
is a proposed standard defined in IETF RFC 6749 and it is not backward compatible with OAuth
1.0. The importance of the OAuth protocol in protecting user’s privacy is also confirmed by the at-
tention it is drawing by the largest web companies like Facebook, Google, Yahoo, LinkedIn or Twitter.

OpenID [92] is a decentralized authentication specification that enables a user to be authenticated
through an URL or XRI identifier by any other OpenID supported provider. With OpenID, the
user can choose which provider to use and there is no central authority registering OpenID providers
or services. The authentication protocol uses plain text key-value pairs and standard HTTP(S) re-
quest/responses. When a user wants to log into a service, it is requested for its OpenID identifier.
An OpenID provider discovery process takes place, depending on the kind of identifier. Optionally,
both the service and the OpenID provider can establish an association with a shared secret. The
user is redirected to the provider, which authenticates the user and redirects him back to the original
service with an authentication assertion. The OpenID technology is being widely used by companies
like Google, Flickr, Yahoo, Facebook or VeriSign.

As part of Identity Management frameworks, supporting standards and enabling technologies are used
to provide authentication and entity identification. Electronic Identity (eID) technologies are com-
monly used to identify users. eID Solutions vary in complexity, in ability to integrate with other
systems, and in size of deployments. The primary objective of an eID system is to identify the user, to
authorise and authenticate, and to be secure. National eID cards have been deployed in number of Eu-
ropean countries, with Belgium eID being considered the most successful deployment to date. Public
Key Infrastructures (PKI) [30] is also an enabling technology commonly used in Identity Management
systems. A PKI is a system to issue, distribute and validate digital certificates, e.g., X.509 certificates.

SUPERCLOUD D1.2 Page 28 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

These are digital certificates signed by a trusted authority that usually contains information about
the identity of the bearer, its public key and further elements, such as identity of the issuer, validity,
type of algorithm, etc.

WS-Federation [50] is an Identity Federation specification that allows different security realms to fed-
erate, such that authorized access to resources managed in one realm can be provided to security
principals whose identities and attributes are managed in other realms. This includes mechanisms
for brokering of identity, attribute, authentication and authorization assertions between realms, and
privacy of federated claims. The WS-Security and WS-Trust specifications allow for different types of
security tokens, infrastructures, and trust topologies. Specifically dealing with the issuing, renewing,
and validating of security tokens, as well as with ways to establish, assess the presence of, and bro-
ker trust relationships between participants in a secure message exchange. WS-Federation uses these
building blocks to define additional federation mechanisms that extend these specifications.

Apart from the aforementioned Identity Management approaches for Single Sign-On, there are com-
mercial solutions available in the market like the Microsoft Windows Identity Foundation [97] or the
Oracle Access Manager [12]. There also exist several European projects focused on Identity Manage-
ment. SEMIRAMIS [] is a EU research project that aims to provide a secure and reliable solution
for the management of personal information across multiple stakeholders. The project defines a pilot
infrastructure that provides e-services related to identity management and secure personal attribute
transfer. STORK [80] is another EU project that aims to establish a European eID Interoperability
Platform that will allow citizens to establish new e-relations across borders, just by presenting their
national eID.

Access control In cloud computing

In cloud computing, the relationship between subjects and objects/resources is very dynamic. In addi-
tion, subjects and objects can be in distinct security domains making the specification of access control
policies a tedious task. Consequently, many of the traditional models that we have presented previ-
ously can not be used, or requires a big adaptation effort to be in compliance with the cloud specificity.
For instance, models that heavily rely on Identity (e.g. IBAC) for the management of access control
reveal to be inappropriate in Cloud as they are unable to scale. Furthermore, these models can be
hardly used to manage access control in open environments where the identity of authorized subjects
cannot be know beforehand [126].

In this Section, we briefly review some existing approaches that tackles the challenge of managing
access control in cloud environments. Most of these approaches highlight the importance of managing
multi-tenant and inter-tenant access control decisions.

For instance, in [76], a flexible attribute-based multi-policy access control (ABMAC) model has been
proposed. The main idea of the ABMAC is to use multiple autonomous security policies, a policy
per tenant/domain. Then authorization decisions are derived by combining individual decisions. The
main benefit of this model lies in its capability to scale at very large levels.

The authors of [127] proposed Access Control for Cloud Computing (AC3). This model tries to facil-
itate the concepts of role and task that have been used in other models. In AC3, users are classified
according to their actual jobs. Thus, users will be located on a security domain that relates to their
role. Every role within the model will be assigned a set of the most relevant and needed tasks for
achieving this role. This approach is very similar to the principals carried out in OrBAC with a subtle
analogy between tasks and activities.

Calero et al. [6] introduce an authorization system enabling cross-tenant resource access based on

SUPERCLOUD D1.2 Page 29 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

trust. Tang et al. [110, 111] further analyzes possible types of trust relations among tenants and
propose a Multi-Tenant RBAC (MTRBAC) model for collaborative access control in a multi-tenant
cloud [112].
In [108], the authors proposed a semantic access control model for cloud infrastructures. The system
has been designed for healthcare systems and aims at providing an RBAC-like model based on Semantic
Web Technologies, basically ontologies.
The above selection of cloud-specific access control models should be considered in complement to
several more classical approaches that only use one of the aforementioned models in cloud systems.
Unfortunately, none of the above mentioned work do consider cross-tenant interaction in policy ad-
ministration level.

SUPERCLOUD D1.2 Page 30 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

An Introduction to Trust Management

Trust has been extensively investigated in the last fifteen years which gave rise to numerous trust
models. Most of these models have been developed in distributed artificial intelligence (DAI) or secu-
rity. In the context of SUPERCLOUD project, there exists many possible configurations involving a
trustor and a trustee. For instance, a provider represent the trustee with respect to customers that
trust him for providing the service they agreed upon. Similarly, the provider can play the role of
trustor if we consider the situations in which the activity of a customer can affect the performance
of the provider, and hence affecting his reputation. There exists also a trustor-trustee relationship
linking each component used in the project architecture. For example, the elements of the storage
layers has to trust the VMs and other compute layer components (cross-layers trust). Horizontally,
components from the same layer has to trust each others to build a chain of trust (CoT) to allow data
flow across tenants, users and providers.

The objective of this section is not to review the complete literature on this subject, there exist
several surveys that provided more comprehensive studies (c.f. [61, 52, 96, 109, 11, 73, 54]). Instead,
we describe representative approaches and discuss there relevance to cloud computing. Further, this
Section aims also at defining the concepts related to Trust Management in Computer Science and how
it will be understood within the SUPERCLOUD project. For example, we will clarify the meanings
of Trustor and Trustee used above, we will also give a precise definition of what is trust and what is
trust management.

What is Trust?

In the real world as well as in the virtual ones, trust constitutes a fundamental concept for humans,
without which they can neither act nor interact. So unsurprisingly, trust received in the last decades
much attention from several disciplines. To that aim, it seems essential for the sake of clarification,
the definition section by the disambiguation of its meaning.

For Gambetta [48], trust (or, symmetrically, distrust) is “particular level of the subjective probability
with which an individual, A, expects that another individual, B, performs a given action, both before
he can monitor such action (or independently of his capacity ever to be able to monitor it) and in a
context in which it affects his own action”. First, we notice here that Gambetta, which is a sociologist,
conceptualized trust as a mathematical concept, making its definition more concrete. Also, the part
“a particular level” of the definition means that for Gambetta, trust can be somehow quantifiable. For
Gambetta, 0 means complete distrust and 1 full trust. Further, this definition makes explicit the idea
that trust is subjective and introduces the specificity of trust: trust is made with respect to a specific
action to be performed. This definition takes into account uncertainty induced by the behavior of the
interacting partner, without which there would be no need for trust. Further, Gambetta states that
“if we were blessed with an unlimited computational ability to map out all possible contingencies in
enforceable contracts, trust would not be a problem”. With this statement, Gambetta highlights the
fact that trust involves decision in complex situations that are hard to grasp for human minds.

The complex nature of the situations involving trust is further reinforced by the definition provided
by Niklas Luhmann [82]. For Luhmann “the complexity of the future world is reduced by the act of
trust”. Luhmann approaches trust from a sociological background as he relates the use of trust to
interactions among societies and questions the existence of society without trust [75, 84]. He considers
trust as one of the most important “internal mechanisms for the reduction of complexity”. However,
the authors defined complexity in very abstract terms even if generally he used it in reference to un-
certain situations.

In computer science, McKnight [86] defined trust as “the extent to which one party is willing to depend

SUPERCLOUD D1.2 Page 31 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

on something or somebody in a given situation with a feeling of relative security, even though negative
consequences are possible”. For Grandison and Sloman, trust is “the firm belief in the competence
of an entity to act dependably, securely, and reliably within a specified context”. Finally, for Castel-
franchi, and Chaveny as well, trust is used as “the mental counterpart of delegation” [46]. So the
authors consider delegation as an action taking this mental state as an input.

Each of the above definitions advanced our understanding of trust and provides important building
bricks for the definition of this concept. However, none of them matches perfectly our conceptualization
of trust. In the light of the above definitions, we define trust as:

Definition 1 (Trust) the deliberate decision of an individual/entity A (called trustor) to be in a
situation of vulnerability towards the behavior of an individual/entity B (called trustee) with respect
to an issue X (i.e. trust issue) and within a context C.

What is Trust Management?

Trust management has been defined by Blaze and colleagues as “a unified approach to specifying and
interpreting security policies, credentials, relationships which allow direct authorisation of security-
critical actions.” [22, 20]. The main novelty of the approach introduced by Blaze et al. is that
they unified the concepts of security policy, credentials and authorisation under the concept of trust
management. However, their definition is too abstract and not very intuitive to explain what trust
management really is.
For Jøsang, trust management is “the activity of collecting, codifying, analysing and presenting se-
curity relevant evidence with the purpose of making assessments and decisions regarding e-commerce
transactions”[61, 62]. Although, broader and more intuitive, this definition was criticised by Grandi-
son in his doctoral thesis to be too domain-specific (i.e. e-commerce) [54]. Nonetheless, Grandison
reused it to define trust management as“the activity of collecting, encoding, analysing and present-
ing evidence relating to competence, honesty, security or dependability with the purpose of making
assessments and decisions regarding trust relationships for Internet applications” [53, 54].
The main drawback in Grandison’s definition is that the author restricted the nature of the evidences
based on which the trust relationship can be established. Further, Grandison used the verb “collecting”
for evidence while some of them can not collected but should be requested (e.g. credentials). Therefore,
we prefer to adapt the above definitions to provide one that best matches our understanding of trust
management.

Definition 2 (Trust Management) The automated activity of collecting, requesting, providing and
analysing information with the purpose of making trust decisions (e.g. access control, delegation,
collaboration) based on policies [125].

The main aspect we stress in this definition is the automated nature of trust management process. It is
the automation requirement that makes the trust management issue complex and necessitates so much
investigations. Further, we used the term information instead of evidence in order to comply with the
models that have been proposed in the Distributed Artificial Intelligence domain. Finally, we generalize
the purpose of trust management to trust decisions rather than focusing on trust relationships. From
our perspective, a relationship implies some kind of continuation in time, while a trust decision better
reflects the dynamic nature of trust.

Foundations of Trust Management

A Trust management System is an abstract system that processes a symbolic representation of trust
relationship in the perspective of trust decision automation [124].
The “symbolic representation of trust” refers to the concepts of credentials and policies by means
of which the issuer states that he trusts the entity to which the statement is applicable. Of course,

SUPERCLOUD D1.2 Page 32 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

this trust is not generic, thus is most of the cases the statement concerns a specific issue (e.g. read
a document). The symbolic representation of trust relationships can be best illustrated through the
everyday ticket experience [119]. The ticket (let us say a tram ticket) can be considered as a symbol of
trust between the tram company and the ticker holder. The ticket acts as a proof that the holder paid
for the journey and consequently that he is entitled to get on the tram. Once bought, the ticket can
be later given to someone else, thus transferring the trust relationship. In the tram, only the ticket
will be verified and not the identity of the holder. Concretely, in the above example, the tram ticket
illustrates the importance for credentials while the tram inspector enforces the policy (which is quite
simple here).
Thus, a trust management system aims at linking the requester and the requested via a trust relation-
ship based on which a trust decision can be made. To that aim, trust management systems provide a
language for the specification of policies and credentials, and a trust management engine (trust
engine for short) that evaluates whether the provided credentials satisfy the specified policy. These
three components are presented in the following sections.

Credentials

Credentials (or digital credentials) represent the counterpart of the paper credential we use in the real
world (e.g. passport, driving licence, student card). They represent digital documents or messages
that are certified (i.e. signed) by certification authorities. They allow user authentication but can also
provide additional information such as the user’s attributes (cf. Section 3.2.4), memberships or rights.
Blaze, in his trust management jargon, defined credential as “a signed message that allows a principal
to delegate part of its own authority to perform actions to other principals”. It is this definition that
we used as a basis. For instance, a public key ”certificate” is an example of a credential. Public key
infrastructures (PKI) have been systemically used by trust management systems to create, distribute,
validate, store and revoke credentials.

Policies

Policies have been extensively used in the computer science literature (e.g. information systems,
security, multi-agent systems). Initially, policies have been introduced in computer science to automate
tasks and decision makings (e.g. batch instructions). But nowadays, the main motivation for using
policies is to make systems support dynamic and adaptive behaviour. Policies allows a system to
change its behaviour without being stopped.
Despite their extensive use in the literature, the concept of policies is still hard to define and the
provided definitions are either too generic or domain specific. For instance, Sloman defined policies
as “rules governing the choices in behaviour of a system” [104]. While this definition captures the
meaning of a general policy, it failed addressing its role which is to specify the circumstances under
which the choices are made (in reaction to which conditions). Further, this definition reduces the
form of a policy to a set of rules and thus excludes many of the approaches which do not rely on
rules (cf. Section 3.4). Recently, De Coi and Olmedilla stated that “policies specify who is allowed to
perform which action on which object depending on properties of the requester and of the object as
well as parameters of the action and environmental factors” [40]. This definition makes explicit the
OrBAC approach, and thus covers de facto IBAC, LBAC, RBAC and ABAC policies. However, this
definition restricts the scope of a policy to situations in which an access request has to be evaluated.
Consequently, this definition could not be used to describe situations in which a decision is not merely
an access control decision (e.g. delegation). To avoid misunderstandings, we clarify the meaning of
trust policies and define it as follows.

Definition 3 (Policy) A policy is a statement that specifies under which conditions an entity (human
or artificial) can be trusted for a specific issue (e.g. resource action, task delegation)

SUPERCLOUD D1.2 Page 33 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

A policy represents the expression of the conditions under which the individual A deliberately takes
the decision to trust B. Thus from our perspective, the role of a policy is twofold: (i) it serves a means
for A to express the policy that its trust management system will rely on, and (ii) it is used as a
common language that A and B will use to exchange their respective trust conditions. In the light
of that, the role of the policy specification language is paramount. The language provides the basic
syntax to express conditions which represent the building blocks of a policy. Specification languages
can be more or less verbal and can have solid or weak formal basis. Thus, depending on the nature of
the policy specification language, policies fall into three categories: informal, semi-formal, and formal.
We limit our attention to formal policies that can be understood by both artificial and human agents.

Trust Engine

The objective of the trust engine is to assess if the credentials provided by the requester are valid and
whether they satisfy the specified policy. Importantly, trust management systems are not responsible
for making trust decisions. It is always the human or the application using the TMS that decides
whether to effectively trust the requester or not. So the main advantage in using a TMS is to offload
applications of complex and tedious tasks that are credentials verification and policies evaluation.
Figure 3.5 illustrates this principle and shows the basic functioning of a trust management system.

Application
A

Trust
Management

System

Object
(resource)

request + credentials credentials + policy

Yes / No Accept / Deny
Application

B

Figure 3.5: Illustration of the functioning of a trust management system

In Figure 3.5, the application A invokes the trust management system to determine whether application
B can be allowed to perform an operation on a resource. To that aim, the application A provides the
TMS with its local policy for the resource concerned by the request and the credentials provided by
application B. The TMS produces an answer based on which the application A decides to allow or
deny the request of B.
Depending on their degree of sophistication, trust management systems can provide more or less
functionalities. We are particularly interested in the TMS that output detailed answers. Figure 3.6
illustrates the degree of sophistication a TMS can achieve by providing more or less elements in its
answers.
Based on the type of information provided by the TMS, Seamons and colleagues identified two func-
tioning modes of trust management systems [102]. In our work, we distinguish four modes that we
summarise as follows:

• Mode 1: In this mode, the TMS produces a boolean answer (trust/no trust) that states whether
the credentials provided satisfy the policy.

• Mode 2: In addition to the boolean answer, in this mode the TMS provides a justification,

SUPERCLOUD D1.2 Page 34 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Trust
Management

System

request
+

credentials
+

policy

Answer :
Yes / No

Justification

Basic
Explanation

Detailed
Explanation

Figure 3.6: Functioning modes of a trust management system

when the request is denied, that states which conditions in the policy the provided credentials
were unable to satisfy.

• Mode 3: In this mode, the TMS provides an answer, a justification and an explanation when
the policy is satisfied. The explanation contains all credentials that satisfy the policy.

• Mode 4: This last mode extends the third mode as it provides a detailed explanation. The
detailed explanation is obtained by providing all subsets of credentials that satisfy the policy.

Modes 1 and 2 are often used by the resource owner to verify whether the credentials its interlocutor
provided satisfy its policy, while modes 3 and 4 are used by the requester to determine whether the
credentials it possesses (and which subset of credentials) satisfy the policy stated by the owner of the
resource. These latter modes were particularly introduced in the context of trust negotiation that we
will tackle in the next section.

Automated Trust Negotiation

Automated Trust Negotiation (ATN) is an approach to trust management in which trust is estab-
lished through the gradual, iterative, and mutual disclosure of credentials and access control policies
[98, 128]. Unlike the traditional trust management systems that have have been presented in the pre-
vious section, automated trust negotiation approach consider credentials as first class resources that
should be protected through release policies dedicated to them. Consequently, ATN systems provide
users with better fine-grained and flexible control over the disclosure of the potentially sensitive data
conveyed by their credentials [77, 98, 123].
However, negotiation generally refers to the process by which agents can reach an agreement on matters
of common interest [90]. We adapt this well-established definition to the negotiation-based adaptation
of trust policies.

Definition 4 (Automated Trust Negotiation) Automated trust negotiation is an iterative process
in which two interacting agents reach an agreement on the credentials they are willing to release to
gain each other’s trust.

SUPERCLOUD D1.2 Page 35 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

The introduction of trust negotiation has several benefits. First, it better reflects the asymmetric
nature of trust. It allows also the establishment of bilateral trust as both participants in an interaction
can request credentials from each other. Finally, it allows a more flexible trust management as trust is
established gradually and incrementally. Research on trust negotiation has been principally focusing on
how to make trust management systems achieve trust negotiation? and how to make trust negotiation
successful?. The first question represents the requirements for trust negotiation, while the latter
represents trust negotiation strategies. The requirements are further divided into requirements for
trust management systems and requirements for policy specification languages.
Trust negotiation is inherently a strategy-driven process as the choice made by the individual affects
the amount of credentials it releases and the time it makes in this task [77]. Therefore, recent research
in trust negotiation area has been primarily focusing on proposing efficient and optimised negotiation
strategies and protocols. Generally speaking, however, the implemented negotiation strategies fall into
three categories: eager, parsimonious and prudent strategies [54].

Eager Strategy: In the eager strategy, participants in the negotiation adopt a naive position in
which they disclose almost all credentials they possess. The negotiation is considered to be
successful when each participant received enough credentials to be assured about the interaction
he is engaged in. The major advantage of this strategy is that it does not require the use of
release policies and it minimises the time of the negotiation [9]. However, this strategy increases
the amount of disclosed credentials and thus the sensitive date they convey.

Parsimonious strategy: With this strategy, participant exchange only credentials requests (no cre-
dential is released) and tries to find a possible sequence of credentials disclosure that can lead to
a successful negotiation [54]. Also, in parsimonious strategies, only credentials that are explicitly
requested are released. Unlike the eager strategy, the parsimonious one minimises the credentials
exposure but increases considerably the time of the negotiation without any guarantee of success.

Prudent strategy: is a mix of the previous strategies. An eager strategy is applied to credentials
that are not sensitive and a parsimonious strategy is used for the sensitive ones. This strategy
has been proved to over-perform the other strategies in situations where the negotiation involves
the disclosure of sensitive and non sensitive credentials [129].

Survey on Trust Management Systems and Models

With the advance of cloud computing, the objective of researchers on security is to propose decen-
tralised and fine-grainedaccess control mechanisms to leverage the distributed nature of these systems.
The general idea is to allow resource owners to state who they trust and for which issue. Trust man-
agement systems (TMS) were originally designed to solve the problem of deciding whether a request
to perform a potentially harmful action on a sensitive resource comply with the access control policy
[22, 20]. Nevertheless, in Distributed systems, such as Distributed Cloud Computing, these system
can be used in a broader way to evaluate whether a trust decision complies with the user requirements
or not. We believe that these requirement can be expressed as SLAs or trust policies, but any other
specification mechanisms can be considered as well.

In this section, we review a selection of trust management systems. These systems are split into decen-
tralised trust management systems (DTM) and automated trust negotiation systems. DTM systems
are further divided into authorisation-based TMS (ABTMS) and Role-Based TMS. These systems are
presented in the chronological order in which they have been published. We think that respecting this
chronological causality helps the reader to understand key elements of each system.

SUPERCLOUD D1.2 Page 36 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Authorisation-Based TMSs

The authorisation-based TMSs category relates to systems that pioneered the trust management ap-
proach. Whilst most of these systems are considered nowadays as obsolete, the mechanisms they
proposed remain valid and can be found at the basis of most of modern trust management systems.
They inherit from IBAC and ABAC models. They build a trust chain in order to map a credential
holder to the authorisation it can be trusted for.

PolicyMaker [22]

PolicyMaker is the first application stamped as a trust management system. This system introduces
the concept of programmable credentials and policies by means of an assertion language. The syntax
of an assertion is:

Source ASSERTS Subject WHERE Filter (3.1)

The above syntax can be used to specify both credentials and policies. Here, the statement represent
a credential by means of which a source authorises a subject to perform actions that are accepted by
the filter (i.e. interpreted program). The main difference between a credential and a policy is that
in policies the keyword policy is always used as the source of the assertion. For instance, we can use
the assertion given below to authorise the entity holding the public key ‘‘rsa:123’’ to access all
resources shared among the community.

policy ASSERTS ‘‘rsa:123’’ WHERE filter to access all shared resources (3.2)

In PolicyMaker, an assertion (whether credential or policy) is used to state that the source (or the
local application in the case of a policy) trusts the key holder to perform the actions accepted by the
filter. However, the formalism used to encrypt keys is left to the application using PolicyMaker, thus
PolicyMaker is generic with respect to the keys encryption scheme. The semantic of the operations
and the enforcement of the trust evaluation decisions are also left to the application.
Typically, the application provides to the PolicyMaker trust engine a set of requested actions, a set
of credentials and a policy. The objective of PolicyMaker is to check whether the credentials form
a delegation chain by means of which the action can be linked to the key of the keys. PolicyMaker
then replies with an answer (‘‘Trust’’ or ‘‘False’’) and it is up to the application to interpret the
answer and take the appropriate decision. The functioning of the PolicyMaker engine is similar to the
architecture we described in Figure 3.5 (cf. Section 3.3.3). PolicyMaker does not support negotiation.
Policies are evaluated in a static and context-independent way. Finally, PolicyMaker can not be used
to manage resources that are owner by more that one individual.
In PolicyMaker, the choice of the policy specification language is left open which makes policy eval-
uation undecidable in the most cases [54]. KeyNote [21], its successor, overcomes this drawback and
imposes that the policies must be written in a specific language. KeyNote makes also the cryptographic
verification which was left to the application in PolicyMaker.

REFEREE [31]

REFEREE (Rule-controlled Environment For Evaluation of Rules and Everything Else) is a W3C
and AT&T joint trust management system used for web document access control. The system was
developed based on the PolicyMaker architecture, but the functioning of the system is somehow
different. Here, it is the resource providers (i.e. authors of web content) that are trying to gain
the trust of the resource consumer (i.e. the site visitor). The system was essentially used to prevent
minors from accessing illegal content. The system uses PICS (Platform for Internet Content Selection)
labels as credentials that the REFEREE trust engine (a browser plug-in) evaluates with respect to a
local policy.
Profiles-0.92 is a rule-based policy language that was designed for REFEREE. As illustrated in List-
ing 3.1, each policy is an “s-expression” that is evaluated in a top-down manner.

SUPERCLOUD D1.2 Page 37 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

�
(((invoke ” load− l abe l ” STATEMENT−LIST URL ” http ://www. emse . f r /”)
(false− i f−unknown
(match
((” load− l abe l ” ∗)
(s e r v i c e ” http ://www. emse . f r /CA. html”) ∗
(r a t i n g s (RESTRICT > t r u s t 2)))))
STATEMENT−LIST))
� �

Listing 3.1: Example of a policy specified in Profiles-0.92 (adapted from [31]).

The above policy states that any document having a label (certified by emse) with a trust rating
greater than 2 can be viewed by the user. The matching between labels and the conditions specified
in the policy is purely syntactic. Thus it remains to the application and the labelling institution to
define its semantic.
REFEREE trust engine evaluates the above policy in two steps. First, tries to find and download
labels provided by the server which URL has been specified in the policy. Then a pattern-matcher is
run to find a label with a trust rating. If the rating is greater than 2 the result of the evaluation would
be true, if not the result would be false and if no label was found the result would be unknown.
Thus, REFEREE trust engine implements a three-valued logic, specially for the management of the
meaning of unknown [31, 54].

Binder [42]

Binder is the first trust management system which uses a logic-based policy language [42]. The
particularity of Binder lies in its explicit specification of right delegation though the extension of
Datalog with the says construct [29]. In Binder, credentials represent keys which holder use to sign
delegation assertions. Then policies are used to filter these assertions and map them to their authors.
The specification language proposed in Binder allows the expression of two type of declarations: beliefs
and policies. For instance, the following declaration is used by a individual A to state that another
individual B can be trusted for joining his community and for reading his personal files.

can (B, read , MyFile) .
can (B, jo in , MyCommunity) .

can (X, jo in , MyCommunity) :− Y says t r u s t (Y,X) , can (Y, jo in , MyCommunity)
� �
Listing 3.2: Examples of Binder declarations (beliefs and policies).

The above example illustrated also the declaration of policies in Binder. In this example, the policy
states that if A trusts an individual Y to join his community and that Y trusts another individual X,
this latter can also be trusted to join the community. Worth noting in this policy is the use of the
says construct.
The role of the Binder trust engine is to evaluate policies with respect to local assertions (i.e. beliefs)
and assertions made by others (i.e. others’ beliefs). The main novelty of the system lies in the addition
of the says construct each time an assertion is received from others. Indeed, each time an individual
sends an assertion, the Binder trust engine transforms this assertion into a certificate which is signed
with the private key of the issuer. Then these assertions are sent to other Binder engines in order to
make trust decisions. When an assertion is received, Binder verifies the validity of the certificate and
automatically quotes the assertion with the says construct to distinguish them from local assertions.

SULTAN [54]

SULTAN (Simple Universal Logic-based Trust Analysis) is a TMS that has been proposed for the
specification and analysis of trust and recommendation relationships [54]. In SULTAN, credentials

SUPERCLOUD D1.2 Page 38 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

represent certified statements about identity, qualification, risk assessment, experience or recommen-
dations. The system is provided with a policy specification language in which policies are used to
specify two types of policies: trust/distrust policies and positive/negative recommendation policies. In
fact, trust policies corresponds to classical meaning of policies used in this report, while recommenda-
tion policies are statements by means of which individuals make recommendations to each others. In
the following, we provide the syntax used to specify both types of policies.

PolicyName : trust(Tr, Te,As, L)← Cs; (3.3)

The above policy represent a trust policy by means of which a trustor (i.e. Tr) trusts (or does not
trust) to some extent (L corresponds to the level of trust) a trustee (i.e. Te) with respect to an
action set (i.e. As) and if the conditions hold (i.e. Cs). Similarly, the recommendation policy defined
hereafter specifies that the recommender (i.e. Rr) recommends at a recommendation level (i.e. L) the
recommended agent (i.e. Re) to perform the action (i.e. As) if the conditions (i.e. Cs) hold.

PolicyName : recommend(Rr,Re,As, L)← Cs; (3.4)

The SULTAN trust engine is responsible of collecting the information required for the policy evaluation,
making trust relationship decisions, and monitoring the environment in the perspective of re-evaluating
existing trust relationships.

Ponder [36]

Ponder is merely a policy language for which there was no associated trust management system [36].
Ponder is the first object-oriented policy language that adopts a role-based approach. Nevertheless,
many of the features proposed by this language inspired other systems which explains our motivation
to review it. Ponder is a declarative language which can be used for the specification of four types
of policies, namely authorisation, obligation, refrain and delegation. Ponder pioneered the use of
a deontic approach which was reused later by other languages such as Rei [64] and KAos [116, 115].
Furthermore, the main novel aspect of Ponder lies in the constructs it provides for updating, organising
and handling policies on runtime according to the environment context.
For instance, the following example is an instantiation of a positive authorisation policy type called
rights. The policy specifies that members (the subjects of the policy) can modify the target objects
of type file that are stored in the common space of the community com.

type auth+ rights(member, target <file> com) {action modify(); } (3.5)

Another interesting aspect of Ponder policies lies in the fact that subjects and objects to which a
policy applies can be grouped. For instance, in the above example, the policy concerns all members
of the community and all files, making factorisation of rights implicit and more efficient that what
can be expressed in RBAC models or any other role-based trust management systems. Further, the
authors assumed that their language is flexible, scalable and extensible; flexible as it allows the reuse of
policies since many instance of the same policy can be created for many different conditions; scalable
as it allows the definition of composite policies; and extensible as it accepts the definition of new types
of policies that can be considered as sub-classes of existing policies, thanks to the object-oriented
approach. However, due to the absence of implementation, none of these properties have been proved
to be valid.
Recently, Ponder has been redesigned, as Ponder2, to increase the functionality of authorisation poli-
cies (e.g. operators for all managed objects have been added). In contrast to the previous version,
which was designed for general network and systems management, Ponder2 has been designed as an
entirely extensible framework that can be used at different scales: from small embedded devices to
complex services and virtual organisations.

SUPERCLOUD D1.2 Page 39 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Role-Based TMSs

In authorisation-based TMSs, the delegation of authority is used in a very restrictive way. For instance,
in PolicyMaker, a community member cannot simply specify that “all members of my community can
access my resources”. In these systems, the solution would be to delegate the right to the members
I know and authorise these members to further delegate the right to each member they know. This
approach makes trust decision complex and difficult to manage and control (e.g. a member can delegate
the right to non members).
In response, a new generation of role-based trust management systems that take advantage of the
strength of RBAC and trust management approaches have been used. From RBAC, role-based TMS
borrow the concept of role and from trust management, they borrow delegation and distributed cre-
dentials certification. The combined use of roles and distributed credentials management makes these
systems convenient for large scale systems such as virtual communities.

IBM Trust Establishment [57]

IBM Trust Establishment (IBM-TE) is a role-based trust management system developed by IBM for
e-commerce applications. The main objective of IBM-TE is to map credential holders to groups.
Credentials are specified in a generic language but the system provides transcoding mechanisms to
handle X.509. Credentials are used to authenticate users, while policies are used to express restrictions
on how a credential holder could belong to a group. Groups are used in the sense of roles which are
mapped to authorisations (cf. Section 3.2.3). IBM-TE comes with a dedicated XML-based policy
specification language called Trust Policy Language (TPL). An example that illustrates the TPL
syntax is given in Listing 3.3.�
<GROUP NAME=”Community”>
<RULE>
<INCLUSION ID=” reco ”

TYPE=”Recommendation”
FROM=”members”
REPEAT=”2”>

</INCLUSION>
<FUNCTION>

<GT>
<FIELD ID=” reco ” NAME=” Level ”></FIELD>
<CONST>1</CONST>
</GT>
</FUNCTION>

</RULE>
</GROUP>
� �

Listing 3.3: A fragment of a TPL Policy specifying a membership rule.

The above policy is used to add a new member to the group Community (role). The policy states
that a new member can be admitted if he can provide two recommendations of existing members.
For that, two XML tags are used: inclusion and function. Inclusion tag defines the credentials that
the requester must provide (e.g. two recommendation credentials), while the function tag allows the
definition of additional conditions over requested credentials (e.g. recommendations must be greater
than, GT, 1). The trust engine processes credentials in a traditional way. Along with his request, the
requester provides the set of credentials he possesses. These credentials are then evaluated by the
engine to determine to which group the requester can be mapped [57].

SUPERCLOUD D1.2 Page 40 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Role-Based Trust Management Framework [81]

The Role-Based Trust Management Framework (RT) was initially designed to support trust decision
making in collaborative environments [81].
In RT , roles are represented as attributes, so an individual is said to belong to a role if it possesses a
credential in which the role identifier is specified. Unlike IBM-TE, RT uses an extension of Datalog
[29] to represent both credentials and policies. In RT , the terms credential and policy are used
interchangeably. However, RT uses the term certificate in reference to the meaning of credential we
use here. The formalism used to specify certificates have not been defined, but some approaches
proved the compatibility of RT with both X.509, PGP and any certification mechanisms using PKI.
The syntax used to specify policies is defined as follows:

Com.evaluator(?X)← Com.recommender(?X) ∧ Com.Member (3.6)

The above policy states that any member of the community that recommended another member is
allowed to evaluate it. The RT policy specification language comes in five flavours RT0, RT1, RT2, RT T

and RTD [81]. RT0 is the basic language that supports roles hierarchies, delegation of authorities over
roles, roles intersection and attribute-based delegation of authority. RT1 adds to RT0 the possibility
to add parameters to roles (e.g. in the previous policy, the evaluator and the recommender roles are
endowed with parameters), RT2 adds to RT1 logical objects. They represent a way to group (logically)
resources of access modes in order to ease the specification of policies. RT T adds thresholds to roles,
while RTD supports delegation of roles activation (i.e. roles that are active only within a specific
context).

Cassandra [15]

Cassandra is a TMS that aims at enabling individuals involved in potentially large scale systems (e.g.
P2P systems) to share their respective resources under the restriction of local policies [15]. The system
has been principally deployed in the context of electronic health records access control. Cassandra is
role-based and supports X.509 credentials. Policies in Cassandra are expressed in a language based
on Datalog with constraints [29]. For instance, a policy can state that an individual A can delegate
the role of moderator as long as he commits to the role admin. This policy is specified using the
constructor canActivate() as follows:

canActivate(B,moderator)← hasActivated(A, admin) (3.7)

Cassandra provides flexible delegation mechanisms which allow the explicit specification of delegation
lengths [15, 40]. In addition, Cassandra proposes a mechanism for roles revocation, including cascade
roles revocation (e.g. if an individual is revoked from its role, all individuals to which he delegated
the role are revoked too). Finally, the Cassandra policy language allows the specification of roles
hierarchies. Cassandra trust engine is only available as a proof of concept implementation in OCaml.
The main feature of the engine is the implementation of the semantic of Cassandra policies for their
evaluation.

Automated Trust Negotiation Systems

In trust management, a trust decision comes after a complex interaction process, where parties ex-
change policies and credentials. Traditionally, in early TMS, trust is established in an unidirectional
way: the resource owner is assumed to be trusted by the requester. Consequently, before manipulating
the resource, the requester must provide its credentials to know whether its request is accepted or not.
So if the request was not accepted, the requester would have uselessly released its credentials (which
contains sensitive data such as its id, its age or its address). Therefore, due to privacy considerations,
such an approach is not acceptable. To that aim, several negotiation-based TMS have been proposed.

SUPERCLOUD D1.2 Page 41 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

TrustBuilder [130]

TrustBuilder was the first TMS to introduce the concept of trust negotiation. TrustBuilder uses
X.509 certificates and TPL policies (cf. Section 3.4.1). The authors reused also the IBM-TE engine
for the evaluation of policies. So TrustBuilder can be considered as an extension of IBM-TE to include
negotiation features. The main novelty of this system lies in its rational management of credentials
disclosure. To that aim, the trust engine is endowed with a negotiation module in which strategies are
used to determine safe credentials disclosure for both parties involved in the interaction.

P C

C

P

Negotiation
Module

Credentials
Verification

Compliance
Checker

Interlocutor's
policy

Interlocutor's
credentials

Local
credentials

Local
policy

Figure 3.7: Architecture of the TrustBuilder TMS

As illustrated in Figure3.7, TrustBuilder engine is split into three sub-modules: credentials verification
module, negotiation module and compliance checker module. The core element of this architecture is
the negotiation module which is responsible of enforcing negotiation strategies. The objective of
a negotiation strategy is to minimise credentials disclosure. To that aim, TrustBuilder evaluates
iteratively the policy of the interlocutor and the set of local credentials to compute the minimal set of
credentials that satisfy the policy (as depicted in Figure 3.7).
Recently, Lee and colleagues proposed an extension of TrustBuilder that they called TrustBuilder2
[78]. This extension aims at endowing the TMS with four main functionalities: support of arbitrary
policy languages, support of arbitrary credentials format, integration of interchangeable negotiation
strategies and flexible policies and credentials management.

Fidelis [126]

Fidelis is a TMS that originates from the OASIS (Open Architecture for Secure, Interworking Services)
distributed authorisation architecture project. Fidelis makes use of keys, X.509 and PGP as credential,
and policies and credentials are systematically specified by distinct entities. Fidelis distinguishes two
types of entities: simple and composite principals. Simple principals are in fact public keys while
composite principals are groups of public keys (e.g. groups or communities).
The Fidelis Policy Language (FPL) is the core element of the system. The language is able to express
recommendations and trust statements. The syntax of the language is presented in the following
example.�
any−statement : ind −> statement

SUPERCLOUD D1.2 Page 42 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

a s s e r t s any−statement : s e l f −> statement
where ind == 0x14ba9b925 | | ind == 0x5918b01a | | . . .
� �

Listing 3.4: A blind delegation policy in Fidelis.

This policy represents a special type of delegation policies, called blind delegation. It is used to make
an individual “blindly” trust and assert all assertions made by other individuals. In this example, the
group of trusted individuals is constrained by the variable ind.
On the top of the FPL, the authors developed a trust negotiation framework in which meta-policies are
used to specify negotiation strategies. Meta-policies are designed to express four types of conditions
about when a credential could be disclosed: designated principal disclosure, context-specific disclosure,
trust-directed disclosure, and mutual exclusion [126]. For instance, the following meta-policy is used to
disclose the trust statement T2(a, b): self->p (which is used as a credential here) when negotiating
with the 0xb258d29f key holder.�
n e g o t i a t o r () : s e l f −> 0 xb258d29f
grants d i s c l o s e (T2(a , b) : s e l f −>p)
� �

Listing 3.5: A credential disclosure meta-policy in Fidelis.

Fidelis does not support standard negotiation strategies. Thus termination property is not guaranteed
making the evaluation of a policy not decidable in many situations. Finally, Fidelis distinguishes
between static policies and live policies. Static policies do not depend on environment variables (e.g.
date, time) to be evaluated, while live polices must be queried dynamically and tailored to each
request. Nevertheless, live policies were only used in the context of negotiation as presented above
and no adaptation mechanisms have been proposed as the description may suggest.

Trust-X [18]

Trust-X is a TMS that was designed for trust negotiation in peer-to-peer systems [18, 19]. Trust-X
is built upon two bricks: X -profiles and X -TNL. X -profiles are data structures used to store user’s
credentials along with uncertified declarations containing information about them (e.g. age, mail,
address). X -TNL stands for XML-based Trust Negotiation Language. X -TNL has been developed for
the specification of Trust-X certificates and disclosure policies.�
<po l i cySpec>
<p r o p e r t i e s>

<c e r t i f i c a t e targetCertType= Corr i e r employee>
<certCond>
// employee number [@code=Rental Car . requestCode]
</ certCond>
<certCond> / . . . / [p o s i t i o n=d r i v e r]
</ certCond>
</ c e r t i f i c a t e>

</ p r o p e r t i e s>
<r e s ou r c e t a r g e t=” Rental Car ”/>
<type value=”SERVICE”/>

</ po l i cySpec>
� �
Listing 3.6: Example of X -TNL policy specification.

The code in Listing 3.6 shows an example of an X -TNL policy defined by a rental car agency. The
agency allows drivers of the Corrier society, which is part of the agency to rent cars without paying.
This policy can be satisfied by providing a credential which is specified using the X -TNL too. The
syntax of a credential is described in the example provided in Listing 3.7.

SUPERCLOUD D1.2 Page 43 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

�
<Cor r i e r Employee credID=’ 12ab ’ , SENS= ’NORMAL’ >
<I s s u e r HREF=’ h t t p : //www. Cor r i e r . com ’ T i t l e=Cor r i e r Employees Repos i tory />
<name>
<Fname> Ol iv i a </Fname>
<lname > White </lname>
</name>
<address> Grange Wood 69 Dublin </ address>
<employee number code=34ABN/>
<p o s i t i o n> Driver </ p o s i t i o n>
</ Cor r i e r Employee>
� �

Listing 3.7: Example of X -TNL profile

The trust-X engine provides a mechanism for negotiation management. The main strategy used in
Trust-X consists in releasing policies to minimise the disclosure of credentials. So, only credentials
that are necessary for the success of a negotiation are effectively disclosed [107]. Thus Trust-X makes
use of a prudent strategy (cf. Section 3.3.4).
The primary novel aspect proposed in Trust-X consists in the use of trust tickets. Trust tickets are
issued upon successful completion of a negotiation. These tickets can later be used in subsequent
negotiations to speed up the process in case the negotiation concerns the same resource. Addition-
ally, Trust-X provides also a mechanism to protect sensitive policies. This is achieved using policy-
precondition; policies are sorted logically so that the satisfaction of a policy is the precondition of the
disclosure of the subsequent policies.
Recently, Braghin [25] proposed an interesting extension in which the framework is used to handle
negotiations between groups of individuals instead of only between two individuals.

ATNAC [98]

Adaptive Trust Negotiation and Access Control (ATNAC) is an integrated TMS that combines two
existing systems: GAA-API and TrustBuilder (already presented in Section 3.4.2). GAA-API is a
generic authorisation and access control system that captures dynamically changing system security
requirements. The system uses X.509 credentials to convey information between negotiating partners.
ATNAC uses TPL to express trust policies that, in addition to the partner’s properties, explicitly refer
to the context suspicion level (SL). In ATNAC, several policies are specified and used to protect the
same resource. So the main novelty of the system lies in the trust engine that monitors the environment
suspicion level (thanks to GAAI-API) and adapts the selected policy based on the suspicion level. This
mechanisms is used in ATNAC to provide adaptive trust negotiation in order to counter malicious
attacks.

Suspicion Level

low medium high

R1 freely freely freely

R2 freely freely C1

R3 freely C1 C1 and C2

Table 3.1: Example of policies used in ATNAC (adapted from [98])

The above table illustrates the adaptive approach advocated by ATNAC. In this example, the resource
R1 is non sensitive and thus it is disclosed independently from the suspicion level. In contrast, R3 can
be freely disclosed in the context of low LS, requires a credential C1 when SL is medium while both
C1 and C2 are required when SL is high.

SUPERCLOUD D1.2 Page 44 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

PROTUNE [23]

The PRovisional TrUst NEgotiation framework (PROTUNE) is a system that provides distributed
trust management and negotiation [24, 23] features to web services. The PROTUNE framework
provides: (a) a trust management language, (b) a declarative meta-language for driving decisions
about information disclosure, (c) a negotiation mechanism that enforces the semantics of the meta-
language, (d) a general ontology-based approach to support the policy language extension, and (e) an
advanced policy explanation mechanism that is able to output why, why not and how to answers that
are important during a negotiation process. One of the main advances made by PROTUNE lies in the
use of declarations along with credentials during the policy evaluation process. Declarations are the
unsigned equivalent of credentials. They can also be considered as statements that are not signed by
a certification authority. However, the most novel part of the project remains the policy specification
language which combines access control and provisional-style business rules.
In PROTUNE, policies are specified using the rule language defined in [24]. The language is based on
logic program rules extended with an object-oriented syntax3.�
a l low (X, a c c e s s (Resource)) :−

goodReputation (X) , va l idID (C) .
va l idID (C) :−

c r e d e n t i a l (i d e n t i t y , C[s ub j e c t :X]) .
goodReputation (X) :−

d e c l a r a t i o n (Y,X, r eputa t i on (R)) , Y!= X, R > 50 .
� �
Listing 3.8: Example of a PROTUNE access policy.

The above PROTUNE policy states that an individual must provide a valid credential proving its
identity and that he must have a good reputation to be allowed to access a resource. This kind of
policy is called access policy. Similarly PROTUNE implements negotiation strategies through release
policies which states under which conditions a credential can be released. An example of such resource
is provided hereafter.�
a l low (r e l e a s e (c r e d e n t i a l (C[type : i d e n t i t y]))) :−

c r e d e n t i a l (ta , Cred [i s s u e r : ’ Trusted Author ies ’]) .
� �
Listing 3.9: Example of a PROTUNE release policy.

This policy states that identity credentials can be released only to individuals providing a credential
that proves that they belong to the ‘Trusted Authorities’ group.

XeNa [3]

Abi Haidar and colleagues [3] proposed an XACML Negotiation of Access which brings together
negotiation for trust establishment and access control management within the same architecture.
XeNA trust engine ropose full support of XACML access control and negotiation policies.
In XeNA, the negotiation process based on resource classification methodology occurs before the
access control management. A negotiation module at the core of this negotiation process is in charge
of collecting resources required to establish a level of trust and to insure a successful evaluation of
access. The access control management is based on an extended Role-Based Access Control (RBAC)
profile of XACML. This extended profile responds to advanced access control requirements and allows
the expression of several access control models within XACML.

3A.at : v means that the individual A has the attribute at and that this attribute has the value v. This expression is
in fact an abbreviation of the logic predicate at(A, v)

SUPERCLOUD D1.2 Page 45 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

A Preliminary review of Trust Models in Cloud Computing

Trust in cloud computing has been addressed in the literature from two different perspectives; the
cloud service consumer (CSP) and cloud service provider (CSC). In this section, we classify existing
approaches from both perspectives:

Credentials based Trust Models

These models draw their inspiration from the approach advocated in decentralised Trust Management
Systems presented previously (cf. Section 3.4.1). In theses models, trust is established between CSP
and CSC using credentials (i.e. certificates and/or keys) issued by trusted third parties or certification
authorities. An entity A trusts another entity B if and only if it receives the adequate credentials to
build a chain of trust that links B to A. This models reproduces the Web of Trust (WoT) approach in
which each member vouch for each others [1, 2].

SLA based Trust Models

In [88], the authors proposed the ”Trust as a Servics” (TaaS) framework in which the authors intro-
duced and adaptive credibility model that distinguishes between credible trust feedbacks and malicious
feedbacks by considering cloud service consumers’ capability and majority consensus of their feed-
backs. In this work, trust has been addressed from the perspective of users.

In [55], the authors proposed a multi-face model to manage trust in Cloud Computing marketplaces.
The model collects several attributes to assess the trustworthiness of a Cloud Service Provider. These
attributes corresponds to Service Level Objectives (cf.s Section 3.1.1) defined within active SLAs.
Feedback information is also collected from different sources and used alongside SLA metrics to derive
a trust score for each CSO. The authors refers to the CAIQ (cf. Section 3.1.4) as a way to extract
SLA compliance information.

In the Joint Risk and Trust Model (JRTM) developed in the context of the A4Cloud (Accountability
for Cloud) [28], statistical data (i.e. proofs and indicators) collected from third party services (i.e.,
a Trust as a Service Provider) are accumulated and computed to estimate the trust that a Cloud
Customer put on a specific Cloud Service Provider. The model relies on the assessment of the cloud
service security and pricacy risk to derive a trust metric. The information used include for instance
statistics on the number of security and privacy incidents that the CSP was subject to.

Feedback based Trust Models

In these models, trust is built upon feedbacks, ratings and opinions that CSP and CSC express based
on their past experience with each others. In these models, each entity (CSP and CSC) is responsible
of collecting, processing and sharing a reputation measure. In general, feedbacks are expressed with
respect to business (e.g., QoS) and security parameters. Thus the object of a feedback can be any
property that CSP and CSC can rates each others on it. Feedbacks are more general compared to
reputation. But the models used in reputation based-trust models are comparable to the one used for
feedback management. Reputation is the social evaluation of a group, a community or a society of
agents towards the trustworthiness of an individual [99].

In DAI, and more particularly in multi-agent systems, reputation has been considered as a substantial
dimension of trust [63]. In the following, we review some predominant reputation models.

ReGreT [99] is a well known decentralised trust and reputation model for e-commerce. Proposed by
Sabater and Sierra in 2001, the main objective of ReGreT was to make more accurate trust evalu-
ations. To that aim, the authors used three factors based on which trust was computed: the direct

SUPERCLOUD D1.2 Page 46 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

experience, the global reputation and an ontological fine-grained reputation which defines reputation
values for each trait of the individual using the ontology. In ReGreT, the network to which the agent
belongs is used to assess the credibility of the information provided by each agent. Social relationship
are presented in the form of fuzzy rules which are later used to determine whether the witness infor-
mation provided by an agent should be considered or not.

Jøsang [63] proposed a reputation model (called the Beta Reputation System) for the decision making
in the context of e-commerce transactions. The authors used the concept of reliability along with the
probability of success to determine the trustworthiness of a partner. The reliability of an individual is
assessed in a direct and indirect way. The direct reliability is computed based on previous knowledge
about the partner, while the indirect one is given by recommendation from other trust third party.
The indirect reliability is then computed by making the average of all recommendation weighted by
the recommender trust degree. Then this value is combined with the direct reliability in order to
derive a trust degree. Once this trust degree obtained, it forms a belief that is described as set of
fuzzy propositions such as “A believes that B is very trustworthy”.

FIRE [60] is another important model which has been designed by Huynh and colleagues for multi-
agent systems. The authors compute trust based on past experiences, the role of the agent, its
reputation and a kind of certified reputation. Roles are used to determine to which degree an agent
that have a certain position in the society could be trusted. The main idea is that trust depends on
the fulfilment of the role ascribed to the agent. Also, the authors make a distinction between witness
reputation and certified reputation. Certified reputation is a reputation that comes from certified
presumably trusted witness, while normal reputation comes from every agent of the society.

Predictions based Trust Models

In [122] the authors defined a similarity based prediction model. Entities (i.e., cloud users and cloud
providers) are represented using a vector of capabilities and interests. The more theses vectors are
similar the more likely trust can be established between them.

In [55] the authors presented a behavior-based trust model in which the trust value depends on the
expected behavior of the cloud provider. The behavior of the provider is assessed with respect to spe-
cific attributes such as security measures, compliance and customer support. Here again, the authors
focus on the perspective of the user that tries to select the best provider.

”Hardware” Trust Management

The cloud computing trust model is based on the notion of transitive trust. It means that if entity A
trusts entity B, and entity B trusts entity C, then entity A trusts entity C. Using this property enables
building a chain of trust (CoT) from a single root of trust (RoT). The trust of the host platform lies
in the platform’s hardware trust. An outside entity can determine the trustworthiness of the platform
via attestation from TPM, which is the Root of Trust Reporting (RTR) on the hosting platform. The
TPM performs integrity measurement on the platform in two ways:

• Static Root of Trust for Measurements (SRTM): as the part of TCG 1.1b specification,
the platform is assumed to be in a secure state and starts in an immutable environment at the
boot time. A set of instructions called the Core Root of Trust for Measurement (CRTM) is then
executed on the platform to measure the BIOS. After computing a hash value, it is sent to the
TPM that keeps it in a Platform Configurations Register (PCR). Once the trust is established
in the system by measuring the BIOS, CRTM passes control to the measured BIOS, where it
measures the next component in the boot chain and again, will store the value in a PCR of the

SUPERCLOUD D1.2 Page 47 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

TPM. This process is executed for each component in the boot sequence and the rest of the
Trusted Computing Base (TCB) of the platform. The TCB includes all measured components
that provide the foundation of trust in the platform.

• Dynamic Root of Trust for Measurements (DRTM): DRTM intends to provide the ca-
pability of executing code from a clean slate while the system is running, without any rebooting
(like SRTM). The major chip vendors AMD and Intel implemented technologies that allowed the
DRTM. Although AMDs Secure Virtual Machine (SVM) and Intels Trusted Execution Technol-
ogy (TXT) (former code name LT LaGrande Technology) are more than just DRTM implemen-
tation, DRTM is the core concept on which they are built. In order to execute a custom code
(aka Measured Launched Environment - MLE), Intel TXT creates a trusted environment from
an untrusted state by invoking a set of security instructions (SMX) on the processor to perform
a very specific set of tasks (GETSEC). GETSEC ensures that a very special code, i.e. SINIT
Authenticated Code Module (ACM) can be executed safely. During this process, all but one
CPU are disabled and all current running processes, interrupts and I/O (via IOMMU, e.g. to
avoid DMA attacks) are blocked/stopped. Afterward, CPU rejoins in a clean state and anything
executed before is discarded. At this point, the signature of the special code (SINIT ACM) gets
validated and its hash measurement is sent to the TPM (in the PCR 17). Next, execution is
passed to the ACM which then measures MLE and sends the measurement to the TPM (in the
PCR 18). Finally, execution is passed to the MLE.

The security of those mechanisms relies on the fact that PCRs values cannot be set (or forged) but
only extended. This means whenever a measurement is sent to a TPM, the hash of the concatenation
of the current value of a PCR and the new measurement is stored. Obviously, there’s a beginning to
all of this: - With SRTM, only the CRTM can reset PCRs 0 to 15 at boot - With DRTM, only the
TXT instructions can reset PCRs 17 to 20 (when in locality 4 (SMX operations)).

Secure Boot

The goal of the Secure Boot is to make sure the system boot loader is trusted and signed by the
publisher or the manufacturer of the system. Through signature verification in the next-stage boot
loader(s), kernel, and, potentially, user space, the execution of unsigned code can be avoided. During
the boot process, TPM-enabled devices can validate the integrity of the machine, enabling protection
and detection mechanisms to function in hardware, at pre-boot and in the secure boot process. The
secure boot process implements a chain of trust. Begining with an implicitly trusted component, all
other components can be authenticated before being executed.
The Unified Extensible Firmware Interface (UEFI) secure boot was created as a BIOS ’replacement’
to enhance security in the pre-boot environment, by sitting between hardware and OS at the BIOS
level. UEFI Secure Boot only requires a non-volatile (flash) storage which can be switched from
read-write mode to read-only mode during system boot. This storage is used to store the UEFI
implementation and UEFI protected variables (e.g. the trusted root certificate). Through using
a complementary TPM, UEFI secure boot and the operating system can take measurements of all
phases of the booting process. It can be used to detect modified boot code, settings and boot paths
while providing sufficient information to an outside entity to attest to the platform state after the
boot process has been completed. Although it does not prevent an insecure boot from occurring, the
measurements are available to detect any modification to the system.
In a different approach, ARM’s TrustZone enables secure services to run in the secure world of the
processor. TrustZone is a set of security extensions added to ARM processors, so that an ARM
processor can run a secure operating system (secure OS) and a normal operating system (normal OS)
at the same time from a single core. Because security is designed into the hardware, TrustZone avoids
security vulnerabilities caused by proprietary, non-portable solutions outside the core. ARM does
not specify the root of trust for TrustZone. It is usually assumed that a unique device key which is

SUPERCLOUD D1.2 Page 48 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

accessible only inside the secure world of TrustZone is available, and this device key serves as the root
of trust for TrustTone.

Trusted Execution Environment

A Trusted Execution Environment (TEE) is a secure area that resides in the application processor
that guarantees that sensitive data is processed and protected in an isolated, trusted environment with
respect to confidentiality and integrity. The TEE offers isolated safe execution of authorized security
software, and protects the integrity and confidentiality of key resources, such as the user interface
and service provider assets. It provides an end-to-end security by enforcing protected execution of
authenticated code, confidentiality, authenticity, system integrity, and privacy.
Intel has designed a set of architecture extensions, called Intel Software Guard Extensions (Intel
SGX), which aim to increase the security of software through an inverse sandbox mechanism. In this
technology, a legitimate software can be sealed inside a secure enclave and protected from attacks,
regardless of the privilege level of the attacker. Before the enclave is constructed, the enclave code
and data are accessible for inspection and analysis. Once the applications protected portion of the
code is loaded into an enclave, its code and data is measured and becomes protected against external
software access. In Intel SGX model a CPU which can have many secure enclaves, where as in ARM
TrustZone, the CPU works in two halves: the insecure world and the secure world.

SUPERCLOUD D1.2 Page 49 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Preliminary Self-Management Architecture

The objective of the security self-management approach is to build new generation of SUPERCLOUD
systems that can manage themselves (i.e., Self-Managed) to reach and maintain high-level security
objectives, previously defined by the cloud customer by means of SLAs (i.e., User-Centric). This
approach calls for a security system that is highly independent of human intervention for the manage-
ment of security properties. To address such a complex security management problem, we leverage in
this preliminary architecture mechanisms used in autonomic computing (AC) [70]. Autonomic systems
offer effective mechanisms that allow them to monitor, control, regulate and recover themselves from
problems without external intervention [70].

In this Chapter, we describe this preliminary architecture and introduce basic building blocks for
self-management.

Overview of Self-Management Architecture

In the this section, we provide an abstract overview of the Cloud Security Self-Management architec-
ture depicted in Figure 4.2 below. In this architecture, Cloud Service Customers and Cloud Service
Providers interact with a SUPERCLOUD Front-end (i.e., the Frontal) to express their requirements
and constraints. Based on that, and eventually after a negotiation phase, a Service Level Agreement is
established to define the expected quality of service and level of protection (cf. Section 3.1). This pro-
cess is described in details in Section 4.2.1. Based on this SLA, a U-Cloud (Customer Specific Cloud)
is created over a single or multiple providers as illustrated in the left part of Figure 4.1. The man-
agement and the control of this U-Cloud is then mandated to the Security Self-Management of the user.

The Security Self-Management is structured in three layers, namely the Orchestrations Layer, The
Aggregation Layer, and the Resources Management Layer.

• In the Resources Management Layer, we can find Self-Management Agents that are responsi-
ble of delivering security atomic services such as enforcement, detection, reaction and monitoring.
We assume that they are part of the SUPERCLOUD Hypervisor or the distributed visualization
infrastructure (developed in SUPERCLOUD Workpackages 2, 3 and 4). As illustrated in the
overview, these components operate on a particular layer of the visualization infrastructure (i.e.,
storage, compute and network) and are dedicated to a specific security service (e.g., Intrusion
detection, Authorization enforcement, Trust Management). We assume also that some security
services require multiple Self-Management Agents (SMAs) overs different layers. For instance,
enforcement of authorization policies encompasses data, compute and storage layers as described
in Section 4.2.3. A more detailed description of these Self-Management Agents is provided in
Section 4.8.

• The Aggregation Layer provides an unified and uniform view of multiple SMAs to the orches-
trator and abstracts the heterogeneity of lower layers. Thus this layer ensures the satisfaction
of heteregeneity and interoperability requirements identified in Chapter 2.

SUPERCLOUD D1.2 Page 50 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Hardware

L1

VM VM

USS VMM

VM

Network Compute Storage

L0

Hardware

Network Compute Storage

L0 / PSS

Authorization

Manager

Trust

Manager
SLA Manager

Storage Sec.

Manager

Compute Sec.

Manager

Planner

Net. Sec.

Manager

Orchestrator

Authorization
DRA

Trust
DRA

SLA
DRA

Sec. storage

DRA

Compute Sec.

DRA

Net. Sec.
DRA

Compute

Network

Storage

SuperCloud Frontal

Consumers

Providers

Provider Infrastructure Management

Storage Manager

S
e

rv
ic

e
 L

e
v
e

l A
g

re
e

m
e

n
ts

SuperCloud

Distributed

Virtualization

Infrastructure

Security Self-Management

SuperCloud Frontal

Figure 4.1: Self-Management of Security

• The Orchestration Layer encapsulates the decision making components that are in charge of
providing security services. It is composed of several managers, each responsible of a specific
security service such as Authorization and Access Control (cf. Section 4.2.3), Intrusion detection
and prevision (cf. Sections 4.2.4 and 4.2.6)) or trust management (cf. Section 4.2.7). It contains
also, an overall orchestrator that coordinates the actions of all security managers, a planner
that generates plans to reach and/or maintain security objectives, and a storage manager that
is in charge of the persistence and delivery of the knowledge that is necessary to achieve the
self-management of security.

Self-Management Building Blocks

In this Section, we describe the principal building blocks we identified from the proposed architecture
in order to provide user-centric control of cloud security. Based on the analysis of security requirements
expressed in the uses cases, we identified four functional features that are essential to achieve the self-
management of security, namely Management of Security Service Level Agreement, including Security
Service Level Agreements (cf. Section 4.2.1), Management of Access control and Authorizations (cf.
Section 4.2.3), Management of Trust (cf. Section4.2.7), and finally the Management of Security Self-
Services (cf. Sections 3.2) at different levels of the virtualisation infrastructure, namely compute (cf.
Section 4.2.5), storage (cf. Section 4.2.4) and network (cf. Section 4.2.6).

SUPERCLOUD D1.2 Page 51 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Security Service Level Agreement Management

Ensuring Service Levels is a key issue for successful deployment of cloud infrastructures. To that
aim, Service-Level Agreements are nowadays a common way to formally specify the expected level of
(functional and non-functional) quality under which cloud services shall be delivered. No matter if
theses agreements are legally binding contracts or not, SLAs provide a high level of confidence that
a commitment can be met (cf. Section 3.1). In this section, we provide a preliminary design specifi-
cation for the management of Service Level Agreements with respect to, not only Quality of Service,
but also and mostly on Quality of Protection.

As discussed in Section 3.1, Quality of protection is used in the literature (cf. [49]) in reference to
security mechanisms that a provider is able to implement for the clouds that runs on its infrastructures.
In SUPERCLOUD, we propose a joint management of Quality of Service and Quality of Protection
within a unique and uniform Security Service Level Agreement (SSLA).

Self-

Management

 Virtualization Infrastructure

Customers

Frontal

1. Constraints
3. SLA Discovery

2. Requirements

5. SLA Negotiation

6. Active SLA

Costumers Providers

8. Active SLA

10. Violations

4. SLA Templates
Provision

6.Active SLA

Network Compute Storage

7.Allocation / Placement

9. Control

 11. Monitoring

L1

VM

USS VMM

VM VM

U-Cloud

Provider

Infrastructure

Management

10. Violations

11. Arbitration

11. Arbitration

Hardware

Providers

Frontal

8. Management

9. Monitoring

11. Arbitration
11. Arbitration

Figure 4.2: The Security Service Level Agreement Management Process

Figure 4.2 illustrates the overall vision of how the Security Service Level Agreement is established
between Customer and Providers. In this process, we identify five principal actors that we present
hereafter:

• A Cloud Service Customer (CSC) is any person, organization or entity that uses Cloud
Services.

• Cloud Service Providers are persons, organizations or any entity responsible for making
Cloud Services (Compute, Network and/or Storage) available to CSCs.

• SUPERCLOUD Frontal is the entity that helps both CSCs and CSPs lay out their require-
ments and constraints. It negotiates relationships between them trying to find the best agree-
ment. With respect to classical Cloud Architecture, the frontal plays also the role of Broker in

SUPERCLOUD D1.2 Page 52 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

advertising offers and managing cloud services discovery1. In the Figure 4.2, we make a distinc-
tion between Providers and Customers Frontal, this distinction is not always necessary as we
can imagine configuration with a unique Frontal managing both CSC and CSP.

• Customer Self-Management allows customers to have a complete control over their U-clouds
towards the fulfilment of performance and security objectives. This component has been pre-
sented in the previous section (cf. Section 4.1) and will be described in detail in the next
Sections.

• Provider Infrastructure Management is the entity responsible of managing the Provider’s
Cloud infrastructure. This component operates at, both, the virtualisation level and the hard-
ware level. The description of this components is out of the scope of this deliverable.

SSLA Process

In SUPERCLOUD, Providers offer their resources (i.e., network, compute and storage) as a service
(i.e., Infrastructure as a Service). The process described hereafter presents part of the end-to-end
management of user-centric security requirements trough SSLAs.

1. Providers register at the broker, embodied in the SUPERCLOUD Frontal, in order to make their
services available to CSC. To that aim, each provider will propose an SLA template for each
configuration they can provide.

2. Customers express their requirements by describing the service they desire, not only in terms of
quality of service but also in terms of security requirements (i.e., Quality of Protection). The
Costumers can have already their SLA template/offer ready but SUPERCLOUD can also provide
assistance mechanisms to help them formalizing their needs (e.g. pre-filled SLA templates and
a GUI to personalize these templates).

3. Based on the requirements expressed by the CSC, the SUPERCLOUD Frontal will launch a
discovery process in order to find compatible SLA templates proposed by registered CSP. This
phases may imply a composition of several offers.

4. The SUPERCLOUD creates then an SLA offer based on the best SLA template candidate(s).
The SLA offer adapts the Service Level Objectives in order to meet the Customers needs. Often,
a negotiation is conducted in order to reach an agreement that reduces that gap between the
requirements of the CSC and the constraints of CSP(s).

5. If an agreement is reached, both CSP(s) and the CSC are notified with the terms of the SLA.
Otherwise, another SLA template is selected and the process repeats until an agreement is
reached2.

Preliminary Security SLA architecture

In this section, we present a preliminary architecture of the Security Service Level Agreement frame-
work that we derived from the SSLA establishment process presented in the previous section.

The management of SSLAs comprises multiple components that are scattered among four of the el-
ements of the architecture presented in Figure 4.1. Theses components are SUPERCLOUD Frontal
(Provider and Customer sides), the Security Self-Management and the Provider Infrastructure Man-
agement. Due to the preliminary stage of this architecture, we will describe the functioning of each

1We assume that the Cloud Broker is part of the frontal, we can imagine complex configuration in which several
Brokers are involved in the process

2We can also imagine that after several attempts, Customers and Providers are asked to relax their requirements/
constraints.

SUPERCLOUD D1.2 Page 53 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

component rather than focusing on specification details that will be refined later in the project.

We identified six different components in order to comply with the SLA life-cycle phases identified and
discussed in Section 3.1. In what follows, we present each component starting from the ones integrated
at SUPERCLOUD Frontal level and finishing by the assumed components that should be present at
the Provider Infrastructure Management3.

SuperCloud

Virtualization Infrastructure

Negotiation and Selection

Specification and Persistence

Assessment and Arbitration

Advertisement and Discovery

Negotiation and Selection

Specification and Persistence

Assessment and Arbitration

Advertisement and Discovery

S
L

A
 O

rc
h

e
s
tra

tio
n

S
L

A
 O

rc
h

e
s
tra

tio
n

SuperCloud Frontal

SLA Manager

PlannerOrchestratorStorage Manager

Provider Infrastructure Management

ProvidersCustomers

Monitoring ExecutionMonitoring Execution

L1

VM

USS VMM

VM VM

U-Cloud

Network Compute Storage

Hardware

Self-Management

Figure 4.3: Preliminary Security Service Level Agreement Architecture

SLA orchestration

With respect to the SLA life-cycle, orchestration is an additional step that allows the coordination
of the other phases. The SLA orchestrator manages the overall SLA lifecycle and serves as a central
intermediaire between the CSCs/CSPs and the other SSLA components.

Specification and Persistence

Specification may include a graphical Web based interface that allow both Service Providers and Ser-
vice Customers to interact with the SUPERCLOUD frontal. The main focus of these interactions
consists in the definition of SLA templates/offers that encapsulate their requirements and/or con-
straints. The specification can also assist CSC and CSP defining the negotiation and/or arbitration
strategies that will be used by the SUPERCLOUD Frontal on their behalf.

In addition, we consider that this component is also in charge of the persistence. It abstracts the
repositories that are used by each components by providing the basic functionality to store, retrieve
and delete SLAs4 and any data that is necessary for the good execution of SLAs.

3As the specification of this later elements did not start yet, we can only assume that such components could be
integrated, even if it appears that there is no burden to such integration in private clouds. In presence of public clouds,
we imagine that we can still achieve this objective using virtualized monitoring components.

4We use interchangeably SLA and SSLA as they refer to the same concept in this Delivrable.

SUPERCLOUD D1.2 Page 54 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Advertisement and Discovery

The advertisement and discovery of SLAs are complementary phases. CSC providers advertise their
SLA templates to propose their services to CSCs. The advertisement can be achieved using a Broker
or via syndication to a registry. Similarly, CSC that looks for Cloud Service offers can search for
compatible templates using registry or via Brokers. We assume also that in some scenarios, SUPER-
CLOUD can play the role of virtual cloud services marketplace in which CSC and CSP can advertise
and discover cloud services.

An interesting and important feature of the Advertisement and Discovery component would be the
management of cloud service compositions based on multiple-providers’ offers. With respect to that,
QoS-ware and QoP-aware composition of cloud services (e.g., [37, 118]) should be carried out. This
makes the discovery process more complex, but also more efficient for the fulfilment of both CSC and
CSP requirements/constraints.

Negotiation and Selection

The negotiation module is an important component of the SLA management. It executes state-of-
the-art methodologies and protocols to reach the optimal agreement for both CSCs and CSPs. We
assume that one instance of the SLA negotiation module is settled on each instance of SUPERCLOUD
Frontal. We can also consider a centralized configuration in which a unique SUPERCLOUD Frontal
manages all interactions in endogenous way.

At this stage of the project, we intend to extend XeNA [4] Language and Framework to manage
SLA negotiation. The objective ot the extension will focus on allow XeNA to negotiate Service Level
Agreement instead of Access Control decision and policies as it is the case in the current version of
the prototype. XeNA [4] have proved to be flexible and extensible enough to express a large kind of
negotiation strategies.

The Selection is the logical consequence of a successful negotiation. Thus the outcome of a negotiation
should be an SLA. This SLA is thereafter executed.

Execution

At this stage, the SLA is executed and mechanisms to maintain it are deployed. The execution of an
SLA is generally the responsibility of the Cloud Service Provider. However, in multi-cloud scenarios in
which the agreement involves one CSC and multiple CSP, we need that the Brokering functionalities
proposed by the Frontal include dispatching of configurations among the selected CSPs.

Furthermore, with the User-Centric management advocated in SUPERCLOUD, we assume that part
of the execution should be carried out by the Security Self-Management component. For instance, the
configuration of Access control policies and the specification and evaluation of trust requirements are
managed by the Customer via the this Security Self-Management element.

Concretely, at the level of Service Management, the execution of an SLA imply the extraction of Service
Level Objectives from the agreed SLA. These objectives are then converted into concrete operations
to be enforced by management components (e.g., Self-Management). This step involve the planner
and is coordinated by the security Orchestrator (cf. Section 4.2.10.

Monitoring

Monitoring SLAs is a key element for the assessment phase of the SLA life-cycle (cf. Section 3.1). This
element is responsible for collecting data from different proves (cf. description of Self-Management

SUPERCLOUD D1.2 Page 55 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Agents in Section 4.2.8) to allow both CSP and CSC to supervise the status and performance of Cloud
resources. It provides QoS and QoP measurements by abstracting a unified management interface for
different types of external proves provided by Self-Management Agents (i.e., at compute, storage and
network level).

Authorization management

As discussed in Deliverable 2.1, authorization in SUPERCLOUD is performed by several complemen-
tary visions and levels of authorization. Central is the notion of tenant, which may range from a
usage profile over resources, to an access control group including several users, or to simply a user.
Authorization may be:

• Usage control oriented (A): the user requests a security SLA to the SUPERCLOUD which will
instantiate the U-Cloud accordingly after negotiating with underlying providers. A tenant is then
instantiated, giving usage rights to resources/VMs running within the tenant. This is addressed
by the OrBAC authorization framework [66, 35, 13].

• Access control oriented (B): the authorization component controls access to different VMs run-
ning in the tenant according to an access control policy. This is addressed by the MOON
authorization framework [89].

• Application-level (C): the authorization component controls access to resources between different
applications. This is addressed by a third authorization framework.

More detailed descriptions of such frameworks may be found in Deliverable D2.1. To illustrate, we
give a brief overview of the OrBAC framework, sketching how it could be adapted and integrated in
the SUPERCLOUD Self-Management Architecture. We then show how authorization management at
the application-level is performed based on role-based access control, for instance as provided by the
OrBAC framework.

OrBAC Authorization Framework

Organization Based Access Control (OrBAC) aims at modelling security policies that are centered
on organizations. Intuitively, an organization is any entity responsible for defining and/or managing
a security policy. Hence a company is an organization but security components such as firewalls or
virtual machines managers can also be modeled as organizations. An OrBAC policy specification is
done at the organizational level, also called the abstract level, and is implementation-independent.
The abstract level defines the concepts of organization, role, activity, view, context and security rule
to express the abstract policy. The policy to enforce, called the concrete policy, is inferred from the
abstract policy. Through the assignments of subjects to roles, actions to activities and objects to views,
concrete security rules are derived. This approach makes all the policies expressed in the OrBAC model
reproducible and scalable. Actually once the concrete policy is inferred, no modification or tuning has
to be done on the inferred policy since it would possibly introduce inconsistencies. Everything is done
at the abstract policy specification level. The abstract policy, specified at the organizational level, is
specified using roles, activities and views which respectively abstract the concrete subject, actions
and objects.
The OrBAC model uses a first order logic formalism with negation. However since first order logic is
generally undecidable, OrBAC is restricted in order to be compatible with a stratified Datalog program
[43].
The OrBAC framework architecture is composed of three elements; (i) the OrBAC API, (ii) the
MotorBAC Tool and (iii) the OrBAC Plug-ins, as show in Figure 4.4 below. This is mainly a conceptual
view of the OrBAC infrastructure, as the three components do not necessary require to be on one single
system. In the following a short description of the OrBAC components is given.

SUPERCLOUD D1.2 Page 56 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Dependent

Grandchild

Sally

 OrBAC

 core

Policy Simulation
 Conflict Solving

Policy Editing

Conflicts

detection

Request

- Separation constraints

- Rule priority

Management of:

 - Entities

 - Permissions

 - Prohibitions

 - Obligations

Notification of rule

state changes

Storage

SMA

Effector Sensor

Policies

Policies

OrBAC

Plug-in

for

Storage

OrBAC

Plug-in

for

Compute

OrBAC

Plug-in

for

Network

Compute

SMA

Network

SMA

Virtualization

Infrastructure

Effector Sensor Effector Sensor

Reasoning Engine

Figure 4.4: Architecture of the OrBAC framework

MotOrBAC

MotOrBAC is a tool that allows users to specify and simulate their policies. The tool is built on
top of the OrBAC API which can be integrated to applications or cloud layers to interpret OrBAC
policies. MotOrBAC can be run in normal or administrator mode. In normal mode, the users can
create, manage and simulate policies. In addition to these features, the Administration mode allows
users with higher privileges to assign and delegate roles. Consider for instance a task that allows the
affectation of subjects to role or subject is permitted to affect subjects to roles.

OrBAC API

OrBAC Application Programmer Interface (OrBAC API) is the core component of the OrBAC frame-
work. It provides also a Java library which can be used to programmatically create and manipulate
OrBAC policies within Java Applications. The API features the following OrBAC policy editing
capabilities:

• abstract policy specification: organizations, roles, activities, views, contexts, and abstract rules
(permissions, obligations, prohibitions) can be manipulated. This includes organizations, roles,
activities, and views hierarchies

• separation constraints and rules priorities can be specified to solve conflicts between abstract
rules

• several languages can be used to express contexts and entity definitions. Simple ad-hoc languages
have been defined to express temporal conditions or simple conditions on concrete entities (sub-
ject, action or object) attributes. Two more powerful languages can be used, Java and Prolog,
to be able to express a wide range of conditions

• the administration policy, or AdOrBAC policy, associated to an OrBAC policy can be specified
using the same concepts and API methods

SUPERCLOUD D1.2 Page 57 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

The current version of the API provides three implementations:

• a Jena based implementation which stores the abstract policy and the associated concrete entities
in a Resource Description Framework (RDF) file. The Jena reasoning engine is used to infer the
concrete policy

• an implementation which stores the abstract policy and the associated concrete entities in a
XML file. A custom multi-threaded backward chaining algorithm is used to infer the concrete
policy. The fork/join framework from the JDK7 is used to implement multi-threading

• the last implementation derives from the second implementation with a focus on the persistence
of concrete entities. In this implementation, the abstract policy is still represented in XML
whereas the concrete entities are stored in a MySQL database.

OrBAC Plug-ins

Neither the MotOrBAC nor the OrBAC API do include any functionality to deploy and/or enforce
OrBAC policies. To that aim, the plug-ins have been proposed to extend the OrBAC infrastructure
with deployment mechanisms. Currently a short list of publicly available OrBAC plug-ins exists
but this list should be extended with SUPERCLOUD specific plug-ins. Plug-ins are implemented as
OSGi5 bundles. The Equinox6 implementation of the OSGi R4 core framework specification7 is used
to manage the bundles. An alternative solution would be the integration of the API into an ad-hoc
deployment tool.
In the context of SUPERCLOUD, both plug-ins and API integration could be considered for the
enforcement of authorization decisions.
As illustrated in Figure 4.4, plug-ins can be developed for each layer of the virtualization infrastructure.
For instance, at the network layer, a concrete use of Orbac in conjunction of Software defined Network
(SDN) controller is described in Section 4.2.6. The use of plug-ins at the Storage and/or compute
level can be analogously described.

Application-Level Authorization

In Deliverable D2.1, a conceptual model of the SUPERCLOUD application-level authorization frame-
work is given, in which users, through their role in an organization, get access to applications that can
access APIs on their behalf. We now describe the implementation of this authorization framework
using the SUPERCLOUD self-management architecture.
For concreteness, in Figure 4.5 we show a possible application-level authorization flow. In this diagram,
the “IAM (identity and access management) Server” acts as authorization self-management manager
responsible for evaluating the authorization decision of whether a given user has access to a certain
application (specifically, version of the application). To this end, the Application Version asks the
IAM server to authorize the use of a certain API scope on behalf of the user. The IAM server asks
the user to log in, and verifies the correctness of the given credentials, and whether they allow access
to the given app scope. This latter decision is based on role-based access control and can for instance
be implemented as an OrBAC plugin (see previous section).
When applicable, the user is requested to give explicit consent for the application to access the API
scope. The IAM returns the session information to the Application Version, which acts as an enforce-
ment agent (specifically, in “forward mode”, cf. Section 2) by checking the session information.
The Application version authorizes to the API using a shared secret (not shown in the figure), while
also provides information about the authenticated user in the form of a token. The API acts as a
“forward mode” enforcement agent by contacting the IAM server to obtain the session related to the

5http://www.osgi.org
6http://www.eclipse.org/equinox/
7http://www.osgi.org/Specifications/HomePage?section=2#Release4

SUPERCLOUD D1.2 Page 58 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Figure 4.5: Flow diagram for application-level authorization

token, and checking if the token was actually correctly issued by the IAM server. Additionally, it
makes an API-dependent decision of whether to allow the particular API call in an API-dependent
way. (This is out of the scope of the authorization framework, but could again be implemented as an
OrBAC plugin if the API uses role-based access control to protect the resources it exposes.)
Summarizing, from a self-management point of view, the IAM server acts as self-management manager,
and the application version and API act as “forward mode” enforcement agents. Note that, as discussed
in Chapter 2, one import requirement in authorization is “location self-management”, meaning that
location is an important factor in authorization decisions. For such decisions, an additional “location
monitoring sensor” would provide input to the self-managent manager.

Compute Security Manager

For computation, self-management is performed along two dimensions, according to the multi-layer
and multi-provider nature of the SUPERCLOUD infrastructure:

• Vertical self-management addresses autonomic management of security within and across layers
of the distributed cloud. Security automation may apply to different levels of the SUPERCLOUD
computation infrastructure defined in Deliverable D2.1 (e.g., VMs, user-level virtualization, user-
controlled modules in provider infrastructure). Control is captured through orchestrated auto-
nomic security loops, with probes for monitoring and effectors for modify layer security states.
Autonomic security managers called Layer Orchestrators (LO) capture the decision intelligence.
A Vertical Orchestrator (VO) performs cross-layer self-protection through LO coordination. Dif-
ferent VOs may in turn be orchestrated vertically through an Arbiter component, playing the

SUPERCLOUD D1.2 Page 59 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

role of a root VO, to capture and enforce trade-offs between user and provider control over secu-
rity, or between security and other concerns (e.g., autonomous management for energy efficiency).

• Horizontal self-management addresses multi-provider autonomic management of security. Se-
curity automation is considered independently from the underlying providers, using as touch
points the VOs defined previously (typically one per provider), to provide a homogeneous level
of security across clouds. Different alternatives may be considered in terms of control. A unique
Horizontal Orchestrator (HO) with a centralized autonomic security loop for all providers for
maximized control, but poor scalability and dependability. HOs may also collaborate using dif-
ferent patterns: peer-to-peer interconnection for scalability, broker for fine-grained control over
interoperability, or hierarchical control for higher level of optimality for the security response.

Figure 4.6: VESPA Architecture

More details on the self-management architecture for computation may be found in Deliverable D2.1.
To implement this two dimensional self-management architecture within a Compute Security Manager,
we use the VESPA (Virtual Environments Self-Protecting Architecture) framework [117, 74]. VESPA
regulates protection of resources through several coordinated autonomic security loops which monitor
the different infrastructure layers. The result is a very flexible approach for self-protection. Its
main features are: (1) policy-based security adaptation based on a self-protection model capturing
symmetrically and flexibly both detection and reaction phases; (2) two-level tuning of security policies
according to security contexts both inside a software layer and across layers; (3) flexible orchestration
of layer-level self-protection loops using system-wide knowledge to allow a rich spectrum of overall
infrastructure self-protection strategies; and (4) a layered, extensible architecture allowing simple
integration of commodity detection and reaction components thanks to an agent-based mediation
plane abstracting security component heterogeneity.
The VESPA architecture contains: (1) a resource plane, with the resources to protect; (2) a security
plane, with components delivering security services, for detection and reaction; (3) an agent plane,
performing mediation between security services and decision-making elements; and (4) an orchestration
plane, with autonomic management components and administrator-defined policies. Security detection
components monitor protected resources, generating alerts. A hierarchy of Detection agents (DA)
collects, filters, correlates such alerts, forwarding aggregated security information to the orchestration
plane. Based on administration-defined strategies, high-level reaction policies are then generated to
respond to detected threats. Another hierarchy of Reaction agents (RA) refines such policies, so that
they may be applied to low-level security reaction components. In the end, such components modify
protected resource state and behavior accordingly.

SUPERCLOUD D1.2 Page 60 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

VESPA is virtualization-aware, considering resources in different infrastructure layers, for straightfor-
ward mapping to cloud architectures. Two types of autonomic managers called Orchestrators define
the decision-making logic, in and between layers. Layer Orchestrators (LO) perform layer-level se-
curity adaptations. A Vertical Orchestrator (VO) is in charge of cross-layer security management:
security events detected in one or several layers may trigger reactions in one or several other layers.
With VESPA, vertical self-management may be delegated to the control of a single VO. Through
LOs, the VO is also aware of all layer information in the U-Cloud. This design allows both intra-layer
and cross-layer automated security supervision of a U-Cloud. Horizontal self-management may be
implemented by deploying several VOs working in close cooperation, with several possible VO-to-VO
communication patterns, master-slave, or fully peer-to-peer. A VO interprets and enforces security
policies on resources in its domain, propagating to neighboring domains changes in reaction policies
and or security state. Ongoing work is to extend VESPA to enable embedding in the SUPERCLOUD
architecture and to implement cross-layer trust management (see Deliverable D2.1).

Storage Security Manager

SUPERCLOUD will allow Cloud Services Customers (CSC) to specify security requirements with re-
spect to state-of-the-art data protection mechanisms such as cryptography and fault tolerance. The
policy based approach advocated in the project will allow the automatic extraction of theses require-
ments and their conversion into security policies to be automatically executed on behalf of the CSC.
This last step shall be the role of the Storage Security Manager. For instance, CSC can specify the
desired fault tolerance mechanisms, then the Storage Security Manager will ensure the compliance
of the running configuration with his needs. We envision also to use Attribute-based encryption to
emulate self-protected Data. For more details on Fault Tolerance and Attribute-based Encryption
mechanism, we refer the reader to Section 3.3.2 of Deliverable D3.1.

Network Security Manager

This section describes preliminary Self-Management mechanisms at the network level.

To achieve a user-centric management of network security, the SUPERCLOUD needs to satisfy two
design specifications. First of all, the network abstraction layer will provide appropriate SDN control
applications that allow users to compose their own security services in the data plane, and to tune
these services on a per-flow (e.g. web traffic) or per-destination (e.g. towards a database service)
basis. Second, users will be able to define their own security management procedures that will be
automatically triggered by the SUPERCLOUD in response to attacks and security incidents.

In order to meet the first design specification, we will explore available SDN controller APIs that
make possible the implementation of an SDN security management application on top of the SUPER-
CLOUD network abstraction layer. This application provides an abstraction model that enables to
represent all security services available in the data plane (e.g. IDS, Proxies, honeypots, anti-DDoS). It
further enables users to associate, on-demand, flows in the data plane with their appropriate security
services. Last of all, this application will dynamically manage routing policies with respect to the se-
curity management procedures and the requirements that are introduced by the SUPERCLOUD users.

Regarding the second design specification, we will explore possible techniques to provide the SDN
security management application with the ability to collect and process security incidents (e.g. stan-
dard alert formats such as IDMEF), to correlate them with other information related to the network
topology, and then to trigger appropriate user-defined reaction strategies.

In what follows, we briefly present the how at the SND level we can execute DDOS attack mitigation
strategy.

SUPERCLOUD D1.2 Page 61 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

When attacks, intrusions or misconfigurations are detected, remediation actions should be rapidly
and automatically performed. The enforcement of remediation strategies is performed by the reaction
security service provided by the Self-Management Agent. The reaction action depends on the target
SUPERCLOUD plane as it relies on the reaction API provided by this plane. One of the approaches
that will be proposed in SUPERCLOUD is an SDN based attack mitigation strategy. Indeed, the re-
cent emergence and rapid development of SDN offer to us an opportunity to re-examine and improve
attack mitigation solution. Meanwhile, the computational overhead at the routers and switches can
be significantly reduced, as large connection states or flow tables can be migrated and handled by
the SDN. We envision that attack mitigation schemes can be effectively implemented and deployed at
SDN controllers, paving a way for SUPERCLOUD cloud providers and network users to defend against
attacks together by correlating and sharing the tasks of monitoring, analysis, detection and mitigation.

With this approach, OrBAC [66] based security policies will be designed for SDN controllers. These
attack mitigation policies aim to react against the malicious behaviors. They will be triggered by
alerts detected from the SUPERCLOUD monitoring module and therefore, new policies should be
applied to react against the attack. These policies will be developed as applications for the SDN
controllers that make reactions on an event basis and dynamically adapt security policies to handle
suspicious and malicious flows. Then the policy changes will eventually lead to the automated con-
figuration of the OpenFlow switches. Also, the end-to-end visibility yielded at the controller allows
optimizing the deployment of middleboxes and the computation of flow paths with different QoS levels.

Finally, we note a more detailed description of how this remediation is triggered and manager could be
found in the sections dedicated to Self-Management of Security in Deliverables D2.1, D3.1 and D4.1.

Trust Management

This module aims at the definition of a model to manage trust relationships across users and across
providers. The formal specification of a trust model will be conducted in the future within a dedi-
cated task. However, we have already identified core elements of the trust manager and its eventual
interactions with the other self-management building blocks.

Interface

SLA

Analyser

Trust Requests Handler

Trust Requirement Handler

Trust Analyser

Trust

 Request

Trust

Value

Trust Manager

Feedback

Analyser

Users

Providers

D

e
c

J
u

n
A

u
g

A
p
r

N
o

v

F
e

b

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

100

SLA

+

Audit Data

Feedbacks

Credentials

Credentials

Analyser

Figure 4.7: Specification of the Trust Manager

As depicted in the figure above, the trust manager is composed of six components that we describe

SUPERCLOUD D1.2 Page 62 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

hereafter.

• Feedback analyzer is responsible of the collection and analysis of the feedbacks. Each feedback
represent an opinion of a CSC or a CSP about another CSC/CSP. These opinions are then
grouped and aggregated (e.g., using schemes reviewed in 3.3) to build a single ”reputation”
value. The way this reputation value is computed and the information needed to compute it will
be specified in a dedicated task.

• SLA analyzer implements the SLA-based trust models presented previously (cf. Chapter 3).
To that aim, this component is in charge of the extraction the active SLA’s. It performs also
local assessment of Service Level Objectives fulfilment. Alternatively, this component can rely
on/collaborate with the SLA manager (cf Section 4.2.1) to perform this task. The result of this
assessment reflects the degree to which a provider should be trusted. Trust here reflects the
reliability of the provider.

• Credentials analyzer reproduces the policy-based or credential-based trust models. In theses
models, trust is granted if the credentials that allows the satisfaction of a trust policy are
provided. Trust policies generally express delegation of rights based on properties that should
be provided using credentials (cf. Section 3.3 for more details). With respect to this scheme,
this in charge of verifying the provided credentials and the derivation of a trust value based
on these credentials. The exchange of credentials can also involve a trust negotiation process
in which interacting parties try to reach an agreement about the minimal credentials that each
party should release (cf. Section 3.3.4). If so, we assume that an automated trust negotiation
module is required somewhere within the manager to allow such negotiation.

• Trust requirements analyzer is in charge of extracting and analysing trust requirements.
Trust requirements are statements that specify under which conditions/constraints an entity
(Provider or User) can be trusted for a particular issue. For instance, in the context of SUPER-
CLOUD we can suppose that the requirements used to trust a provider to guarantee service
availability are not the same as the ones used for privacy preservation. To that aim, we pro-
pose to use Trust Policies [125] to express trust requirements. Trust policies are used to state
what properties an interacting entity shall possess in order to be considered as trustworthy (cf.
Section 3.3.3).

• Trust analyzer encapsulates the schemes used to derive trust based on trust policies and trust
information. These schemes depend on the nature of the information to be processed and the
specification language used by Cloud Customers to express their trust requirements.

• Trust requests manager orchestrates and coordinates the collaboration of the aforementioned
components. It receives trust requests, triggers information collection, and queries the trust
analyzer for trust computation. The result of trust evaluation is then transmitted to the initial
requester.

Self-Management Agents

Self-Management agents are components that are responsible of delivering security atomic services
such as enforcement, detection, reaction and monitoring. Theses ”Touchpoint” agents can for instance
encapsulate or interact with provider (or vendor) specific APIs to deliver the manageability interface
to the self-management system. These agents are also the interfaces between Self-Management compo-
nents and the other SUPERCLOUD components. To design theses agents, we draw inspiration from
the IBM autonomic computing design pattern [69].
As depicted in the Figure 4.8 above, the manageability interface of Self-Management Agents is orga-
nized into sensors and effectors that we describe hereafter.

SUPERCLOUD D1.2 Page 63 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

 SUPERCLOUD Managed Ressource

Logs Commands

Configuration files APIsEvents

Sensor Effector

Properties: Identification, State
metrics, Configuration, etc.

Relationships: Hosts,
Users, etc.

Management mechanisms

Managed resources informations

Mangement interface

Figure 4.8: Abstract specification of Self-Management Agents (Touchpoints)

Effector

The effector is used to bring changes to the resource8. It makes use of the manageability mechanisms
provided by the managed resources or their controller to execute the decisions made by higher level
components such as the manager and/or the orchestrator. The Effector functioning is subsequently
organized into Enforcement and Reaction.

Enforcement

Generally speaking, enforcement refers to the execution of security policies. In the context of SU-
PERCLOUD, enforcement consist in applying security configurations such as access control decisions,
firewall rules or data encryption schemes. The enforcement role of the Self-Management Agent consist
in providing configuration scripts to the security control API provided by each of the SUPERCLOUD
planes (i.e., network, compute and storage).
The enforcement mechanisms will depend on the security services that are provided in each plane.
The quality of a security service and its properties could be defined and negotiated within an SLA.
For example, with respect to authorization management. Enforcement consist in applying the decision
of the PDP encapsulated in the Authorization manager.
We identify two enforcement modes; autonomous and forward.

1. Autonomous mode refers to the ability of Self-Management Agents to build and enforce
decisions made by their own. This means for instance that the Self-Management Agent embeds an
additional reasoning and decision components with respect to the reference architecture presented
in Figure 4.8. This component could be an OrBAC API, a MOON HOOK or an identity and
access management (IAM) server (cf. 4.2.3).

2. Forward mode means that the Self-Management Agent will systematically forward all requests
it receives to the upward relevant manager which is responsible of making decisions. The en-
forcement consist then in executing decisions made by the authorization manager.

In SUPERCLOUD, we consider that forward mode is the default enforcement implementation for
Self-Management Agents. So the SMA will actively identify the manager concerned by the decision
and query it for decisions making.

Reaction

When attacks, intrusions or mis-configurations are detected, remediation actions should be rapidly
and automatically performed. The execution of remediation strategies is performed by the reaction
security service provided by the Self-Management Agent. The reaction action depends on the target

8In SUPERCLOUD, we consider a broad notion of resource that inlcude any artefact at the level of network, compute
and storage

SUPERCLOUD D1.2 Page 64 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

SUPERCLOUD plane as it relies on the reaction API provided by this plane. In SUPERCLOUD,
we adopt a policy-based reaction process. In other words, once an attack or an intrusion has been
detected, the Security Self-Management will trigger the enforcement of new security rules. This means
the activation of a prohibition, an obligations, a permissions, or any combination of them. A more
detailed description of how this process along with a concrete scenario of DNS-based reaction could
be found in Section 4.2.6 and in dedicated Self-Management sections in Deliverables D2.1, D3.1, and
D4.1.

Sensor

The Sensor goal is to transmit states, events and properties of the managed resource to the Security
Self-Management component such as the manager and the orchestrator. As illustrated in Figure 4.8,
it also relies on the manageability mechanisms to extract information and transmit it to relevant
recipients. A Sensor can also provide on-demand information to other components. For instance,
activities logs can be processed to detect intrusions and attacks, then commands can afterward be
used to execute the reactions. The Sensor is also subsequently organized into two sub-functions,
namely Monitoring and Detection.

Monitoring

The role of this function is to report faults, anomalies or service disturbance, but also any other sensed
information that can be obtained as well. It performs also measurements and performance models
to monitor Service Level Objectives. For instance, from the location self-management requirement
(Chapter 2), the need arises for a “location monitoring sensor” that checks if the requester of a
particular resource is in a particular geographical location. If the SLA includes location awareness or
location control, the location sensor is used to extract accurate geolocation to be forwarded to SLA
manager in order to evaluate compliance with the active SLA. Many other types of sensors can be
considered as any context information, functional and non functional measure can be obtained from
the cloud infrastructure.

Detection

The detection activity allows the analysis of activities’ logs to detect intrusions and/or attacks. De-
pending on the natures of the analysed logs, the detection can be classified into Host Intrusion detection
(HID) and Network Intrusion Detection (NID) [41].

In HID, the analysis focuses on system, applications and services activities. For instance, Virtual
machines activities can be obtained from the VMM and analysed. In the NID, the focus of the
analysis in on the network packets that are exchanged between the SUPERCLOUD components (e.g.,
VMs, containers, applications, etc.). In both HID and NID, the analysis of these activities can be
achieved in static and dynamic modes. The static analysis consist in comparing theses activities with
the signature of well known attacks. In the dynamic analysis, the analysis is independent from any
attacks base and relies on learning algorithms that tries to mine normal and abnormal activities.

Security Orchestration

In this Section, we briefly present how the security orchestrator coordinates the self-management
process involving the different managers presented above. The orchestration involves three sub-
components, namely the Orchestrator, the Planner and Storage manager. These components are
described hereafter.

The orchestration approach we propose tries to mimic the MAPE-K model [69]. While Monitoring
and execution are delegated to security-specific services managers such as authorization manager, the

SUPERCLOUD D1.2 Page 65 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Analysis is performed by the Orchestrator, the planning by the planner (cf. Section 4.2.11) and the
knowledge is managed by the Storage Manager (cf. Section 4.2.12).

Orchestrator

The Orchestrator centralizes the decision making logic and coordinates the activities of Security Self-
Management. At the initial stage, it retrieves and analyses the active SLA and requests the Planner
to generate corresponding plans. Once these plans received, the orchestrator dispatches theses plans
to the concerned managers to be executed. The executor (i.e., a manager) translates theses plans into
formal descriptions of actions that Self-Management Agent will convert into target specific operations.

Planner

As highlighted above, the planner is responsible of extracting the user’s description of the expected
cloud configuration in terms of required components (and inter-connectivity), as well as the desired
security and performance level. To that aim, the Planner will parse the active SLA to identify the
configuration that need to be deployed by the provider in order to meet Security and Performance
Service Level Objectives

Parsing the SLA will allow the Planner to extract parameters that will be used to generate deployment
templates. These templates are used to allocate, place and configure the instantiated user cloud. The
format of such configuration pattern is not decided yet. To that aim, we only rely on the description
of parameters that could be used as Service Level Objective. Theses parameters has been described in
Chapter 3.1.

Storage Manager

As its name suggests, this component is responsible of the knowledge base persistence. It stores
rules, policies, plans, SLAs, and any data or information that is used in the Self-Management of
Security. This component can be a database manager for instance or any efficient storage management
mechanism.

SUPERCLOUD D1.2 Page 66 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Summary and Conclusion

Summary

This deliverable presented a preliminary architecture for SUPERCLOUD Security Self-Management
infrastructure in multi-clouds.

In Chapter 2, we presented and analysed security requirements that should adhered to during the spec-
ification of Self-Management architecture. We first extracted Healthcare requirements from use-cases
provided by SUPERCLOUD partners Philips Healthcare and MAXDATA. Then we described
more generic requirements that may apply to any Multi-Cloud scenario. Based on these requirements
analysis, we highlighted security mechanisms and services that should be implemented in order to
bring user-centric control and self-management to current cloud architectures. These mechanisms in-
clude, but are not limited to, fine-grained access control, flexible authorization management, efficient
trust management (that we split into two aspect hard and soft with orthogonal execution horizontally
(across-providers) and vertically (across-layers). We identified also Security Service Level Agreements
as a fundamental mechanism to enable end-to-end security customization and control.

In Chapter 3, we introduced basic concepts and existing approaches related to security services that
have been identified previously (e.g., authorization, trust, SLA management, etc.). In this Chapter, we
reviewed also different models, languages, and frameworks that have been proposed in the literature
in Access Control and Authorizaton, Service Level Agreements and Trust Management. The objective
of this Chapter was twofold; first we provided the reader basic concepts that we build upon in the
specification of the Self-Management architecture. Second, we exacerbated the drawbacks and benefits
of each approach in order be able to choose the one that best fits SUPERCLOUD requirements (cf.
Chapter 2).

In Chapter 4, we presented a high-level architectural overview of the Self-Management architecture.
Guided by the requirements, the specification of security self-management derive from the objective to
design cloud systems that can manage themselves to reach and maintain high-level security objectives,
previously defined by the cloud customer by means of SSLAs. We identified principal building blocks
to reach this objective, then we delve in the description of each component. We showed also how each
component, while implementing the techniques we reviewed Chapter 3 participates in the fulfilment
for the requirements identified in Chapter 2.

Next steps

In the next months, the first steps will be to refine the proposed architecture to present the interfaces
between the different building blocks and how this self-management architecture could be integrated
to the SUPERCLOUD overall architecture, as well as the definition of the interfaces and necessary
components for the compute (WP2), storage (WP3) and network (WP4) sub-architectures.

A challenging task would be the definition/extension of existing SLA specification language to express

SUPERCLOUD D1.2 Page 67 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

security requirements and build on these languages to provide an automated SLA management frame-
work.

Finally, a last important step will consist in implementing part of the self-management architecture to
evaluate the validity of this approach. This step may lead to a re-evaluation, refinement and adaptation
of some components of the architecture, making this deliverable a living document.

SUPERCLOUD D1.2 Page 68 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

List of Abbreviations

ABAC Attributes Based Access Control

API Application Programmer Interface

CSC Cloud Service Customer

CSP Cloud Service Provider

EC European Commission

HIDS Host-based Intrusion Detection System

IAM identity and access management

NIDS Network Intrusion Detection System

OrBAC Organization Based Access Control

RBAC Role Based Access Control

RDF Resource Description Framework

SLA Service Level Agreement

SSLA Security Service Level Agreement

SMA Self Management Agent

SLO Service Level Objective

TBD to be determined

VESPA Virtual Environments Self-Protecting Architecture

VM Virtual Machine

WSLA Web Service Level Agreement

XML Extensible Markup Language

SUPERCLOUD D1.2 Page 69 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

Bibliography

[1] Alfarez Abdul-rahman. The PGP Trust Model. Architecture, pages 1–6, 1997.

[2] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual communities. In Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences-Volume 6 - Volume 6,
HICSS ’00, pages 6007–, Washington, DC, USA, 2000. IEEE Computer Society.

[3] Diala Abi Haidar, Nora Cuppens - Boulahia, Frédéric Cuppens, and Hervé Debar. XeNA:
an access negotiation framework using XACML. Annals of telecommunications - annales des
télécommunications, 64(1-2):155–169, October 2008.

[4] Diala Abi Haidar, Nora Cuppens Boulahia, Frdric Cuppens, and Herv Debar. Xena: an access
negotiation framework using xacml. annals of telecommunications - annales des tlcommunica-
tions, 64(1-2):155–169, 2009.

[5] Joseph A. Akinyele, Matthew W. Pagano, Matthew D. Green, Christoph U. Lehmann,
Zachary N.J. Peterson, and Aviel D. Rubin. Securing electronic medical records using attribute-
based encryption on mobile devices. In Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM ’11, pages 75–86, New York, NY, USA,
2011. ACM.

[6] J.M. Alcaraz Calero, N. Edwards, J. Kirschnick, L. Wilcock, and M. Wray. Toward a multi-
tenancy authorization system for cloud services. Security Privacy, IEEE, 8(6):48–55, Nov 2010.

[7] Cloud Security Alliance. http://cloudsecurityalliance.org, 2011.

[8] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki Nakata,
Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web Services Agreement Specification
(WS-Agreement). Technical report, Global Grid Forum, Grid Resource Allocation Agreement
Protocol (GRAAP) WG, September 2005.

[9] Claudio A. Ardagna, Ernesto Damiani, Sabrina Capitani di Vimercati, Sara Foresti, and
Pierangela Samarati. Trust management. In Milan Petković and Willem Jonker, editors, Secu-
rity, Privacy, and Trust in Modern Data Management, Data-Centric Systems and Applications,
pages 103–117. Springer Berlin Heidelberg, 2007.

[10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Kon-
winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, April 2010.

[11] D. Artz and Y. Gil. A survey of trust in computer science and the Semantic Web. Web Semantics:
Science, Services and Agents on the World Wide Web, 5(2):58–71, June 2010.

[12] Michael Ault. Oracle Administration and Management. John Wiley & Sons, Inc., New York,
NY, USA, 1 edition, 2002.

[13] F. Autrel, F. Cuppens, N. Cuppens-Boulahia, and C. Coma. Motorbac 2: a security policy tool,
2008.

SUPERCLOUD D1.2 Page 70 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

[14] Tom Barton, Jim Basney, Tim Freeman, Tom Scavo, Frank Siebenlist, Von Welch, Rachana
Ananthakrishnan, Bill Baker, Monte Goode, and Kate Keahey. Identity Federation and
Attribute-based Authorization through the Globus Toolkit, Shibboleth, Gridshib, and MyProxy.
In 5th Annual PKI R&D Workshop, April 2006.

[15] M.Y. Becker and P. Sewell. Cassandra: Distributed access control policies with tunable expres-
siveness. In Proceedings of the Fifth IEEE International Workshop on Policies for Distributed
Systems and Networks, POLICY ’04, pages 159–, Washington, DC, USA, 2004. IEEE Computer
Society.

[16] K. Bernsmed, M.G. Jaatun, P.H. Meland, and A. Undheim. Security slas for federated cloud
services. In Availability, Reliability and Security (ARES), 2011 Sixth International Conference
on, pages 202–209, Aug 2011.

[17] Karin Bernsmed, Martin Gilje Jaatun, and Astrid Undheim. Security in service level agreements
for cloud computing. In Leymann et al. [16], pages 636–642.

[18] E. Bertino, E. Ferrari, and A. Squicciarini. X -tnl: An xml-based language for trust negotiations.
In Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and
Networks, POLICY ’03, pages 81–, Washington, DC, USA, 2003. IEEE Computer Society.

[19] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-x: A peer-to-peer framework for trust
establishment. IEEE Trans. on Knowl. and Data Eng., 16(7):827–842, July 2004.

[20] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The role of trust
management in distributed systems security. In Jan Vitek and Christian D. Jensen, editors,
Secure Internet programming, pages 185–210. Springer-Verlag, London, UK, 1999.

[21] Matt Blaze, Joan Feigenbaum, and AngelosD. Keromytis. Keynote: Trust management for
public-key infrastructures. In Bruce Christianson, Bruno Crispo, WilliamS. Harbison, and
Michael Roe, editors, Security Protocols, volume 1550 of Lecture Notes in Computer Science,
pages 59–63. Springer Berlin Heidelberg, 1999.

[22] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In Proceedings
of the 1996 IEEE Symposium on Security and Privacy, SP ’96, pages 164–, Washington, DC,
USA, 1996. IEEE Computer Society.

[23] P.A. Bonatti, L Juri, Daniel Olmedilla, and Luigi Sauro. Policy-driven negotiations and expla-
nations: Exploiting logic-programming for trust management, privacy & security. Logic
Programming, pages 779–784, 2008.

[24] Piero Bonatti and Daniel Olmedilla. Driving and monitoring provisional trust negotiation with
metapolicies. In Proceedings of the Sixth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, POLICY ’05, pages 14–23, Washington, DC, USA, 2005. IEEE
Computer Society.

[25] Stefano Braghin. Advanced languages and techniques for trust negotiation. PhD thesis, University
degli Studi dell’Insubria, 2011.

[26] Winston Bumpus, John W. Sweitzer, Patrick Thompson, Andrea R. Westerinen, and Ray-
mond C. Williams. Common Information Model: Implementing the Object Model for Enterprise
Management. John Wiley & Sons, Inc., New York, NY, USA, 2000.

[27] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) V2.0. Technical report, March 2005.

SUPERCLOUD D1.2 Page 71 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

[28] E. Cayirci. A joint trust and risk model for msaas mashups. In Simulation Conference (WSC),
2013 Winter, pages 1347–1358, Dec 2013.

[29] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog (and never
dared to ask). IEEE Trans. on Knowl. and Data Eng., 1(1):146–166, March 1989.

[30] Suranjan Choudhury, Kartik Bhatnagar, and Wasim Haque. Public Key Infrastructure Imple-
mentation and Design. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 2002.

[31] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and Martin Strauss. Referee:
trust management for web applications. World Wide Web J., 2(3):127–139, June 1997.

[32] Eve Cohen, Roshan K. Thomas, William Winsborough, and Deborah Shands. Models for
coalition-based access control (cbac). In Proceedings of the Seventh ACM Symposium on Ac-
cess Control Models and Technologies, SACMAT ’02, pages 97–106, New York, NY, USA, 2002.
ACM.

[33] European Commission. The cloud service level agreement standardisation guidelines.

[34] Robin Cover. Extensible Access Control Markup Language (XACML), 2007.

[35] F. Cuppens, N. Cuppens-Boulahia, and C. Coma. MotOrBAC : un outil d’administration et de
simulation de politiques de sécurité, 2006.

[36] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder policy
specification language. In Proceedings of the International Workshop on Policies for Distributed
Systems and Networks, POLICY ’01, pages 18–38, London, UK, UK, 2001. Springer-Verlag.

[37] A.V. Dastjerdi and R. Buyya. Compatibility-aware cloud service composition under fuzzy pref-
erences of users. Cloud Computing, IEEE Transactions on, 2(1):1–13, Jan 2014.

[38] D. Davide Lamanna, J. Skene, and W. Emmerich. Slang: a language for defining service level
agreements. In Distributed Computing Systems, 2003. FTDCS 2003. Proceedings. The Ninth
IEEE Workshop on Future Trends of, pages 100–106, May 2003.

[39] S.A. de Chaves, C.B. Westphall, and F.R. Lamin. Sla perspective in security management for
cloud computing. In Networking and Services (ICNS), 2010 Sixth International Conference on,
pages 212–217, March 2010.

[40] Juri Luca De Coi and Daniel Olmedilla. A review of trust management, security and privacy
policy languages. In SECRYPT 2008, Proceedings of the International Conference on Security
and Cryptography, Porto, Portugal, July 26-29, 2008, SECRYPT is part of ICETE - The In-
ternational Joint Conference on e-Business and Telecommunications, pages 483–490. INSTICC
Press, 2008.

[41] Herve Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-detection
systems, 1998.

[42] John DeTreville. Binder, a logic-based security language. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, SP ’02, pages 105–, Washington, DC, USA, 2002. IEEE
Computer Society.

[43] Jeffrey D.Ullman. Principles of database and knowledge-base systems. In Computer Science
Press, 1989.

SUPERCLOUD D1.2 Page 72 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

[44] A. Duncan, S. Creese, M. Goldsmith, and J.S. Quinton. Cloud computing: Insider attacks on
virtual machines during migration. In Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2013 12th IEEE International Conference on, pages 493–500, July
2013.

[45] A.J. Duncan, S. Creese, and M. Goldsmith. Insider attacks in cloud computing. In Trust, Security
and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International
Conference on, pages 857–862, June 2012.

[46] Rino Falcone and Cristiano Castelfranchi. Social trust: a cognitive approach. In Christiano
Castelfranchi and Yao-Hua Tan, editors, Trust and deception in virtual societies, pages 55–90.
Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[47] Telemanagement (TM) Forum. Sla management handbook, volume 2: Concepts and principles
release 2.5.

[48] Diego Gambetta. Can We Trust Trust? In Diego Gambetta, editor, Trust: Making and Breaking
Cooperative Relations, chapter 13, pages 213–237. Department of Sociology, University of Oxford,
2000.

[49] Dieter Gollmann, Fabio Massacci, and Artsiom Yautsiukhin, editors. Quality of Protection -
Security Measurements and Metrics, volume 23 of Advances in Information Security. Springer,
2006.

[50] Marc Goodner, Maryann Hondo, Anthony Nadalin, Michael McIntosh, and Don Schmidt. Un-
derstanding WS-Federation. Technical report, IBM, May 2007.

[51] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS ’06, pages 89–98, New York, NY, USA, 2006.
ACM.

[52] Tyrone Grandison and Morris Sloman. A survey of trust in internet applications. Commun.
Surveys Tuts., 3(4):2–16, October 2000.

[53] Tyrone Grandison and Morris Sloman. Trust management tools for internet applications. In
Proceedings of the 1st international conference on Trust management, iTrust’03, pages 91–107,
Berlin, Heidelberg, 2003. Springer-Verlag.

[54] Tyrone W. A. Grandison. Trust Management for Internet Applications. PhD thesis, Imperial
College of Science, Technology and Medicine, University of London, 2003.

[55] S.M. Habib, S. Ries, and M. Muhlhauser. Towards a trust management system for cloud com-
puting. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2011
IEEE 10th International Conference on, pages 933–939, Nov 2011.

[56] Brian Hayes. Cloud computing. Commun. ACM, 51(7):9–11, July 2008.

[57] Amir Herzberg, Yosi Mass, Joris Michaeli, Yiftach Ravid, and Dalit Naor. Access control meets
public key infrastructure, or: Assigning roles to strangers. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, SP ’00, pages 2–, Washington, DC, USA, 2000. IEEE
Computer Society.

[58] Andrew N. Hiles. Service level agreements: Panacea or pain? The TQM Magazine, 6(2):14–16,
1994.

[59] Polar Humenn. The formal semantics of XACML. Technical report, Syracuse University, 2003.

SUPERCLOUD D1.2 Page 73 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

[60] Trung Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. An integrated trust and
reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems,
13(2):119–154, September 2006.

[61] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision Support Systems, 43(2):618–644, 2007.

[62] Audun Jøsang. Trust and reputation systems. In Alessandro Aldini and Roberto Gorrieri,
editors, Foundations of security analysis and design IV, pages 209–245. Springer-Verlag, Berlin,
Heidelberg, 2007.

[63] Audun Jøsang and Roslan Ismail. The Beta Reputation System. In Proceedings of the 15th Bled
Electronic Commerce Conference, volume 160, pages 324–337, 2002.

[64] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy based approach to security for the
semantic web. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, The Semantic
Web - ISWC 2003, volume 2870 of Lecture Notes in Computer Science, pages 402–418. Springer
Berlin Heidelberg, 2003.

[65] A. A. El Kalam and Y. Deswarte. Multi-OrBAC : a New Access Control Model for Distributed,
Heterogeneous and Collaborative Systems. In 8th International Symposium on System and
Information Security (SSI’2006), Sao Paulo (Brésil), 8-10 Novembre 2006, 2006.

[66] A.A.E. Kalam, R.E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miege,
C. Saurel, and G. Trouessin. Organization based access control. In Policies for Distributed
Systems and Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International Workshop
on, pages 120–131, June 2003.

[67] Anas Abou El Kalam, Salem Benferhat, Alexandre Miège, Rania El Baida, Frédéric Cuppens,
Claire Saurel, Philippe Balbiani, Yves Deswarte, and Gilles Trouessin. Organization based access
control. In Proceedings of the 4th IEEE International Workshop on Policies for Distributed
Systems and Networks, POLICY ’03, pages 120–, Washington, DC, USA, 2003. IEEE Computer
Society.

[68] Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and monitoring service
level agreements for web services. Journal of Network and Systems Management, 11(1):57–81,
2003.

[69] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer, 36(1):41–50, Jan
2003.

[70] Jana Koehler and C Giblin. On autonomic computing architectures. Technical report, IBM
Research, Zurich, 2003.

[71] Y. Kouki, F.A. de Oliveira, S. Dupont, and T. Ledoux. A language support for cloud elas-
ticity management. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, pages 206–215, May 2014.

[72] Yousri Kouki and Thomas Ledoux. CSLA : a Language for improving Cloud SLA Management.
In International Conference on Cloud Computing and Services Science, CLOSER 2012, pages
586–591, Porto, Portugal, April 2012.

[73] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. Trust models in ubiquitous computing.
Philosophical transactions of the Royal Society, 366(1881):3781–3793, 2008.

SUPERCLOUD D1.2 Page 74 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

[74] Marc Lacoste, Aurélien Wailly, Aymeric Tabourin, Löıc Habermacher, Xavier Le Guillou, and
Jean-Philippe Wary. Flying over Mobile Clouds with Security Planes: Select Your Class of SLA
for End-to-End Security. In 6th IEEE/ACM International Conference on Utility and Cloud
Computing (UCC), 2013.

[75] Pradip Lamsal. Understanding trust and security. Technical report, Department of Computer
Science University of Helsinki, Finland, 2001.

[76] Bo Lang, Ian Foster, Frank Siebenlist, Rachana Ananthakrishnan, and Tim Freeman. A flexible
attribute based access control method for grid computing. Journal of Grid Computing, 7(2):169–
180, 2009.

[77] Adam J. Lee. Towards Practical and Secure Decentraliz Attribute-Based Authorisation Systems.
PhD thesis, University of Illinois, 2008.

[78] Adam J. Lee, Marianne Winslett, and Kenneth J. Perano. Trustbuilder2: A reconfigurable frame-
work for trust negotiation. In Elena Ferrari, Ninghui Li, Elisa Bertino, and Yuecel Karabulut,
editors, Trust Management III, volume 300 of IFIP Advances in Information and Communica-
tion Technology, pages 176–195. Springer Berlin Heidelberg, 2009.

[79] Chen-Yu Lee, K.M. Kavi, R.A. Paul, and M. Gomathisankaran. Ontology of secure service level
agreement. In High Assurance Systems Engineering (HASE), 2015 IEEE 16th International
Symposium on, pages 166–172, Jan 2015.

[80] Herbert Leitold and Bernd Zwattendorfer. Stork: Architecture, implementation and pilots.
In Norbert Pohlmann, Helmut Reimer, and Wolfgang Schneider, editors, ISSE 2010 Securing
Electronic Business Processes, pages 131–142. Vieweg+Teubner, 2011.

[81] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust-
management framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy,
SP ’02, pages 114–, Washington, DC, USA, 2002. IEEE Computer Society.

[82] Niklas Luhmann. Familiarity, confidence, trust: Problems and alternatives. In Trust: Making
and breaking cooperative relations, pages 15–35. Basil Blackwell, 1990.

[83] Jesus Luna Garcia, Robert Langenberg, and Neeraj Suri. Benchmarking cloud security level
agreements using quantitative policy trees. In Proceedings of the 2012 ACM Workshop on Cloud
Computing Security Workshop, CCSW ’12, pages 103–112, New York, NY, USA, 2012. ACM.

[84] Stephen Paul Marsh. Formalising trust as a computational concept. PhD thesis, Department of
Computing Science and Mathematics, University of Stirling, 1994.

[85] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud Security and Privacy: An Enter-
prise Perspective on Risks and Compliance. O’Reilly Media, Inc., 2009.

[86] D. Harrison Mcknight and Norman L. Chervany. The Meanings of trust. Technical Report 612,
University of Minnesota, 1996.

[87] Marc Mosch, Stephan Gro, and Alexander Schill. User-controlled resource management in fed-
erated clouds. Journal of Cloud Computing, 3(1), 2014.

[88] Talal H. Noor and Quan Z. Sheng. Trust as a service: A framework for trust management in
cloud environments. In Proceedings of the 12th International Conference on Web Information
System Engineering, WISE’11, pages 314–321, Berlin, Heidelberg, 2011. Springer-Verlag.

[89] OPNFV Consortium. Moon Security Management Module, 2015. https://wiki.opnfv.org/moon.

SUPERCLOUD D1.2 Page 75 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

[90] Simon Parsons and M. Wooldridge. Game theory and decision theory in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, pages 1–14, 2002.

[91] Adrian Paschke. Rbsla a declarative rule-based service level agreement language based on ruleml.
In Computational Intelligence for Modelling, Control and Automation, 2005 and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Con-
ference on, volume 2, pages 308–314, Nov 2005.

[92] David Recordon and Drummond Reed. Openid 2.0: A platform for user-centric identity man-
agement. In Proceedings of the Second ACM Workshop on Digital Identity Management, DIM
’06, pages 11–16, New York, NY, USA, 2006. ACM.

[93] N. Repp, A. Miede, M. Niemann, and R. Steinmetz. Ws-re2policy: A policy language for
distributed sla monitoring and enforcement. In Systems and Networks Communications, 2008.
ICSNC ’08. 3rd International Conference on, pages 256–261, Oct 2008.

[94] Carlos Ribeiro, Andr Zquete, Paulo Ferreira, and Paulo Guedes. Spl: An access control language
for security policies with complex constraints. In In Proceedings of the Network and Distributed
System Security Symposium, pages 89–107, 1999.

[95] S. Ron and P. Aliko. Level agreement (sla) in utility computing systems.

[96] Sini Ruohomaa and Lea Kutvonen. Trust management survey. In Peter Herrmann, Valérie
Issarny, and Simon Shiu, editors, Trust Management, volume 3477 of Lecture Notes in Computer
Science, pages 77–92. Springer Berlin Heidelberg, 2005.

[97] J. Russell and R. Cohn. Windows Identity Foundation. Book on Demand, 2012.

[98] Tatyana Ryutov, Li Zhou, Clifford Neuman, Travis Leithead, and Kent E. Seamons. Adaptive
trust negotiation and access control. In Proceedings of the tenth ACM symposium on Access
control models and technologies, SACMAT ’05, pages 139–146, New York, NY, USA, 2005.
ACM.

[99] Jordi Sabater and Carles Sierra. Regret: reputation in gregarious societies. In Proceedings of the
fifth international conference on Autonomous agents, AGENTS ’01, pages 194–195, New York,
NY, USA, 2001. ACM.

[100] Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19, November 1993.

[101] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control Models.
Computer, 29(2):38–47, 1996.

[102] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills, and L. Yu. Re-
quirements for policy languages for trust negotiation. In Proceedings of the 3rd International
Workshop on Policies for Distributed Systems and Networks (POLICY’02), POLICY ’02, pages
68–, Washington, DC, USA, 2002. IEEE Computer Society.

[103] J. Skene, D. Davide Lamanna, and W. Emmerich. Precise service level agreements. In Software
Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on, pages 179–188,
May 2004.

[104] M Sloman. Policy Driven Management For Distributed Systems. Journal of Network and System
Management, Vol., 2(4), 1994.

[105] Joel Sommers, Paul Barford, Nick Duffield, and Amos Ron. Accurate and efficient sla compliance
monitoring. SIGCOMM Comput. Commun. Rev., 37(4):109–120, August 2007.

SUPERCLOUD D1.2 Page 76 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

[106] Martin Spasovski. OAuth 2.0 Identity and Access Management Patterns. Packt Publishing,
2013.

[107] A. Squicciarini, E. Bertino, Elena Ferrari, F. Paci, and B. Thuraisingham. Pp-trust-x: A system
for privacy preserving trust negotiations. ACM Trans. Inf. Syst. Secur., 10(3), July 2007.

[108] Lili Sun, Hua Wang, Jianming Yong, and Guoxin Wu. Semantic access control for cloud com-
puting based on e-healthcare. In Computer Supported Cooperative Work in Design (CSCWD),
2012 IEEE 16th International Conference on, pages 512–518, May 2012.

[109] G. Suryanarayana and R.N. Taylor. A Survey of Trust Management and Resource Discovery
Technologies in Peer-to-Peer Applications. Technical Report UCI-ISR-04-6, ISR, 2004.

[110] Bo Tang, Qi Li, and R. Sandhu. A multi-tenant rbac model for collaborative cloud services. In
Privacy, Security and Trust (PST), 2013 Eleventh Annual International Conference on, pages
229–238, July 2013.

[111] Bo Tang and R. Sandhu. Cross-tenant trust models in cloud computing. In Information Reuse
and Integration (IRI), 2013 IEEE 14th International Conference on, pages 129–136, Aug 2013.

[112] Bo Tang, R. Sandhu, and Qi Li. Multi-tenancy authorization models for collaborative cloud
services. In Collaboration Technologies and Systems (CTS), 2013 International Conference on,
pages 132–138, May 2013.

[113] The Standfod Center for Biomedical Informatics Research (BMIR). Protege: open source ontol-
ogy editor and knowledge-base framework, 2000.

[114] Roshan K. Thomas. Team-based access control (tmac): A primitive for applying role-based
access controls in collaborative environments. In Proceedings of the Second ACM Workshop on
Role-based Access Control, RBAC ’97, pages 13–19, New York, NY, USA, 1997. ACM.

[115] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson, S. Kulka-
rni, and J. Lott. Kaos policy and domain services: Toward a description-logic approach to
policy representation, deconfliction, and enforcement. In Proceedings of the 4th IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks, POLICY ’03, pages 93–,
Washington, DC, USA, 2003. IEEE Computer Society.

[116] Andrzej Uszok, Jeffrey M. Bradshaw, Matthew Johnson, Renia Jeffers, Austin Tate, Jeff Dalton,
and Stuart Aitken. Kaos policy management for semantic web services. IEEE Intelligent Systems,
19(4):32–41, July 2004.

[117] Aurélien Wailly, Marc Lacoste, and Hervé Debar. VESPA: Multi-Layered Self-Protection for
Cloud Resources. In International Conference on Autonomic Computing (ICAC), 2012.

[118] Olga Wenge, Dieter Schuller, Ulrich Lampe, Melanie Siebenhaar, and Ralf Steinmetz. Composi-
tion of cloud collaborations under consideration of non-functional attributes. In Xavier Franch,
AdityaK. Ghose, GraceA. Lewis, and Sami Bhiri, editors, Service-Oriented Computing, volume
8831 of Lecture Notes in Computer Science, pages 462–469. Springer Berlin Heidelberg, 2014.

[119] Wikipedia. Trust management (information system), 2013.

[120] Linlin Wu and Rajkumar Buyya. Service level agreement (SLA) in utility computing systems.
CoRR, abs/1010.2881, 2010.

[121] Edward Wustenhoff. Service level agreement in the data center. Sun Blueprints, 2002.

SUPERCLOUD D1.2 Page 77 of 78

D1.2- SUPERCLOUD Self-Management of Security Specification

[122] F. Xie, Z. Chen, H. Xu, X. Feng, and Q. Hou. Tst: Threshold based similarity transitivity method
in collaborative filtering with cloud computing. Tsinghua Science and Technology, 18(3):318–327,
June 2013.

[123] M Yagüe. Survey on xml-based policy languages for open environments. Journal of Information
Assurance and Security, 1:11–20, 2006.

[124] R. Yaich, O. Boissier, P. Jaillon, and G. Picard. An agent based trust management system for
multi-agent based virtual communities. In Yves Demazeau, Jörg P. Müller, Juan M. Corchado
Rodŕıguez, and Javier Bajo Pérez, editors, Advances on Practical Applications of Agents and
Multiagent Systems, Proc. of the 10th International Conference on Practical Applications of
Agents and Multi-Agent Systems (PAAMS 12), volume 155 of Advances in Soft Computing
Series, pages 217–223. Springer, 2012.

[125] Reda Yaich, Olivier Boissier, Gauthier Picard, and Philippe Jaillon. Adaptiveness and Social-
Compliance in Trust Management within Virtual Communities. Web Intelligence and Agent
Systems (WIAS), Special Issue: Web Intelligence and Communities, 11(4), 2013.

[126] Walt Yao. Trust management for widely distributed systems. Technical Report UCAM-CL-TR-
608, University of Cambridge Computer Laboratory, 2004.

[127] Younis A. Younis, Kashif Kifayat, and Madjid Merabti. An access control model for cloud
computing. Journal of Information Security and Applications, 19(1):45 – 60, 2014.

[128] Ting Yu. Automated trust establishment in open systems. PhD thesis, University of Illinois at
Urbana-Champaign, Champaign, IL, USA, 2003. AAI3102006.

[129] Ting Yu, Xiaosong Ma, and Marianne Winslett. Prunes: an efficient and complete strategy for
automated trust negotiation over the internet. In Proceedings of the 7th ACM conference on
Computer and communications security, CCS ’00, pages 210–219, New York, NY, USA, 2000.
ACM.

[130] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured credentials and sensi-
tive policies through interoperable strategies for automated trust negotiation. ACM Transactions
on Information and System Security, 6(1):1–42, February 2003.

[131] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for Web services. In IEEE
International Conference on Web Services (ICWS’05). IEEE, 2005.

[132] Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing security issues. Future
Gener. Comput. Syst., 28(3):583–592, March 2012.

SUPERCLOUD D1.2 Page 78 of 78

	Introduction
	Motivation and Challenges
	User-Centric and Self-Managemed cloud Security
	Organization of the document

	Requirements Analysis
	Introduction
	Healthcare requirements
	Healthcare Laboratory Information System
	Medical Imaging Platform

	Generic Requirements
	DR1: Availability
	DR2: Integrity
	DR3: User-Centric Security Control
	DR4: Fine-grained Access Control
	DR5: Horizontal and Vertical Privacy Preservation
	DR6: Interoperability and Adaptiveness
	DR7: Isolation
	DR8: Location Awareness and Control
	DR9: Monitoring, auditing and investigation
	DR10: Assurance, Guarantees and Remediation
	DR11: Autonomic Security
	DR12: End-to-end Security

	Summary of Security Requirements

	Background
	Introduction to Service Level Agreement
	Foundations of SLAs
	Short Survey on SLA Languages, Standards and Frameworks
	WS-Re2Policy
	Security in Service Level Agreement

	Introduction to Authorization and Access Control
	Mandatory Access Control
	Discretionary Access Control
	Role-Based Access Control
	Attribute Based Access Control (ABAC)
	Semantic-Web based Access Control
	Organization-Based Access Control
	Existing standards
	Single Sign-On (SSO)
	Access control In cloud computing

	An Introduction to Trust Management
	What is Trust?
	What is Trust Management?
	Foundations of Trust Management
	Automated Trust Negotiation

	Survey on Trust Management Systems and Models
	Authorisation-Based TMSs
	Automated Trust Negotiation Systems
	A Preliminary review of Trust Models in Cloud Computing
	"Hardware" Trust Management
	Secure Boot
	Trusted Execution Environment

	Preliminary Self-Management Architecture
	Overview of Self-Management Architecture
	Self-Management Building Blocks
	Security Service Level Agreement Management
	Preliminary Security SLA architecture
	Authorization management
	Compute Security Manager
	Storage Security Manager
	Network Security Manager
	Trust Management
	Self-Management Agents
	Security Orchestration
	Orchestrator
	Planner
	Storage Manager

	Summary and Conclusion
	List of Abbreviations
	Bibliography

