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Executive Summary

This deliverable presents the software components of the SUPERCLOUD distributed cloud infrastruc-
ture and security services for computation. We start by giving a general overview of the structure
of the overall security framework for computation. We then present the software components of the
framework organized into two separate infrastructures:

• a core virtualization infrastructure including components for virtualization and orchestration,
system support for cross-layer security, hardware-based isolation and trust management using
Intel SGX technology, and support for cloud FPGAs;

• and a self-management infrastructure including a security orchestrator and several security ser-
vices covering authorization, security monitoring, geolocation-aware replication, SLA manage-
ment, and software trust management.

The set of components should be viewed as a security toolbox to build customized U-Clouds hosting
secure computations, selecting the needed security services to match user protection requirements. For
each component, we describe its main APIs. We also provide information on how to access and use
the developed software.
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Chapter 1 Overview

1.1 Context

Previous steps of the project were focused on the design of the SUPERCLOUD computation infras-
tructure and on prototyping of a number of its components.

• Step 1 concerned Architecture. The design of the virtualization and self-management of VM
security infrastructure was defined, and is reported in Deliverable D2.1 [19]. This included a
distributed virtualization infrastructure providing virtualization, isolation, and trust manage-
ment features for running U-Clouds, and a self-management infrastructure for automatically
managing computing security with features including policy and SLA management, monitoring,
authorization, and configuration compliance checking.

• Step 2 concerned Implementation. A number of Proof-of-Concept prototypes were developed,
illustrating basic functionality of one or several components of the SUPERCLOUD computing
framework. Results are reported in deliverable D2.2 [22].

Prototypes were focused on: (1) virtualization and orchestration primitives for user-centric and
cross-provider virtualization combining flexible security control and interoperability, with exten-
sion to cross-layer U-Clouds; (2) isolation and trust illustrating the use of Intel SGX as key
VM isolation technology, trust management between enclaves, advances on trusted execution for
large-size applications, and benefits of systems such as Cloud FPGAs (Field Programmable Gate
Arrays) for hardware acceleration of security management primitives; and (3) self-management
through prototypes for multi-cloud security policy modelling and enforcement with applications
to network availability and negotiation of SLAs and geolocation-aware data replication.

1.2 Objective of the document

Step 3 is devoted to Integration. This deliverable describes the prototypical implementation of the
distributed cloud infrastructure for computation (computing security framework) and related compo-
nents for SUPERCLOUD security management, integrating the previous components. This deliverable
is a software deliverable. The purpose of this document is thus to describe the structure of the com-
puting framework and the APIs of its main components – their detailed design having been described
in Deliverables D2.1 [19] and D2.2 [22].

1.3 Outline of the document

The rest of this document is organized as follows. In Chapter 2, we present the approach for specifying
the framework and give an overview of its structure, that comprises two separate sub-infrastructures,
the virtualization infrastructure and the self-management infrastructure. Chapters 3 and 4 then present
in turn the two sub-infrastructures, in terms of general structure and APIs of their different compo-
nents. Finally, we conclude in Chapter 5.

SUPERCLOUD D2.3 Page 1 of 49



D2.3 - Secure Computation Infrastructure and SUPERCLOUD Security Services

Chapter 2 The computing security framework

This Chapter introduces the computing security framework, in terms of design principles (Section 2.1),
framework specification approach (Section 2.2), and high-level overview (Section 2.3).

2.1 Framework design principles

The purpose of the SUPERCLOUD computing security framework is to enable secure computing
over multiple clouds. This means both providing a secure distributed computation infrastructure and
automated protection of its VMs.
The computing security framework has three main objectives:

1. Virtualization: it shall reconcile security and interoperability within infrastructure layers and
across cloud providers.

2. Isolation and trust: it shall provide primitives for secure multi-provider enclaves, and to
manage platform integrity and trust.

3. Security self-management: it shall fight excessive complexities of protecting infrastructure
and VMs through security automation across layers and providers, providing configuration com-
pliance guarantees. It shall also enable user control over security to enforce security SLAs
negotiated between user and provider.

These objectives are met through a two-level design:

• Distributed virtualization infrastructure: this sub-infrastructure tackles the first two ob-
jectives. A hybrid virtualization architecture combining nested virtualization, micro-hypervisor,
and modular hypervisor system designs enables to reach interesting interoperability vs. security
trade-offs.

• A self-management of security infrastructure: this sub-infrastructure tackles the third
objective. It provides a unified policy model and management framework featuring: an expressive
policy language with both cross-layer and cross-provider monitoring and enforcement, arbitration
and SLA negotiation, and orchestration of security services.

The architectures of those infrastructures were described in Deliverable D2.1 [19]. The previous
objectives were also explored through different prototypes in Deliverable D2.2 [22].

2.2 Framework specification approach

2.2.1 A component-based design

The SUPERCLOUD computing security framework is specified as a set of components that may be
assembled depending on user requirements to build customized U-Clouds with needed security services.
The component-based approach has largely proven its many benefits to design reconfigurable, adapt-
able, and customizable systems and infrastructures [32]. For instance, a component provides a simple
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abstraction for encapsulating behaviors through interfaces. A component model also clearly identi-
fies system dependencies through provided and required interfaces. It helps to separate concerns by
distinguishing functional and non-functional interfaces for easier orchestration. Finally, new features
may be included or enhanced to the system or infrastructure by adding or replacing components with
other components. Recent evolutions of this paradigm notably include micro-service architectures for
cloud and virtualized network infrastructures.
This design approach enables to build a SUPERCLOUD service catalogue that customers may use to
build their own U-Clouds, picking the just-needed security services from the SUPERCLOUD frame-
work to match security requirements of relevant cloud verticals (healthcare, cloud brokerage, etc.).
To specify the framework, a component-model and specification language is needed to describe in
a uniform way components, interfaces, and APIs. We chose TOSCA [24] for this purpose, as this
modeling language is one of the most widely used in the cloud domain for different types of applications.
We give a short overview of its principles next.

2.2.2 TOSCA overview

Current cloud technologies suffer from a great heterogeneity in the description and management of
cloud resources. Thus, OASIS released TOSCA (Topology and Orchestration Specification for Cloud
Applications) [24, 25] that provides an XML-based modeling language aiming at portability of appli-
cation description and management, automated application deployment and management, and inter-
operability of application components [9].
TOSCA represents applications in terms of topology and life-cycle. The structure of the application
is captured by a typed topology graph that describes the components of the application (nodes) and
the interaction between those components (edges). The application is also described through a set of
plans capturing deployment and management tasks. The whole description is based on templates, or
equivalent classes of nodes, relations, plans, etc. The connected set of template instances forms the
concrete application. The key concepts of the TOSCA meta-model are summarized in Figure 2.1.

Figure 2.1: The TOSCA meta-model: a simplified view (adapted from [7, 9])
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The application is modeled by a TOSCA ServiceTemplate, mainly composed of:

• a TopologyTemplate is a directed graph defining the application components (NodeTemplates)
and their relations (RelationshipTemplates);

• NodeTypes define the structure of nodes of the graph 1;

• RelationshipTypes define the structure of edges of the graph, to capture custom links between
application components.

Plans may also be included in the ServiceTemplate to describe as workflows how node operations
should be executed to manage the component lifecycle [7].
An application component (TOSCA node) is described by a NodeType through the following attributes:

• observable properties (PropertiesDefinitions);

• interfaces and operations for managing the component (Interface, Operation);

• capabilities the component can provide to other components (CapabilityTypes);

• requirements needed for the component to run correctly (RequirementTypes).

An interface notably captures how to modify the resource dynamically at run-time through a number
of operations, e.g., to manage the component life-cycle such as calling operations through an external
orchestration engine.

2.3 Framework high-level overview

2.3.1 Relation to overall SUPERCLOUD framework

The computing security framework scope is a subset of the overall SUPERCLOUD framework, focusing
on the protection of computing elements (VMs, containers...) and on their self-management. The
framework structure and components are shown in increasing levels of detail in Figures 2.2 and 2.3.
More details on the overall SUPERCLOUD framework may be found in [18] and in Deliverables
D1.1 [21] and D1.2 [37].

Figure 2.2: SUPERCLOUD framework: high-level overview

1 In TOSCA, reuse is facilitated by both NodeTypes and NodeTemplates concepts. A NodeType enables to specify
generic classes of components, such as their common properties and interfaces. A NodeTemplate describes an instance of
a NodeType, as well as specific properties of the instance, in addition to those already described by the NodeType.
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Figure 2.3: SUPERCLOUD framework: computing, data protection, and networking services

2.3.2 Framework structure

As shown in Figure 2.4, the computing security framework has a two-level structure:

• The virtualization infrastructure provides a distributed abstraction layer for computing
resources spanning multiple cloud providers.

• The self-management infrastructure implements autonomic security management for the
distributed cloud.

The corresponding framework components are shown in Figure 2.4.
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Figure 2.4: SUPERCLOUD computing security framework

2.3.2.1 Virtualization infrastructure

This infrastructure provides distributed virtualization primitives for running U-Clouds on comput-
ing resources of different cloud providers. It includes low-level infrastructure security services for:
horizontal orchestration to achieve unified security management of computing elements regardless of
providers; vertical orchestration, extending user-control over U-Cloud security into the lower layers
of the provider infrastructure using a micro-hypervisor; and strong isolation and trust management
between computing elements, relying on hardware security mechanisms (e.g., Intel SGX, FPGAs).
This infrastructure will be described in more detail in Chapter 3.

2.3.2.2 Self-management infrastructure

This infrastructure provides a number of security services that may be orchestrated on-demand to
guarantee (self-) protection of U-Clouds on top of the distributed virtualization infrastructure. Pro-
vided services include: authorization to perform resource access control at different infrastructure
levels; security monitoring across infrastructure layers and providers; geolocation-aware data replica-
tion; management of security SLAs; and software-level trust management between users or providers.
This infrastructure will be described in more detail in Chapter 4.
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Chapter 3 Virtualization infrastructure

In this Chapter, we describe the virtualization infrastructure in terms of structure and components. We
start by providing a general overview of the infrastructure (Section 3.1). We then present the different
components grouped according to their main security goals, namely virtualization and orchestration
(Section 3.2) and isolation and trust management (Section 3.3). A specific section describes the Cloud
FPGA component (Section 3.4) and its benefits in terms of security and performance. For each
component, we give a short overview of its functionality and design. We also describe the external
component interface, either at high-level using the TOSCA specification language, or through more
detailed API specifications. We also include information about how to obtain and use each component.

3.1 Infrastructure overview

The structure and components of the virtualization infrastructure are shown in Figure 3.1.

Figure 3.1: The virtualization infrastructure

Virtualization and orchestration. These components implement a distributed virtualization in-
frastructure for running U-Clouds on computing resources across different providers and extending
user-control over security into low-level infrastructure layers. Horizontal orchestration achieves secure
interoperability of computing elements regardless of providers. Vertical orchestration composes secu-
rity mechanisms across infrastructure layers.

These dimensions are realized respectively by two components:

• A virtualization and orchestration component: This horizontal component provides a single point
of control for managing U-Cloud security across providers and for composing different security
services in a U-Cloud. This component is described in Section 3.2.1.

• A micro-hypervisor: This vertical component relies on a minimal and modular hypervisor to run
U-Clouds on a single-provider with cross-layer control over security. This component is described
in Section 3.2.2.
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Isolation and trust management. These components provide strong isolation and trust manage-
ment primitives for U-Clouds. Virtualization abstractions such as VMs, containers, or processes using
the notion of enclave as trusted execution environment are notably considered.

• An isolation component: Leveraging Intel SGX hardware security technology, this component
provides strongly isolated execution environments to guarantee security of applications despite
an untrusted virtualization infrastructure. This component is described in Section 3.3.1.

• A trust management component: Building on the same hardware technology, this component
allows to build and verify distributed Chains of Trust to provide evidence of trustworthiness of
secure execution in a multi-cloud environment. This component is described in Section 3.3.2.

Cloud FPGA support. This component extends the SUPERCLOUD framework to the device side
by adding the FPGA as hardware computing abstraction similarly to software VMs or containers. The
Cloud FPGA component explores the benefits of FPGAs for accelerating compute workload processing
or security management tasks. This component is described in Section 3.4.

3.2 Virtualization and orchestration

3.2.1 Virtualization and orchestration component

This component provides horizontal features for virtualization and orchestration. It enables: (1)
instantiation and deployment of a distributed multi-cloud; and (2) selective weaving of security services
in different parts of the architecture to build U-Clouds spanning multiple providers.

3.2.1.1 Objective

Despite mature cloud technologies, customers still struggle to cross Cloud Service Provider (CSP)
barriers to benefit from fine-grained resource distribution, business independence from the provider,
and cost savings. Most adopted IaaS inter-cloud solutions remain generally limited to specific public
cloud providers or present maintainability issues. Remaining hurdles include complexity of manage-
ment and operations of such infrastructures, in presence of per-customer customizations and provider
configurations.
The Infrastructure as Code (IaC) paradigm1 is emerging as key enabler for IaaS multi-clouds, to
develop and manage infrastructure configurations. However, this approach is yet far from being fully
practical due to the complexity of the infrastructure life-cycle, to the heterogeneity of composing
resources and to user customizations.
To go one step beyond, we designed Orbits (ORchestration for Beyond InTer-cloud Security), a IaC-
based overlay inter-cloud orchestration and virtualization framework providing simultaneously flexible
application provisioning across multiple providers with a homogeneous service abstraction enforced at
IaaS level. Orbits enables thus to instantiate distributed U-Clouds [28].
IaC-based deployment and management of a generic IaaS multi-cloud also requires the ability to flexibly
inject or remove non-functional services, such as for security or reliability. To reach this goal, an aspect-
oriented approach to IaC deployment and management was explored. We thus proposed Mantus, a
IaC-based multi-cloud builder following the Orbits design [29]. Mantus features an aspect-oriented
Domain-Specific Language called TOSCA Manipulation Language (TML) and a corresponding aspect
weaver to inject flexibly non-functional services in TOSCA infrastructure templates.

1 Infrastructure as Code may be defined as “the process of managing and provisioning computer data centers through
machine-readable definition files, rather than physical hardware configuration or interactive configuration tools” [35].
Modelling cloud infrastructure (physical, virtualization layer, and VMs) as code managed by software engineering best
practices present a number of benefits such as cost reduction, faster execution, and increased security and reliability.
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Figure 3.2: Mapping Design Principles to Design Requirements

3.2.1.2 Design

We started by defining a first overlay infrastructure completely managed through IaC templates [28].
This infrastructure extends the idea of a client-centric virtual infrastructure layer [12, 30] for enhanced
resource control and multiple CSP support.
A full template-based description of software and hardware infrastructure resources is key to control
the complete infrastructure life-cycle, which has proven difficult to manage even in single cloud provider
settings.
A IaC-based virtual infrastructure layer should meet the following Design Requirements (DRs) (see
Figure 3.2):

• DR1: Non-functional extensibility. Desired cloud infrastructures may greatly differ de-
pending on the functional services deployed (e.g., Cloud Management System, SDN Controller).
However, those basic infrastructure services should be manipulated to add complementary non-
functional services (e.g., monitoring, auditing). This results in exploding complexity and does
not allow to dynamically inject services inside basic templates.

• DR2: CSP-aware feature selection. To compete on the market, CSPs provide a number
of differentiating services (e.g., DBMS-as-a-Service, Firewall-as-a-Service) additional to tradi-
tional resource provisioning (e.g., VMs, Object Storage). CSPs also propose differently-flavored
resources (e.g., high I/O VM types, accelerated NICs) to better satisfy specific workloads. To
effectively leverage CSP features, the interoperable virtual infrastructure should overcome simple
“least common denominator” limitations to adapt instantiations to specific CSPs.

• DR3: Multi-layer interoperability. The multi-cloud should also meet the following goals to
achieve the desired level of interoperability:

1. Interoperability : The user should be able to describe its service specification (functional,
non-functional, SLA) without knowing in advance on which CSP the multi-cloud will be
deployed, and how it will be actually implemented. The virtual infrastructure layer should
guarantee that the same abstract definition may be deployed on different CSPs, being
“understood” by the different CSP orchestration engines.

2. Portability of Execution Environments (EEs) where service components are executed on
any CSP part of the multi-cloud. Deployed services should work similarly and expose the
same APIs, requiring little adaptations from existing applications.
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3. Single point of orchestration for services (e.g., Multi-Party Computation, high-availability
Web Services) over the distributed multi-cloud infrastructure. This entry-point should be
similar to widely-used frameworks (Mesos [20], Swarm [11], Kubernetes [3]) that integrate
seamless extensions for multi-cloud enabled CSPs.

The deployment result is an interoperable software layer over a selected set of CSPs, coordinated
by an orchestration layer, enabling multi-cloud awareness without handling heterogeneity.

The Orbits architecture meets such requirements, overcoming limitations of traditional multi-cloud
libraries in terms of application-specificity. Orbits is based on the following Design Principles (DPs):

• DP1: AOP-based weaving. To satisfy the non-functional extensibility requirement, we adopt
an Aspect-Oriented Programming (AOP) [17] design approach. AOP is a programming paradigm
that increases modularity by separating cross-cutting concerns, such as security, fault-tolerance,
or persistence. Adding features does not require persistent modifications to the base code.
Instead, additional behaviors (called advices) may be dynamically applied to the existing code
at well-defined points. This approach is not only applicable to user-specified services but also to
services aiming to optimize the infrastructure life-cycle management, such as load balancing or
intrusion prevention.

• DP2: Context-based matching. To satisfy the CSP-aware feature selection requirement, we
leverage a flexible form of matching derived from the TOSCA Substitution Matching. In TOSCA,
the abstract definition of resources is separated from their actual implementations. According to
inputs, resources may be matched with different equivalent implementations of the same service.
The best implementation to fit a particular context (e.g., user-specified workload, selected CSP)
should be chosen. We inflected this mechanism to our setting, introducing different forms of
matching in TOSCA [8].

• DP3: Per-provider IaC translation. To satisfy the interoperability requirement, we defined
a model of cloud infrastructure capturing the distributed aspect of multi-clouds, and the need
of coordination between different services. This model was specified using TOSCA [26]. We
also implemented a translator to transform a generic TOSCA description into code for a specific
cloud provider.

Provider 
Selection

Matching & 
Weaving

TOSCA 
translation

Selection
Logic

Context
Aspects

Deployment

1

2

3

Figure 3.3: Mantus workflow
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Figure 3.2 maps DRs to steps of a simple workflow, showing how DPs handle different DRs. In the
Orbits and Mantus implementation, those steps are refined into an implementation workflow shown
in Figure 3.3 and including the following phases:

• Matching: A ServiceTemplate is created, composed of concrete nodes starting from an abstract
specification. We adopted the standard TOSCA plug-in matching developed by Brogi et al. [8].

• Fusion: The matched file is generated, reconnecting different branches of matching.

• Weaving: Non-functional services are injected by applying TML scripts against the TOSCA
ServiceTemplate as described in [29].

• Translation: Finally, the resulting TOSCA templates are translated to the Heat Orchestration
Language (HOT) to be deployed on OpenStack as a target example of CSP.

This process enable to run U-Clouds over the multi-cloud infrastructure, choosing selectively the
infrastructure elements and security services to deploy, as reported in the horizontal orchestration
prototype presented in Deliverable D2.2 [22] We implemented the Mantus TML weaver in Python.
Mantus first builds the expression abstract syntax tree for resources in the TOSCA graph using the
pyPlus2 LR-parser3. We used the tosca-parser4 library to manipulate TOSCA ServiceTemplates

for fully-compliant TOSCA generation. We also developed a driver-based small TOSCA translator
supporting HOT and CloudFormation back-ends. The translator was developed from scratch to keep
it minimal and to put emphasis on polymorphism for multi-CSP support.

3.2.1.3 APIs

Mantus provides simple REST APIs shown in Table 3.1.

Request Description Parameters Response

POST URL/ucloud Create a new U-Cloud deployment U-Cloud name U-Cloud id
SLA requirements
Optimization criteria
Security functions

PUT URL/ucloud/id? Update a U-Cloud deployment U-Cloud name U-Cloud id
SLA requirements
Optimization criteria
Security functions

GET URL/ucloud/id? Get U-Cloud status information U-Cloud id
DELETE URL/ucloud/id Delete a U-Cloud deployment U-Cloud id

Table 3.1: Virtualization and orchestration component API

3.2.1.4 Component access

The virtualization and orchestration component is being released as open source. The code is available
on the SUPERCLOUD private repository5. Repository access may be granted by sending an email to
marc.lacoste@orange.com. Instructions for installation and further documentation about the software
are also distributed together with the code release.

2 https://github.com/erezsh/plyplus
3 Left-to-Right parser.
4 https://github.com/openstack/tosca-parser
5 https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/virtualization/virtualization
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Figure 3.4: U-Clouds running on SUPERCLOUD-enabled private cloud

3.2.2 Micro-hypervisor

3.2.2.1 Objective

This component enables to instantiate U-Clouds on a single provider with cross-layer system support
for U-Cloud security, deep in the virtualization infrastructure.

3.2.2.2 Design

U-Clouds should not only run on top of virtualization infrastructures under full provider control (e.g.,
public clouds running general-purpose hypervisors), but also on infrastructures where users can share
control with the provider. This is typically the case of private clouds adopting the SUPERCLOUD
virtualization architecture, combining nested virtualization and micro-hypervisor designs, and shown
in Figure 3.4. This architecture was already presented in detail in Deliverable D2.1 [19]. We simply
recall here its key features:

• The lower layer (L0) combines benefits of micro-hypervisors to minimize the virtualization layer
and of modular hypervisors for disaggregation of control between several user domains. It is
composed of a micro-hypervisor (NOVA [31] and its Genode [13] component library in Figure 3.4)
and of a set of user-level services running on top of it. These services include: on the provider-
side, device drivers and multiplexers, and administration tools allowing the provider to define
the behavior of the architecture; and on the user-side, user-centric services, providing customers
increased control over U-Clouds, of which they are fully part. In a multi-tenant scenario, such
services are defined independently for each customer and should be isolated. Each user is thus
in control of a user-level Virtual Machine Monitor (VMM) (VirtualBox VMM in Figure 3.4)
handling non-privileged operations for VM management and of a set of user-centric services.

• The upper layer (L1) offers a provider-independent resource management plane aiming at in-
teroperability between providers. This blanket layer addresses horizontal orchestration and is
implemented by the virtualization and orchestration component described in Section 3.2.1. For
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Figure 3.5: U-Cloud creation workflow

instance, it allows the creation of cross-provider U-Clouds. Key goals are interoperability and
support for legacy cloud management technologies. For instance, it should support the widest
possible range of configuration options to enable application-dependent trade-offs for users, no-
tably for virtualization technologies, such as supporting both containers and VMs.

The cloud administrator only interacts with the provider-space user-level services, and cannot modify
either the micro-hypervisor nor the U-Clouds. To maximize the user control benefits of the architec-
ture, only system-wide concerns are handled in the provider-space. Every U-Cloud specific decision
is left to the user. However, depending on the degree of control the provider desires to retain, more
complex arbitration may be needed between the provider and user-controlled services.
The SUPERCLOUD micro-hypervisor component extends the NOVA/Genode micro-hypervisor [31].
A number of components were introduced (in red borders in Figure 3.4) to provide the basic features
expected from a cloud node, and to overcome a number of limitations 6.
The micro-hypervisor component key features are:

1. Instantiating a U-Cloud;

2. Deploying a user-specific configuration;

3. Dynamically modifying this configuration without interrupting execution of the L2 VMs.

6 For instance, basic Genode configuration of the execution environment did not support dynamic reconfiguration:
the components launched, their allocated resources and the routing of the sessions had to be entirely defined in the
configuration file given at boot time (Init component). Furthermore, VMs deployed had to be manually prepared on
the hard drive in order to be launched by the VirtualBox VMM. Finally, the networking multiplexer was a software ARP
proxy, which did not support multiple networking stacks operating on the same session. Because of that, nested VMs
could not obtain connectivity, as they accessed the NIC driver through the session of their VirtualBox VMM.
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Instantiating a U-Cloud by a client. The protocol is the following (see Figure 3.5):

1. The client performs a PUT request on the listening Control web service. The web service checks
request conformity with the expected format, e.g., its header should specify an authentication
token for the client. Ideally, the web service validates the token with an external entity.

2. If the request is appropriate, the web service notifies the Command Center by opening a tempo-
rary session (through RPC). The Command Center then validates the request (e.g., regarding
availability of resources).

3. The Command Center instructs the Domain Loader component by RPC to build the U-Cloud,
sending a minimal configuration to deploy, containing only an Admin web service and allocating
an initial amount of resources. The static IP address of the Admin web service is selected (from
an available address pool) by the Command Center and specified in the minimal configuration.

4. Upon acknowledgment by the Domain Loader, the Command Center informs the Control web
service that the request has been processed and that instantiation is ongoing. The Control web
service can thus reply to the client HTTP request with the appropriate code (202 Accepted).
When the Control web service receives a specific GET request, the Command Center looks up
the IP address assigned to the Admin web service, and returns it as the HTTP response body.
The client can thus contact the Admin web service that has been created inside his U-Cloud,
and use its management interface.

5. Meanwhile, the InitUser component is created by the Domain Loader, receiving the minimal
configuration. It then deploys the Admin web service with the correct IP address.

Deploying services inside a U-Cloud. Once a U-Cloud has been instantiated, a client may deploy
services inside it, such as a VMM:

1. After obtaining its IP address, the client can contact the Admin web service. The client can
specify the desired configuration for the U-Cloud in XML through a PUT request. The Admin
web service only parses the HTTP request, leaving configuration processing to the InitUser.

2. The Admin web service sends the XML configuration to the InitUser through the dedicated
session. The InitUser validates its correctness. U-Cloud policies for the architecture are defined
through the request processing infrastructure of the InitUser, e.g., available services, required
and possible configuration information.

3. If the topology of services described in the XML is acceptable, the InitUser starts deploying it,
negotiating with the Domain Loader the amount of resources. Every resource upgrade request
is relayed to the Command Center for validation. In case of an invalid or deliberately improper
configuration, only the InitUser (and corresponding U-Cloud) will be affected.

4. If the configuration contains a VirtualBox instance, the InitUser expects it to specify the type
of VM that should be launched.

5. Once the configuration has been deployed completely, the InitUser notifies the Admin web ser-
vice, which in turn replies to the client.

Updating a U-Cloud configuration at run-time. Because of their low complexity, most com-
ponents do not properly handle run-time updates. Implementing such behaviors would have been
a considerable task. While resource allocation can be propagated hierarchically, the parent-child
interface is not enough for recursive reclaiming of resources7. A simple solution to limit resource
consumption is to create a new updated U-Cloud and to destroy the previous one.

7 This means that, while resources may be allocated by an InitUser component from the Command Center to launch
a new service, they may not be reclaimed when a service exits in the U-Cloud.
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This can be done seamlessly for L2 VMs as follows:

1. The client requests a new U-Cloud.

2. The request is transmitted to the Command Center which processes it.

3. The Command Center then transmits its instructions to the Domain Loader which deploys the
U-Cloud.

4. The client can then deploy in the U-Cloud the new configuration. Modifications could range from
simply modifying the L1 hypervisor (e.g., updating it to a more recent version) to deploying user
services in the L0 layer (e.g., making all network access in the U-Cloud go through a firewall
component).

5. Assuming both U-Clouds have been deployed with interoperable L1 hypervisors, the client can
use their control interfaces to migrate the L2 VMs from the outdated one to the updated version.
Most hypervisors support migration without significant impact on guest execution time.

6. When the migration is finished, the client can use the administration interface of the outdated
U-Cloud to exit it. Only the updated version remains, now running the L2 guests.

3.2.2.3 External interface

A high-level TOSCA description of the micro-hypervisor component may be found in Figure 3.6.

node templates :
genode box :

type : o r b i t s . boxes . Orbits
p r o p e r t i e s :

pub l i c key : { ge t i nput : key name }
p u b l i c n e t : { ge t i nput : p u b l i c n e t }
compute image ur l : { ge t i nput : compute image ur l }
compute instance type : { ge t i nput : compute instance type }
c o n t r o l l e r i m a g e u r l : { ge t i nput : c o n t r o l l e r i m a g e u r l }
c o n t r o l l e r i n s t a n c e t y p e : { ge t i nput : c o n t r o l l e r i n s t a n c e t y p e }

n o d e f i l t e r :
p r o p e r t i e s :

provider name : { equal : Genode }

Figure 3.6: Micro-hypervisor component: TOSCA specification

3.2.2.4 APIs

The web services API is the run-time control interface of the component and provides an efficient
summary of its features.

Control web service interface:

• Creation of a new U-Cloud: PUT request with an authentication token as header. If the
request is accepted, the response contains an ID that can then be used to check the status of
the U-Cloud. Otherwise, an error code dependent of the cause of failure is returned.

• Checking the status of a U-Cloud: GET request with an authentication token and an ID as
headers. If the ID corresponds to an existing U-Cloud and the authentication token is valid, the
response contains the IP address assigned to the Admin web server of the U-Cloud. Otherwise,
an appropriate error code is returned.

• Destroying a U-Cloud: For the moment, this feature is only available through the Admin
web service inside the U-Cloud.
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Admin web service interface:

• Launching a specific service in the U-Cloud using a standard configuration: POST request
with a service name and a label as headers. The label is used for further administration operations
to target the correct service.

• Deploying a configuration as a sub-system inside the U-Cloud: PUT request with an
XML configuration as body. The header Clean-previous can be set to true to request closing
of all active services in the U-Cloud prior to deployment.

• Obtaining an XML list of services currently running in the U-Cloud: GET request.

• Closing either a specific service, all services, or the U-Cloud entirely: DELETE requests, de-
pending on the URL specified. Closing one or more services does not reclaim allocated resources
by the Command Center. It is thus generally preferable to close the entire U-Cloud and relaunch
another with a different configuration.

Command Session interface:

The Command Session is the session opened by the Control web service on the Command Center to
transmit requests. To reduce the node attack surface, it implements only two functions, symmetrically
to the two types of requests that the web service handles:

• create subsystem(): requests the creation of a U-Cloud and returns the ID if it succeeded.

• subsystem info(id): returns the IP address used by the Admin server of the specified U-Cloud;
or an empty string if the U-Cloud does not exist.

Domain Loader Session interface:

The Domain Loader Session is the session through which the Command Center requests the launch of
a U-Cloud to the Domain Loader. Each U-Cloud deployment is requested through a different instance
of the Domain Loader Session. Thus, it is always possible for the Command Center to terminate one
of them and regain its resources, without having to destroy all existing U-Clouds8.

3.2.2.5 Component access

The micro-hypervisor component is being released as open source. The code is available on the
SUPERCLOUD private repository9. Instructions for installation and further documentation about
the software are also distributed together with the code release.

8 To increase code modularity, each Domain Loader Session instance in the Command Center is encapsulated inside a
handler class. Destroying a U-Cloud in the Command Center is thus as easy as deallocating its handler object.

9 https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/virtualization/virtualization
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3.3 Isolation and trust management

Trust, its management, and isolation are tightly coupled properties and need to go hand in hand
when used in the context of SUPERCLOUD. Trust in computer systems requires reliable information
about all components that can influence the system’s behavior. For complex systems, obtaining such
reliable information may not be feasible, which makes the management of systems with regards to
trust challenging and often even impractical. Isolation is, however, an important building block that
can help to reduce the complexity of systems. With isolation, only a defined (sub-)set of components
can influence a system’s behavior. This means that only a subset of components needs to be trusted,
making management of trust more straightforward. At the same time, reliable isolation requires that
the isolation mechanism and its correct instantiation can be trusted. Hence, without trust management
for isolation mechanisms, the overall trust in the system cannot be narrowed down.
In this Section, the SUPERCLOUD isolation and trust management components are described, start-
ing with the isolation component, followed by the trust management component.

3.3.1 Isolation component

The goal of the isolation component is to provide an execution environment which allows applications to
run either in a globally trusted environment, like a private cloud, or in a trusted execution environment,
like an Intel SGX enclave. The application should be able to run unmodified in both scenarios, while
still facilitating the functionalities of the different environments. For instance, it should enable secure
channel establishment from an SGX enclave with the help of the remote attestation feature of SGX.
To achieve this goal, the execution environment is abstracted through the use of an interpreter. In
particular, a Python interpreter is modified, such that it can execute arbitrary Python scripts inside
an SGX enclave. Thus the scripts can be run in both environments, a private cloud and an SGX
enclave.
The Python interpreter behaves mostly like a normal Python interpreter. In principle, any Python
code and module can be executed. So far, we have tested it with code dealing with files and network
connections.

3.3.1.1 Trust

Normally, the Python interpreter loads additional code at run-time: Python code is read directly
from the source files, while native code for Python modules having a C component (as opposed to
pure-Python modules) is loaded from dynamic libraries.
To trust a Python enclave, one must trust all code available in the enclave, including Python code.
Moreover, the processor creates a measurement of the enclave (MRENCLAVE hardware instruction) when
the enclave is initialized and before it runs, which contains a cryptographic hash of the code of the
enclave which is tied to the individual processor. Hence, it is desirable to load all native and Python
code at initialization time, to get a complete measurement of all the enclave code. Thus, we link
the native components statically when the interpreter itself is built, so that no dynamic libraries are
needed. Moreover, all Python code necessary for the core and the modules is embedded as text in the
enclave memory.

3.3.1.2 Prerequisites

Our enclave has been implemented on Linux. No special libraries are required, apart from the Intel
SGX SDK.
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3.3.1.3 External interface

A high-level TOSCA description of the isolation component may be found in Figure 3.7.

t o s c a d e f i n i t i o n s v e r s i o n : t o s ca s imp l e yaml 1 0
d e s c r i p t i o n : Template f o r Python SGX enc lave .
topo logy template :

inputs : # omitted f o r b r ev i ty
node templates :

pyenclave :
type : superc loud . computing . Component
requ i rements :
− sgxplat form : superc loud . computing . sgxcpu

i n t e r f a c e s :
s c r i p t e x e c u t i o n :

pysgx open debug conso le : # omitted f o r b r ev i ty
p y s g x r u n s c r i p t :

Figure 3.7: Isolation component: TOSCA specification

The Python enclave works like a normal Python interpreter. There are two modes of operation:

• pysgx open debug console: when started without parameters, the interpreter opens an inter-
active shell, which can be used for debugging purposes – the interactive shell processes input
coming from the untrusted OS, so it should be disabled in release mode.

• pysgx run script: when given a Python file as a parameter, the interpreter will execute the
script and then exit.

As mentioned above, a number of Python source files are embedded in the enclave in order to protect
their integrity. The user script can either be embedded in the enclave at compile-time, or it can be
retrieved from the normal file system – this requires trusting the OS and the file system, since the
integrity of the script is not checked by the enclave.
One option to overcome the necessity to provide the script at compile-time is to prepare a bootstrap
script that retrieves the actual script in a secure way from an external untrusted source. As an
example, the bootstrap script could retrieve the code from the network or a file, check its signature
against a hard-coded list of trusted certificates, and finally execute the code if the signature is correct.
This bootstrap script can be embedded statically in the enclave while still allowing arbitrary dynamic
computation.

Example

> /path/to/starter /path/to/python-enclave.signed.so

>>> def fib(n):

... if n < 2:

... return n

... return fib(n-2) + fib(n-1)

...

>>> list((i, fib(i)) for i in range(1,9))

[(1, 1), (2, 1), (3, 2), (4, 3), (5, 5), (6, 8), (7, 13), (8, 21)]

3.3.1.4 Deployment

Conceptually, the enclave could be deployed by distributing only two files (called starter and
python-enclave.signed.so in the example above. In our demonstrator, we prove the feasibility
of this approach by embedding all required Python code. Including other required data, like
configuration files and file metadata, can be done using the same approach.
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3.3.2 Trust management component

3.3.2.1 Objective

This component aims to manage trust between computing abstractions at hardware level, through
building and verification of Chains of Trust (CoT).
We consider more specifically the Intel SGX model to build and verify trust relationships between
SGX enclaves. Intel’s Software Guard Extensions (SGX) is an extension to Intel architecture to
generate protected software containers, referred to as enclaves. Inside an enclave, software code, data,
and stack are protected by hardware-enforced access control policies that prevent attacks against the
enclave content.
To establish confidence between enclaves, a assertion is needed as evidence to demonstrate that the
enclave has been properly instantiated on the SGX platform, locally or remotely. This process is known
as attestation. The SGX run-time generates evidence structures called reports, cryptographically
bound to the hardware, that may be presented for verification to third parties, so that they may make
decision on the ability of the enclave to operate in a certain state.
To perform remote attestation, SGX enables a special enclave, the quoting enclave, to be remotely
created. This enclave verifies reports from other enclaves on the remote platform using intra-platform
attestation. It then replaces the MAC in those reports with a new MAC computed with the private
key of the verifier enclave using a dedicated asymmetric cryptographic scheme. The output of this
process is called a quote.
While a number of SDKs have been defined to support enclaves, either natively [2] or emulating enclave
behavior at system-level through the Open SGX virtualized architecture [14], our aim is to identify the
minimal key interfaces to support such CoTs. We describe that interface starting from the wider API
of Open SGX - a first basic component implementation being provided by the corresponding subset
of the Open SGX code base [1].

3.3.2.2 External interface

The trust management component has three main interfaces for key management, communication
channels, and attestation. A TOSCA description is shown in Figure 3.8.

• Key management: To guarantee attestation, SGX allows creating cryptographic keys
(EGETKEY) and cryptographic reports (EREPORT) to check the integrity of an enclave during
exchanges with other enclaves. An interface is thus needed to create keys, get reports from
SGX, and check integrity of reports by comparing the computed report with a received one.

• Communication channels: Interactions between elements of a CoT need also to be managed
such as handling network connections between enclaves, and reading/writing to/from enclaves.

• Attestation: This user-facing API implements the CoT attestation protocols described in [16],
leveraging the previous helper interfaces. Several methods are distinguished depending on the
type of SGX platform (local or remote) and on the attestation role (challenger or target).
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t o s c a d e f i n i t i o n s v e r s i o n : t o s ca s imp l e yaml 1 0
d e s c r i p t i o n : Template f o r t r u s t management component .
topo logy template :

inputs : # omitted f o r b r ev i ty
node templates :

trustmanager :
type : superc loud . computing . Component
requ i rements :
− sgxplat form : superc loud . computing . sgxcpu

i n t e r f a c e s :
key management :

co t ge tkey : # omitted f o r b r ev i ty
c o t g e t r e p o r t :
co t check :

communication :
co t make se rve r : # omitted f o r b r ev i ty
c o t c o n n e c t s e r v e r :
c o t r ead :
c o t w r i t e :
cot make quote :

a t t e s t a t i o n :
c o t i n t r a a t t e s t c h a l l e n g e r : # omitted f o r b r ev i ty
c o t i n t r a a t t e s t t a r g e t :
c o t r e m o t e a t t e s t c h a l l e n g e r :
c o t r e m o t e a t t e s t t a r g e t :
c o t r e m o t e a t t e s t q u o t e :

Figure 3.8: Trust management component: TOSCA specification

3.3.2.3 APIs

The key management interface enables to create keys, to sign reports, and to check report integrity.
Its key methods are the following:

• cot getkey This method invoked by an enclave allows to create a cryptographic key needed for
signing a report.

• cot getreport This method takes a generated SGX key, and enables to create, and then to sign
a report.

• cot check This method takes a Report Key, and allows to compute a MAC and to compare it
with the MAC contained in the received report to check its integrity.

The communication channels interface manages local and network connections between enclave
processes, as well as quote operations. Its key methods are the following:

• cot make server This method starts a server socket, and waits for connections from entities
wishing to attest to the CoT.

• cot connect server This method connects to an already started server to attest to a CoT.

• cot read/cot write Those methods enable enclave programs to read/write to communication
channels during attestation protocols.

• cot make quote This method realizes a quote operation used for attestation between remote SGX
platforms: it performs a secure hash of a report, generates an RSA key for future communications
between remotely attested elements, and signs the report with the RSA key.

The attestation interface enables to perform both intra-attestation and remote attestation, which
correspond respectively to attestation between enclaves running on the same SGX platform, or on
remote SGX platforms. This interface implements the protocols specified in [16]. Its key methods are
the following:

• cot intra attest challenger This method is called by a challenger enclave to perform intra-
platform attestation, i.e., to get an attestation from a target enclave on the same SGX platform.
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• cot intra attest target This method is called by the target enclave to perform intra-platform
attestation, i.e., to implement for the target enclave to respond to an attestation request on the
same SGX platform.

• cot remote attest challenger This method is called by the challenger enclave to perform
remote attestation to a remote target enclave (e.g., identified by its IP address).

• cot remote attest target This method is called by the target enclave to perform remote at-
testation on the target side. It provides a response to an attestation requested by a remote
challenger enclave.

• cot remote attest quote This method is called by the quoting enclave co-located with the
target enclave in remote attestation. It computes a secure hash of the received report from the
target enclave, and generates an RSA key to send back to the target.

3.4 Cloud FPGA support

This part of the infrastructure is implemented by a single component, the Cloud FPGA (Field Pro-
grammable Gate Array) framework.
FPGAs are increasingly used in data centers to offload and accelerate compute-intensive operations.
But these FPGAs are not yet available to general cloud users who want to get their own workload
processing accelerated. This puts the cloud deployment of compute-intensive workloads at a disadvan-
tage compared with on-site infrastructure installations, where the performance and energy efficiency
of FPGAs are increasingly being exploited.
The Cloud FPGA framework solves this issue by offering FPGAs to the cloud users as an IaaS resource.
Using the Cloud FPGA framework, cloud users can rent FPGAs, similarly to renting VMs in the cloud,
and get their workload processing accelerated. Cloud FPGA is available in the OpenStack-based public
cloud hosted at IBM Research Zurich lab. Instances of Cloud FPGA are accessible over the Internet
and can be used by following the steps explained in Section 3.4.2.

3.4.1 Objective

Cloud FPGA is used to off-load CPUs from intensive computations, such as computations related
to cryptography or security in the SUPERCLOUD infrastructure. Cloud FPGAs are accessed from
VMs over the data center network. A distributed application is split into software (SW), running in
the VM, and hardware (HW), running in the Cloud FPGA. They communicate with each other over
standard TCP/IP for offloading tasks from the CPUs.

3.4.2 External interface

This Section explains the infrastructure-level interface for accessing Cloud FPGA instances. The steps
to use Cloud FPGA instances, which are shown in Figure 3.9 and Figure 3.10, are as follows:

(1) Connect to the VPN server at IBM Research Zurich lab.

(2) Connect to the Linux container (CT) over SSH.

(3) Make a connection from the CT to the Cloud FPGA over TCP/IP.

(4) Send data to the HW application. The HW application operates on the sent data or commands
and returns a response. Steps 4.1 to 4.4 in Figure 3.10 show the interaction between the SW
part of the application (running in the VM) and the HW part of the application (running in the
Cloud FPGA) over TCP/IP with string-based messages.

(5) Close the connection from the CT to the Cloud FPGA.
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Figure 3.9: Access to Linux CT over VPN and SSH

Figure 3.10: Access to Cloud FPGA from Linux CT
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Chapter 4 Self-management infrastructure

In this Chapter, we describe the self-management infrastructure in terms of structure and components.
We start by providing a general overview of the infrastructure (Section 4.1). We then present the
different components, separating the orchestrator of protection services (Section 4.2), from the security
services themselves (Section 4.3). For each component, we give a short overview of its functionality
and external interface, with for most components, a more detailed API description. We also include
information about how to obtain and use each component.

4.1 Infrastructure overview

The structure and components of the self-management infrastructure are shown in Figure 4.1.

Figure 4.1: The self-management infrastructure

4.1.1 Security orchestration

This part of the infrastructure coordinates security services. This task is implemented by a single
component, the Security Service Orchestrator. This component is described in Section 4.2.

4.1.2 Security services

A number of security services are also provided that the customer can select to build a secure U-Cloud
matching his security requirements. Security services are inserted into the virtualization infrastructure,
either horizontally, or vertically and guarantee protection of the U-Cloud. The provided services are
the following:

• Authorization: This component enables to perform resource access control at different levels of
the infrastructure. This component is described in Section 4.3.1.
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• Security monitoring: This component enables to detect and to react to threats on the U-Cloud,
taking into account multi-layer and multi-provider aspects of the virtualization infrastructure.
This component is described in Section 4.3.2.

• Geolocation-aware replication: This component that is deployed in each VM of a U-Cloud handles
data replication separately when this functionality is needed for data only in allowed locations.
It notably integrates the authenticated discovery protocol defined in Deliverable D2.2 [22]. This
component is described in Section 4.3.3.

• SLA management: This component implements monitoring and arbitration of Security SLAs
(SSLA), in close liaison with the SLA management infrastructure defined in Deliverable D1.4.
This component is described in Section 4.3.4.

• Trust management: This component aims to assess trust that a customer can put in a given
multi-cloud, i.e., before making a decision to choose a given provider for a specific service re-
quested by a customer, it will compute a trust value based on a trust model, past experience
and observable provider behavior. This component is described in Section 4.3.5.

4.2 Security orchestration

In this Section, we provide a brief presentation of the implementation of security orchestration. This
task is implemented by a single component, the Security Service Orchestrator.

4.2.1 Security orchestrator

4.2.1.1 Objective

The main objective of the Security Orchestrator is to automate the instantiation, configuration and
coordination of security services developed within the SUPERCLOUD project. This component also
ensures the automation of inter-services interactions1.

SSLA 
Negotiation 

(Smart Agents)

SSLA 
Specification
(Web App)

Security Orchestrator

…Security 
Service

Security 
Service

Deploy 
Configure

Deploy 
Configure

SSLA

Figure 4.2: Security Orchestrator overview

As illustrated in Figure 4.2, the Orchestrator processes the active SSLA to identify the security services
to be deployed and the required configuration parameters. Mimicking the micro-services2 approach,
the Orchestrator generates a composite security services deployment and configuration file. This file is
then processed by a deployment engine that will build, configure and run each security service. This
process is described in detail in the next Section.

1 A more detailed description of the Security Orchestrator can be found in Deliverable D1.4.
2 Micro-services is a new application development paradigm that shares many similarities with Service-Oriented Ar-

chitecture (SOA) as it tries to structure monolithic applications into a set of loosely-coupled services.
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4.2.1.2 Security orchestration approach

The SUPERCLOUD project partners agreed on using Docker3 containers to encapsulate
self-management of security services. The choice of containers allows to build agile software delivery
pipelines to ship new features faster, more securely for any operating system.
While the Docker Engine works well for packaging simple and single-container application and
services, it is known to be less suitable for defining and deploying complex applications that con-
sist of numerous dependent and independent services, which is the case for self-management of security.

To address this issue, we build on the top of the Docker Compose tool [4] to implement deployment
and configuration features of the Security Orchestrator. The overall orchestration process is split into
three phases, each operated by a dedicated engine that we illustrate in Figure 4.3.

   SSLA

Deployment  
Engine

Security Services 
Configuration Engine

.yml

Security 
Service

Security 
Service

Security 
Service

Security 
Service

Management 
Engine 

Figure 4.3: Security Orchestrator architecture

First, based on the SSLA specified by the Cloud Service Customer, we identify the security services
to deploy and prepare a configuration file to specify the parameters of each service. Second,
the generated configuration file is pushed to the deployment engine that will instantiate and
configure the services. Finally, in the management phase, we monitor service execution and trigger
auto-healing mechanisms in faulty settings. In what follows, we present each of the three steps of the
security orchestration workflow.

1) Configuration
The configuration of self-management of security services is achieved through a single configuration
file. This file specifies how services can interact with each other in a coherent and consistent way.
It defines the order in which services are deployed and the conditions under which a service may be
invoked or not. The file defines parameters that are necessary for the execution of each service such
as network ports to be opened, volumes to be mounted or dependencies with respect to other services.
We provide in Listing 4.1 an example of what a deployment configuration file looks like.

3 https://www.docker.com/what-docker
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1 s e r v i c e s :
2
3 a u t h o r i z a t i o n :
4 bu i ld : .
5 por t s :
6 − ” 8080:8080 ”
7 volumes :
8 − / p o l i c i e s : / p o l i c i e s
9 db :

10 image : mysql
11 por t s :
12 − ” 3306:3306 ”
13 environment :
14 MYSQL ROOT PASSWORD: 123456
15 MYSQL USER: superc loud
16 MYSQL PASSWORD: 123456
17 MYSQL DATABASE: selfmanagement

Listing 4.1: Example of a deployment file generated by the Orchestrator

In this example, the Security Orchestrator will deploy two services, an authorization service and a
storage service containing persistent data such as monitoring information. The authorization service
is built using a Docker file placed in the current directory.
The instructions specify that the authorization service needs to expose port 8080 and map it to port 8080

outside the container. The policies used for authorization are copied from the mounted volume /policies.

For the storage service, a default MySQL images is used (cf. line 10) and port 3306 is mapped to 3306.

Additional configuration information (e.g., root password, database name) is also specified (cf. lines 13-17).

2) Deployment
The current version of the Orchestrator relies on the Docker Compose tool for the deployment of
security services (i.e., containers and links between them). Deployment is done in two steps.

First, the Docker images are built based on the instructions provided within the individual Dockerfile
files. Listing 4.2 provides an example of the Dockerfile used for the authorization service.

1 FROM ubuntu
2
3 MAINTAINER Reda Yaich <reda . yaich@imt−atlantique . f r>
4
5 # Update the base ubuntu image with dependenc ies needed
6 RUN apt−get update && \
7 apt−get i n s t a l l −y openjdk−8−jdk && \
8 apt−get i n s t a l l −y ant && \
9 apt−get c l ean ;

10 RUN apt−get update && \
11 apt−get i n s t a l l c a− c e r t i f i c a t e s− j a v a && \
12 apt−get c l ean && \
13 update−ca−ce r t i f i ca t e s −f ;
14
15 # Setup JAVA HOME, t h i s i s u s e f u l f o r docker commandline
16 ENV JAVA HOME / usr / l i b /jvm/java−8−openjdk−amd64/
17 RUN export JAVA HOME
18
19 # Expose the r equ i r ed por t s
20 EXPOSE 8080:8080
21
22 #copy f i l e s to the c rea ted conta ine r volumes
23 COPY / A u t h o r i z a t i o n S e r v i c e / A u t h o r i z a t i o n S e r v i c e
24 COPY / p o l i c i e s / A u t h o r i z a t i o n S e r v i c e / bin / p o l i c i e s
25
26 #s e t the working d i r e c t o r y
27 WORKDIR / A u t h o r i z a t i o n S e r v i c e
28
29 #S p e c i f i e s the ent rypo int to the docker
30 ENTRYPOINT [ ”/ A u t h o r i z a t i o n S e r v i c e / s t a r t . sh” ]

Listing 4.2: Authorization service Dockerfile
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The command docker-compose build will process the docker-compose.yml file present in the
current folder and create the image of each security service.

Then, using the command docker-compose run, the security services are executed as follows:

• A self-management dedicated virtual network is created.

• Volumes are mounted for security services requiring such operation.

• Images of each service are pulled by Docker.

• Creation of services is ordered based on dependencies.

At this stage, the services are deployed as shown in Figure 4.4.

Docker Engine

SLA
Container

Monitoring
Container

Storing
Container

Trust
Container

Bridge
Network

Figure 4.4: Illustration of security services deployment

We show in Figure 4.5 the corresponding process displayed by the Docker machine.

Figure 4.5: Deployed security services

3) Management
In the deployment phase, security services are deployed on the host successively to avoid dependency
conflicts. After that, the Orchestrator enters the management phase to prevent the self-management
of security framework from running in an unhealthy state (e.g., due to faulty services). Two main
states are handled by the Security Orchestrator:

1. Overloaded services. This situation can occur when the user multi-cloud scales-up in response
to client demand. Consequently, some security services (e.g., monitoring, authorization) need to
adapt to such change. To address this issue, the Orchestrator makes use of the docker-compose

scale SERVICE=X command, provided by Docker-Compose and Docker Swarm, to launch X in-
stances of the considered service.

2. Faulty services. For some reasons, security services may stop. As a self-managed security
service, the Orchestrator needs to re-run without human intervention security services. This is
achieved using command docker-compose up --no-recreate that allows the Orchestrator to
re-launch the same service without re-building its image, hence reducing recovery time.

The automation of restarting faulty security services is important due to the critical nature of their
objectives. However, in some settings, continually restarting faulty containers embodying these
services may block the overall self-management process. This is mainly due to the restart process
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loop that will fill up the physical host disk space. This is relatively common when handling stateful
services such as MySQL. This is particularly true for the storage service in our architecture. To
address this issue, we make use of a more sophisticated management scheme that relies on the
Swarm mode [5] of the Docker engine. Within Swarm, the Docker engine makes use of an explicit
restart policy that needs to be specified within the docker-compose.yml configuration file.

Listing 4.3 shows an example of Docker-Swarm specific restart instructions. The max attempts pa-
rameter makes the deployment process safer by fixing a limit to container restarts. The replicas
statement enables to specify the initial number of instances for each security service.

. . .
deploy :
r e p l i c a s : 3
r e s t a r t p o l i c y :
cond i t i on : on− f a i lu r e
de lay : 30 s
max attempts : 3
window : 60 s

. . .

Listing 4.3: Restart policy configuration in Swarm

4.2.2 Component access

The orchestrator is a core component in SUPERCLOUD self-management of security, split into three
sub-modules, each responsible for a specific phase of the process presented earlier (i.e., configuration,
deployment and management). We describe next how the deployment module can be downloaded
and tested. The other modules will be released within Deliverable D1.4 as part of the overall self-
management of security implementation.
The component is currently provided as a Java JAR application. The objective of this component is
to deploy the configuration of security services that have been derived based on the SSLA. We list in
what follows the steps needed to download and run the Orchestrator.

• Download the security service deployment module from the SUPERCLOUD repository4.

• The component needs to be placed in the root directory containing security services resources
as follows:

/

SSLA2Config.jar.........................Converts SSLA to services configurations
Deployer.jar .............................................Deploys the configuration
docker-compose.yml....................................................Generated file
/ServiceName...........................................................Service folder

service.cfg........................................Service-specific configuration
Dockerfile

/Resources........................................................Other resources
/ServiceName..................................................Other security service

service.cfg

Dockerfile

/Resources

• Execute the SSLA2Config.jar to generate the configuration file.

• Execute java -jar Deploy.jar to deploy security services on the local machine.

• An execution trace will be displayed to verify that services are running.
4 https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sorchestrator
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4.3 Security services

4.3.1 Authorization

In this Section, we present the SUPERCLOUD authorization service. This service represents the
Policy Decision Point, called OrBAC-PDP in Deliverables D1.2 [37] and D2.2 [22].

4.3.1.1 Objectives

The service derives decisions (i.e., permission, prohibitions, obligations) from OrBAC policies. The
service ensures both Access and Usage Control functions within the SUPERCLOUD framework. The
authorization service is invoked by various applications (i.e., Philips Imaging Platform, geo-replication
service) that represent the Policy Enforcement Points (PEPs) in standard Usage Control settings (see
Deliverable D2.1 [19]). It notifies these services in usage control mode.
As illustrated in Figure 4.6, the SUPERCLOUD authorization service works in a classical client-server
mode wherein the application (here the Philips Imaging Platform) plays the role of the client and the
SUPERCLOUD authorization service the role of server.

Authorization Service

Application 
Interface

Address:Port

JVM Server
Axis Server

OrBAC API

SOAP 
Handler

Philips Imaging 
Platform

Po
lic

ie
s

Subject / Action / Object

Permission ?

True 

False User

Figure 4.6: Illustration of the Integration of the Authorization Service with the Philips Imaging
Platform (Use Case)

The Philips Imaging Platform performs standard HTTP requests. Authentication is achieved by a ded-
icated service that needs to be specified. Hence, we assume that the SUPERCLOUD authorization
service considers all identities as valid.

4.3.1.2 External interface

The SUPERCLOUD authorization service REST API can be accessed in two ways:

• The standard and public REST API only responds to GET request and runs at
http://IP:PORT/services/SupercloudAuthorizationService/ endpoint. This API does
not require any authentication.

• The admin-only REST API runs at the SupercloudAuthorizationService/admin/ endpoint
and responds to GET, POST, PUT and DELETE requests5.

5 This first version of the REST API specification does not detail the administration aspect of the SUPERCLOUD
authorization service.
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Responses. Depending on the nature of the request received by the REST API, the responses
computed by the SUPERCLOUD authorization service may be decision(s), subject(s), objects(s) or
action(s). In this Section, we provide some examples of responses provided by the REST API.
Decisions can be of three types; permissions, prohibitions and obligations. A decision is
made with respect to a triple (subject, object, action). For example, to verify if a sub-
ject s is authorized to perform an action a on an object o, the syntax of the request should be as follows:

o /IsPermitted?subject=s&action=a&object=o

With respect to the Philips Imaging Platform, one can request if a scope, that is mapped to view
in the OrBACModel, is active for a certain subject or not. This can be achieved by invoking the
GetAssignedViews method.
All requests represent a conjunction of conditions in which the above-mentioned triples can be pre-
sented in any order. The SUPERCLOUD authorization service standard reply to such decision requests
is a Boolean value.
The SUPERCLOUD authorization service REST API is shown in Table 4.1.

Request Description Parameters Response

GET URL/IsPermitted? Checks if an action is permitted
on a subject

subject=s&action=a&object=o Boolean

GET URL/IsProhibited? Checks if a scope is prohibited subject=s&action=a&object=o Boolean

GET URL/IsObliged? Checks if a scope is obliged for
a user

subject=s&action=a&object=o Boolean

GET URL/Actions? Retrieves all active actions in
the policy

None List of actions

GET URL/Objects? Retrieves all active objects None List of objects

GET URL/Subjects? Retrieves all active subjects None List of subjects

Table 4.1: Authorization service API

Response status codes. Response codes are handled in classical settings with respect to protocols
such as HTTP. Listing 4.4 provides an example of a request and the associated response code.

Request :
> HTTP/1.1
> Host : l o c a l h o s t :8080
> User−Agent : c u r l / 7 . 4 9 . 1
> Accept : ∗/∗
> http :// l o c a l h o s t :8080/ s e r v i c e s / Superc loudAuthor i za t i onServ i c e ? wsdl

Reply :
< HTTP/1.1 200 OK <−−− Returned Code
< Date : Sat , 21 Jan 2017 11 : 18 : 44 GMT
< Server : Simple−Server /1 .1
< Transfer−Encoding : chunked
< Content−Type : a p p l i c a t i o n /xml ; char se t=UTF−8

Listing 4.4: Authorization service request and reply

Here the code is 200, meaning that the request was successfully processed. Similarly, the REST API
can reply with the following codes:

• 200 A response code of 200 means the request was successful and details about the response can
be found in the body of the response.

• 201 The requested POST operation was successful and an object was created in the system.

• 204 The requested operation was successful and there is no response body.

• 400 The request was improperly formatted. The user should verify that the request conforms
to this specification and re-issue the request in a properly formatted manner.

SUPERCLOUD D2.3 Page 30 of 49



D2.3 - Secure Computation Infrastructure and SUPERCLOUD Security Services

• 401 UNAUTHORIZED request code.

• 404 The requested resource does not exist.

• 403 The request was not allowed because the request did not pass authentication or the proper
access rights to the target have not been granted.

• 500 The SUPERCLOUD authorization service failed to process the request because of an error
inside the SUPERCLOUD authorization service. These responses should be reported to the
SUPERCLOUD authorization service as they always represent an internal bug.

• 501 The user requested an action on a resource that does not support that action.

• 503 The SUPERCLOUD authorization service is temporarily unavailable for API queries.

Response entities. All GET methods respond with the JSON or XML of the resource(s) being
requested. HEAD methods have no response entity. POST methods may respond with a 201
CREATED or 202 ACCEPTED response code depending on whether the creation completed
immediately or is an asynchronous operation. PUT and DELETE methods generally respond with
204 NO CONTENT unless the operation is a long-lived operation. In those scenarios, the PUT
method will respond with a 202 ACCEPTED response code and include a Job resource in the
response entity.

Response format. While forming the request, one may specify an “Accept” header to define whether
we wish to receive responses as XML or JSON6. The values that can be specified for “Accept” are
thus application/xml or application/json.

4.3.1.3 Component access

In this Section, we describe the procedure to retrieve and deploy the authorization service. As illus-
trated in Figure 4.6, the service is available as a REST application deployed inside a Docker container.
We provide a deployment-ready OrBAC authorization service Docker image.
We list hereafter the procedure to follow to run and test the service. The following deployment process
has been tested in Linux and Mac OS.

• Download the tar compressed file containing the service Docker image7

• The archive contains :

– The authorization service repository that wraps the OrBAC REST API service running
using Apache Axis 2.

– A Docker file that specifies the way the image should be built.

– A (start.sh) shell script that runs the service.

• Launch the ./start.sh script to start the authorization service.

• Test if the service is running.

– Go to the URL address:
http://localhost:8080/axis2/services/SupercloudAuthorizationService?wsdl

– Type the command-line: curl -get with the same URL above.

6 This feature is under development at this stage but will be provided within the next month.
7 https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/

authorization
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4.3.2 Security monitoring

4.3.2.1 Objective

The security monitoring component implements self-protection of U-Cloud resources, to detect and
react to threats to the computing infrastructure in an autonomous manner. Two aspects of self-
protection should be considered: cross-layer defense (vertical orchestration) and cross-provider de-
fense (horizontal orchestration). We present here a preliminary version of the monitoring component
focusing on cross-layer self-protection. A more extensive version will be described in deliverable D2.4.

Figure 4.7: Security monitoring: approach

The security monitoring approach was presented in Deliverable D2.1 [19] and is summarized in Fig-
ure 4.7. In terms of design, the monitoring component is well-separated from the virtualization infras-
tructure. Its different components may then be flexibly embedded in the virtualization infrastructure
at deployment time. Monitoring relies on orchestration of two hierarchical autonomic security loops.

• The first level manages intra-layer security monitoring in user- or provider-controlled parts of
the virtualized infrastructure.

• The second level manages cross-layer security monitoring, also integrating monitoring informa-
tion and counter-measures from the cloud provider.

The general design of the component is based on the VESPA framework [33] for the system model
and on the OpenStack Watcher [27] framework for external APIs. We chose VESPA as it already
implements a first two-level autonomic security monitoring model, but with a very basic API. We
selected Watcher, as it is already integrated with OpenStack and provides a very rich monitoring API.
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4.3.2.2 Design

Figure 4.8: Security monitoring: system model

The system model of the monitoring component is shown in Figure 4.8. This design is based on several
planes to make the monitoring component more modular, clearly separating resources, detection and
reaction mechanisms that may be off-the-shelf, and the decision-making logic:

• The Resource Plane contains managed resources to be monitored and protected. Such resources
may be located in VMs, containers, or in one or several nested hypervisors.

• The Security Plane contains security mechanisms for detection and reaction, which may be
arbitrarily added due to the openness of the design.

• The Agent Plane contains a mediation layer between security mechanisms and the decision logic
through two hierarchies of agents for detection and reaction that may be deployed very flexibly
throughout the multi-cloud infrastructure.

• The Orchestration Plane contains the decision logic to trigger reactions based on detected threats,
implementing the two previous nested autonomic loops. A Layer Orchestrator (LO) is an auto-
nomic security manager supervising layer-level monitoring, e.g., at VM or hypervisor levels. The
Vertical Orchestrator (VO) autonomic security manager oversees cross-layer monitoring, also in-
terfacing with the provider-level monitoring system. This plane also contains an API component
to connect the monitoring system with the outside world. More information on such a system
design may be found in [34].
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4.3.2.3 Entities and internal interfaces

The main entities in the system model are the following.

Security mechanisms. These detection and reaction mechanisms respectively detect
unusual behaviors over managed resources (DSS: Detection Security Services) or enable
to apply security counter-measures (RSS: Reaction Security Services). A DSS may be
security-related (e.g., IDS, anti-virus, etc.) or exploit external data sources (Ceilometer [10],
Monasca [23]) for security monitoring. A RSS counter-measure may be applied at
VM-level (e.g., anti-virus), hypervisor-level (e.g., VM migration), or hardware level.
The corresponding interfaces (ISecDetec, ISecReact) are security mechanism-specific.
They contain methods to collect events or to apply security rules over a managed resource respectively.

Leaf Agents. These agents are the interface of the mediation layer with the security plane,
both for detection (LDA: Leaf Detection Agent) and for reaction (LRA: Leaf Reaction
Agent). Those agents translate security-specific interfaces to higher-level interfaces to
collect alarms or to enforce reactions to resources. Such agents implement the interfaces
to the Security Plane (ISecDetec, ISecReact). They also include a standard agent in-
terface IAgent to push alarms to upper-level agents or to enforce reaction rules into lower-level agents.

Agents. These intermediate agents correlate alerts for detection, and refine chosen security
reactions closer to the infrastructure. They implement the standard agent interface based on
an event-based messaging system to push received alerts to upper-levels and send messages back down.

Root Agents. Those agents form the root of agent hierarchies for detection
(RDA: Root Detection Agent) and for reaction (RRA: Root Reaction Agent). They
respectively capture the overall security context and the chosen reaction to trigger the
mitigation of an attack. As all agents, they implement the standard agent interface,
with additional methods when interfacing towards decision-making components (LO),
e.g., an alert method that contains the decision-making behavior to trigger in the Orchestration Plane.

LO. Those autonomic managers are in charge of layer-level decision-making to choose a reaction
plan depending on the gathered security context. This plan may be chosen depending on a security
strategy (Strategy) or to reach a security goal (Goal). The reaction plan contains a number
of actions and is then passed down to the RRA for enforcement down to the infrastructure.
This component may also delegate actions to the upper-level (VO) for further analysis and
decision-making. LOs implement the standard agent interface towards lower agents, with additional
methods towards the VO (alert method). This autonomic manager also provides an external
REST API to provide part of the security context to other components, to get attributes re-
garding the VM state, the hypervisor state, to enforce a given reaction policy, to set security goals, etc.

VO. This autonomic manager is in charge of cross-layer decision-making. It aggregates events from
LOs, or from the provider monitoring infrastructure, and takes decisions for enforcement, which are
then applied into layers by LOs. The decision-making logic is similar to that of LOs in terms of
security goals, actions, etc. The VO has thus similar interfaces to those of an LO. It also includes a
REST API that forms the overall cross-layer monitoring API for the infrastructure.
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4.3.2.4 External interface

The REST API of the monitoring component is shown in Table 4.2. It captures the overall moni-
toring interfaces, either at LO-level (VM-level monitoring or hypervisor-level monitoring) or VO-level
(cross-layer level monitoring). Examples inspired from the Watcher API [27] are provided in the ta-
ble below. Most of those requests may be called either at VO level (IVOMonitoring) or LO level
(ILOMonitoring-VM, ILOMonitoring-Hypervisor) to retrieve cross-layer, or VM/hypervisor-layer se-
curity context information respectively. The corresponding API component is under implementation.

Request Description Parameters Response

GET URL/SecurityContext? Retrieves information on a
given attribute of the moni-
tored security context.

attribute=a Attribute value

GET URL/SecurityStrategy? Retrieves in the security strat-
egy action plans mapped to a
given security context.

sec-context=c List of action plans

PATCH URL/UpdateSecurityStrategy? Updates entries in the secu-
rity strategy, adding a se-
curity context-to-action plan
mapping.
Similar APIs may be included
to update information in ac-
tion plans,actions, or security
goals.

sec-strategy-uuid=uuid&

sec-context=sc&

action-plan=ap

Security strategy

GET URL/ComputeSecurityStrategy? Computes a security strategy
given a security goal and ad-
ditional parameters.

sec-goal=sg&

params=p

Security strategy

GET URL/TriggerActionPlan? Forces execution of the reac-
tion planned by the current
security strategy given a pro-
vided security context.
Forcing a reaction may be
used to interface with third-
party security monitoring/re-
action systems.

sec-strategy=ss&

sec-context=sc

Boolean

Table 4.2: Monitoring component API

Cross-domain monitoring. The monitoring component may be integrated with the ORBITS frame-
work to achieve horizontal orchestration, independently from the provider, reconciling different VOs,
according to different patterns (P2P, hierarchical, hybrid), as discussed in D2.1. More details may be
found in [29]. A more detailed design will be described in D2.4.

4.3.2.5 Component access

The monitoring component is accessible at https://github.com/Orange-OpenSource/vespa-core.

4.3.3 Geolocation-aware replication

In this Section, we present the SUPERCLOUD geolocation data replication component. The func-
tionality of this service was introduced in Deliverable D2.2 [22].

4.3.3.1 Objective

The main objective of the geolocation-aware data replication component is to replicate data only in al-
lowed locations and therefore address different geolocation directives, regulations or requirements that
limit the options for the places where the data can be replicated. This situation is further complicated
by relying on virtual machines (VMs) provided locally or by multiple cloud providers. Deployment of
new services and requirements like availability or backup procedures cause the configuration of these
VMs to be dynamic over time.
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The component is using a cryptographic protocol for discovering VMs that satisfy the existent ge-
olocation requirements. The geolocation requirements are enforced by authenticating the VMs using
geolocation attributes. The component uses a single transmission multicast of encrypted data after a
single pass discovery broadcast. This solution provides an efficient, adaptable and decentralized dis-
covery of replication VMs that satisfy existent geolocation constraints. Furthermore, the component
is platform independent, allows easy integration across heterogeneous systems, and lowers the needed
amount of trust in the resource/VMs providers (e.g. cloud).

4.3.3.2 Entities and internal interface

The geolocation-aware data replication component is implemented in Java and instances of this com-
ponent are deployed in VMs where data are stored. These geolocation instances communicate between
each other using the TCP/IP protocol by writing in and reading from connecting sockets. This com-
munication is mapped on the protocol designed in Deliverable D2.2 [22], as depicted in Figure 4.9.
Given that this component is a war file, it can be exposed via a Docker container for easy integration.
A load balancer would decide when replication is needed and would ask for a list of available locations
for replication (e.g. using the “replCandidates” request). Internally the protocol is executed in a
straightforward manner according to the following three steps:

1. The origin broadcasts the message: Policy, EPolicy(sessionKey)

2. The targets that are able to decrypt the broadcast message will answer the challenge with the
message (src, dst, Policy) encrypted with the sessionKey: EsessionKey(src, dst, Policy)

3. The origin selects one or more VMs where the data will be replicated. Next, the origin sends
the sensitive data, encrypted with the session key proposed in the beginning. Therefore, the
message sent to the replication VMs is: EsessionKey(DATA)

The policies are received from the “Authorization security service”.

Figure 4.9: Communication between geolocation instances
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4.3.3.3 External interface

The geolocation data replication component can be called from the outside using the REST APIs
shown in Table 4.3.

Request Description Parameters Response

GET URL/replCandidates? Requests replication of data, where the identifier
of the data block is given as parameter.

dataId=did list of candidates

GET URL/repl Requests the data to be replicated in one or more
of the locations selected from the list received as
response in the “replCandidates” request.

dataId=did Boolean

POST URL/upload Request used for uploading data to the VM where
this component is deployed. This can be done in-
ternally, within the VM where the owner of the
data stores it. This can also be done externally,
this being needed when the data is initially up-
loaded to the cloud.

data content Boolean

POST URL/setPolicy Request that uploads a policy to be attached to
a portion of the data. The portion of the data is
given as ID. The data is replicated in one of the
locations selected from the list received as response
in the “replCandidates” request.

dataId=did Boolean

Table 4.3: Geolocation data replication component API

4.3.3.4 Component access

The geolocation data replication component will be available on the SUPERCLOUD private repos-
itory8 once the way this component can be shared is concluded. Instructions for installation and
further documentation about the software are also distributed together with the code release. The
deployment process has been tested in Linux.

4.3.4 SLA management

Security Service Level Objectives (SSLAs) outline a commitment between Cloud Service Customers
(CSC) and Cloud Service Providers (CSP). As discussed in Deliverable D1.2 [37], the management of
SSLAs involve five main phases: specification, negotiation, enforcement, monitoring and arbitration.
In this Section, we make a focus on the monitoring and arbitration phases. The implementation of
the overall SSLA life-cycle is described in detail in Deliverable D1.4.

4.3.4.1 Objective

The objective of this service is to provide the Cloud Service Customer (CSC) with mechanisms to
supervise the execution of the active SSLA. Thus the service will process the SSLA upheld by the CSC
and the CSP and extract the metrics to be monitored (Performance and Security Level Objectives).
As illustrated in Figure 4.10, the SSLA Enforcement Service (SES) translates and maps low-level raw
resource metrics measured by monitoring services to high-level SSLA objectives. In our implementa-
tion, we assume that raw data is stored by the monitoring service within a dedicated database provided
by the storage service. Table 4.4 provides examples of raw metrics that the monitoring service can
collect from the provider infrastructure.
The above metrics are subsequently processed to be mapped to concrete Service Level Objectives as
specified in SSLAs. For instance, upTime and downTime are mapped to availability for both Compute,
Storage and Network as follows:

Availability = 1− upTime

downTime
(4.1)

8 https://github.com/H2020-SUPERCLOUD/
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Figure 4.10: SSLA Enforcement Service

Layer Metrics Frequency (sec)

Compute memTotal, memUsed, memFree, cpuIdle, cpuUse,
upTime, DownTime

±10

Storage diskTotal, diskFree, diskUsed, Encrytion,
Location, upTime, DownTime

±60

Network netPacketsIn, netPacketsOut, netBytesIn,
netBytesOut, upTime, DownTime

±30

Table 4.4: Example of monitoring metrics

Here, downTime refers to the time required to bring a service (Compute, Storage or Network) to
work after a failure, while upTime represents the sum of time without failure. Following this schema,
the SSLA Enforcement Service extracts, periodically, relevant information to compute statistics that
reflect the fulfillment of each Protection/Security Level Objective. This information is then displayed
graphically using charts as shown in Figure 4.11.

4.3.4.2 External interface

As presented in Section 4.2.1, SLA enforcement, storage and monitoring services are provided as
Docker images that are deployed and configured by the Security Orchestrator. Consequently, the
coordination of their execution, and most specifically their interaction is achieved using standard
REST API methods GET and POST as illustrated in Figure 4.10. The complete SSLA Service API
is part of the Self-Management Security Architecture and will be presented in Deliverable D1.4.

SUPERCLOUD D2.3 Page 38 of 49



D2.3 - Secure Computation Infrastructure and SUPERCLOUD Security Services

Figure 4.11: Captures from the SSLA reporting dashboard

4.3.4.3 Component access

In this Deliverable, we provide the SSLA enforcement component that extracts SSLA objectives to
be presented to the Cloud Customer. This component is part of the SSLA orchestrator that manages
requirements specification, negotiation and enforcement. In what follows, we describe the procedure to
retrieve and deploy the SSLA Enforcement Web Service. As stated before, the service is available as a
deploy-ready Docker image. It contains the web application responsible for displaying the information
collected by the monitoring service and aggregated by the SSLA engine.
We present hereafter the procedure to download, deploy and test the services on the user’s machine9.

• Download the tar compressed file containing the service Docker image10.

• Launch the ./start.sh script to start the SSLA Enforcement Service.

• To test if the service is running, go to the URL address : http://localhost:80

• This component displays the fulfillment of SSLA based on metrics from the storage service.
The engine that computes these values and stores them into the database is part of the SSLA
life-cycle presented in Deliverable D1.4.

9 The following deployment process has been tested in Linux and Mac OS.
10 https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/sla
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4.3.5 Software trust

In the cloud ecosystem, Security Service Level Agreements (SSLAs) are considered as a good trust en-
abler as they represent a legal document that certifies the provider’s willingness to meet the customer’s
expected Quality-of-Service (QoS) and Quality-of-Protection (QoP) [18]. From the cloud provider per-
spective, QoS or QoP metrics respectively provide a good indicator of the infrastructure capacities,
while the same metrics from the customer perspective testify about the performance experienced by
the cloud customer.
The processing of QoS and QoP metrics usually includes a customers × providers experiences matrix,
as shown hereafter. Each matrix represents the experiences that all customers of the system (∀c ∈
C) had with cloud providers (i.e., ∀p ∈ P) for a particular cloud service s ∈ S. Rows represent
experiences issued by a certain customer, while columns reflect the experiences expressed with respect
to a particular provider.

EsC:P =


p1 p2 ... pn

c1 Esc1:p1 Esc1:p2 . . . Esc1:py

c2 Esc2:p1 Esc2:p2 . . . Esc2:py
...

...
...

. . .
...

cy Escx:p1 Escx:p2 . . . Escx:py

 (4.2)

In this Section, we present the Software Trust Service (STS) that generates Cloud Customers Expe-
riences based on monitored information.

4.3.5.1 Objective

The objective of the Software Trust Service is to assist cloud customers and providers selecting the
best interacting partners within the Cloud Market Place (CMP).
A CMP System Model can be defined at a time t by:

CMP = 〈C,Q,P,O,S,M,A, E〉t (4.3)

where C = {c1, c2, ...} is the set of customers, Q = {q1, q2, ...} is the set of queries,
P = {p1, p2, ..., pl} is the set of providers, O = {o1, o2, ...} is the set of offers, S = {s1, s2, ...} is
the set of cloud services, M = {m1,m2, ...} is the set of multi-clouds, A = {a1, a2, ...} is the set of
agreements, E = {e1, e2, ...} is the set of customer experiences. In what follows, we make use of
c, q, p, o, s,m, a, e to refer to, respectively, an arbitrary customer, query, provider, offer, service,
multi-cloud, agreement and experience.
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Figure 4.12: Classical feedback-based trust assessment
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The trust that a cloud customer c is willing to put into a cloud provider p depends on the experience
derived from past experiences. The experiences constitute customers’ and providers’ feedback and
reflect their level of satisfaction with respect to the expected quality of service and protection. This
experience information is thus processed by the Trust Service for assessment of the trust that a
customer can put in the candidate provider. As illustrated in Figure 4.12, before making a decision
about the provider to engage with, for a specific service s, the requesting customer c will make use of
the SUPERCLOUD Trust Management Service (see Deliverable D1.4) to derive a trust value based
on past-experiences. Then, during the transaction (i.e., Cloud Service Delivery), the CSC c will make
use of monitoring mechanisms to observe the behavior of the provider. We make the reasonable
assumption that all Service Level Objectives (SLOs) conveyed in an SSLA agreement (i.e., a ∈ A)
can be monitored and that monitoring information is reliable and cannot be tampered with.

Experiences representation. We denote Esc:p ⊆ E the chronologically ordered set of experiences
issued by the customer c towards the provider p for a specific delivered service s. Each experience

e
〈c,p,s〉
i ∈ Esc:p is stored in the system as a quintuplet 11:

e
〈c,p,s〉
i = 〈c, p, s, υ, t〉 (4.4)

e
〈c,p,s〉
i maps the services provided by p towards a customer c at a time t to a fulfillment

level υ. For simplicity, we make use of a normalized rating scale of [0, 1]. For instance, in
the following experience example 〈c, p, availability, 0.9995, t〉, the monitored value 99, 95%
(corresponds to the QoS Level Objective that represents availability of cloud services) is
mapped to the normalized 0.9995 value. We assume that categorical values are mapped to
true if the service level is met and false if not. These values are then converted to, respectively, 0 and 1.

Experiences aggregation. The aggregation of individual and collective experiences constitute a
reputation value. Computing the reputation of a set of providers (i.e., multi-cloud) is known in the
literature as group reputation [6]. Few works tried to address it and no real consensus exists about
how to obtain it. We were inspired from the Simple Additive Weighting approach [15] and propose to
proceed in two steps:

1. First, we compute the individual reputation of each provider. The schema used is identical for
both customers and providers.

2. Then the computed individual reputation values are combined to compute a collective reputation
for the candidate multi-cloud.

The general formula used to aggregate experiences into reputation values is defined as follows::

Rsc:p =

∑λ
i=1

[
(e
〈c,p,s〉
i ).υ

]
λ

(4.5)

where : ∀ei, ej ∈ Esc:p | ij =⇒ ei.t ≥ ej .t

In Equation 4.5, the reputation built based on the experiences of a customer c towards a provider p
for a service s is the weighted sum of the fulfillment levels υ. We make use of the constant λ to
express how fast the reputation value of the provider changes after each experience. The larger the
value of λ, the longer the memory of the system is. In other words, the constant λ reflects the
willingness of a customer to forgive past negative experiences [38]. It avoids that providers suffer too
much from their initial poor behavior which may sentence all the system, as very few interac-
tions would be possible. Thus only the λ last experiences witnessed are used to compute the reputation.

11 Experiences are issued by both providers and customers. The same format applies, indistinguishably to both types.
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The benefits of the Software Trust Service were demonstrated experimentally and its results presented
in a conference paper [36]. These results will be summarized in the Appendix of Deliverable D1.4.

4.3.5.2 External interface

In this Section, we present the integration of the software trust model within the SUPERCLOUD com-
puting framework, and more specifically within the self-management of security . The Software Trust
Service builds on the top of the SSLA enforcement and monitoring service to make trust assessments
(see Figure 4.13). The trust computation component mainly integrates the algorithm that processes
the SSLA objectives and derives trustworthiness values as described in [36]. These values are made
available via a standard REST API interface.
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Figure 4.13: SSLA Enforcement Service

4.3.5.3 APIs

The Software Trust Service REST API interface is split into two parts, internal and external.

• The internal interface interacts with other SUPERCLOUD services. These interactions are
orchestrated by the Security Orchestrator as described in Section 4.2.1.

• The external interface is used to communicate with other Software Trust Services to exchange
experiences and trust values. This interface is mandatory when computing Cloud Marketplace
level Trust Metrics (i.e., reputation).

Table 4.5 summarizes the methods and parameters of the service interfaces.
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Request Description Parameters Response

GET URL/trust Retrieves all trust val-
ues

none A list of [Provider,trust]

GET URL/getTrust Retrieves the trustwor-
thiness a provider

provider=id ∈ [0, 1]

GET URL/getMCTrust Retrieves the trustwor-
thiness a multi-cloud

provider=id1&... ∈ [0, 1]

GET URL/getReputation Retrieves the reputa-
tion of a provider

provider=id ∈ [0, 1]

Table 4.5: Software Trust service external interfaces

4.3.5.4 Component access

This component is part of a complex trust management framework implemented in the context of De-
liverable D1.4. Consequently, the component will be released as part of this framework. Nevertheless,
we present here after the procedure to retrieve and deploy the Software Trust Service12. Like other
self-management of security services, the Trust Service is available as a deploy-ready Docker image.

• Download the tar compressed file containing the service Docker image13.

• Launch the ./startSTS.sh script to start the Software Trust Service.

• Once the trust service starts, it can be accessed thought standard REST calls. For instance,
curl -XGET ://192.168.99.100:8000/trust will retrieve the trust values from the service.

12 The following deployment process has been tested on Mac OS, but tests have been conducted to verify that the
services would run similarly on any other operating system.

13 https://github.com/H2020-SUPERCLOUD/SUPERCLOUD-FW/tree/master/WP2/selfmanagement/sservices/trust/
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Chapter 5 Conclusions

This document is part of the deliverable that presents the proof-of-concept implementation of the dis-
tributed cloud infrastructure for computation and components for SUPERCLOUD computing security
management. Our purpose was to describe the structure of the computing framework, the APIs of its
main components, and to provide information on how to access and run the software developed.
We first presented the approach for specifying the framework, giving an overview of its structure, com-
posed of two separate sub-infrastructures, the virtualization infrastructure and the self-management
infrastructure.
We then presented the two sub-infrastructures, in terms of structure and APIs of their components.
Namely:

• For the virtualization infrastructure: a virtualization and orchestration component and a micro-
hypervisor, isolation and trust management components and support for Cloud FPGAs;

• For the self-management infrastructure: a security orchestrator, and a number of security services
covering authorization, security monitoring, geolocation-aware replication, SLA management,
and software trust management.

The next steps will be devoted to: (1) refining the structure of the self-management infrastructure
(WP2) specified in Deliverable D2.4; integrating those components into the overall SUPERCLOUD
frameworks (WP1), specified in Deliverables D1.3 and D1.4, in connection with data management
(WP3) and networking (WP4) components, and deploying those components in the demonstrated use
cases of the project (WP5).
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List of Abbreviations

AC Access Control

ACPI Advanced Configuration and Power Interface

AHCI Advanced Host Controller Interface

AOP Aspect-Oriented Programming

API Application Programming Interface

ARP Address Resolution Protocol

BFT Byzantine Fault Tolerance

CMP Cloud Market Place

CoT Chain of Trust

CPU Central Processing Unit

CSC Cloud Service Customer

CSP Cloud Service Provider

DBMS Database Management System

DP Design Principle

DR Design Requirement

DSS Detection Security Services

EE Execution Environment

FPGA Field-Programmable Gate Array

HOT Heat Orchestration Language

HTTP Hypertext Transfer Protocol

HW Hardware

IaaS Infrastructure-as-a-Service

IaC Infrastructure as Code

I/O Input / Output

IP Internet Protocol

JSON JavaScript Object Notation

LDA Leaf Detection Agent

LO Layer Orchestrator

LR Left-to-Right

LRA Leaf Reaction Agent
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MAC Message Authentication Code

NIC Network Interface Card

ORBITS ORchestration for Beyond InTer-cloud Security

OS Operating System

PCI Peripheral Component Interconnect

PDP Policy Decision Point

PEP Policy Enforcement Point

QoP Quality of Protection

QoS Quality of Service

REST Representational State Transfer

RPC Remote Procedure Call

RDA Root Detection Agent

RRA Root Reaction Agent

RSA Rivest-Shamir-Adleman

RSS Reaction Security Services

RTC Real-Time Clock

SDK Software Development Kit

SDN Software-Defined Networking

SES SSLA Enforcement Service

SGX Software Guard eXtensions

SLA Service Level Agreement

SLO Service Level Objective

SMR State Machine Replication

SOA Service Oriented Architecture

SSH Secure Shell

SSLA Security Service Level Agreement

STS Software Trust Service

SW Software

TCP Transmission Control Protocol

TML TOSCA Manipulation Language

TOSCA Topology and Orchestration Specification for Cloud Applications

U-Cloud User Cloud

URL Uniform Resource Locator

USS User-Centric Security Service

VM Virtual Machine

VO Vertical Orchestrator

VMM Virtual Machine Monitor

VPN Virtual Private Network

XML Extensible Markup Language
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