
D3.2
Specification of security enablers for data

management

Project number: 643964

Project acronym: SUPERCLOUD

Project title:
User-centric management of security and dependability in clouds of
clouds

Project Start Date: 1st February, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Report

Reference Number: ICT-643964-D3.2/ 1.0

Work Package: WP 3

Due Date: Nov 2016 - M22

Actual Submission Date: 29th November, 2016

Responsible Organisation: IBM

Editor: Marko Vukolić

Dissemination Level: PU

Revision: 1.0

Abstract:

This deliverable introduces the processing functions for data manage-
ment in the SUPERCLOUD. In particular, it contains security and
dependability component specifications, descriptions of distributed
protocols, specifications of cryptographic mechanisms, and descrip-
tions of the data-resilience tools.

Keywords: data management, dependability, multi-cloud, security.

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 643964.

This work was supported (in part) by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 15.0091.

D3.2 - Specification of security enablers for data management

Editor

Marko Vukolić (IBM)

Contributors (ordered according to beneficiary numbers)

Mario Münzer (TEC)
Sébastien Canard, Marie Paindavoine (ORANGE)
Andre Nogueira, Antonio Casimiro, João Sousa, Joel Alcântara, Tiago Oliveira, Ricardo Mendes,
Alysson Bessani (FFCUL)
Christian Cachin, Simon Schubert (IBM)
Caroline Fontaine (IMT)
Daniel Pletea, Meilof Veeningen (PEN)
Jialin Huang (TUDA)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.

This document has gone through the consortium’s internal review process and is still subject to the
review of the European Commission. Updates to the content may be made at a later stage.

SUPERCLOUD D3.2 Page I

D3.2 - Specification of security enablers for data management

Executive Summary

This deliverable introduces the processing functions for data management in the SUPERCLOUD. In
particular, it contains security and dependability component specifications, descriptions of distributed
protocols, specifications of cryptographic mechanisms, and descriptions of the data-resilience tools.

SUPERCLOUD data management components described in this deliverable are organized in three
parts. The first part describes novel components pertaining to state-machine replication, which will
be used to replicate critical pieces of SUPERCLOUD metadata across multiple clouds. The second
part covers SUPERCLOUD distributed storage solutions which we use to manage bulk data. Finally,
the third part describes advanced data security components, focusing, in particular on data privacy
techniques. These techniques can be optionally combined with dependability and security components
pertaining to fault-tolerant state-machine replication and distributed storage described in the first two
parts. Several components described in this deliverable have already been published in top research
conferences.

More specifically, the first part of this deliverable focuses on novel solutions for state-machine repli-
cation. SUPERCLOUD state-machine replication will use Hyperledger fabric open-source blockchain
as its envelope, which is first discussed in Chapter 2. Then, we introduce novel distributed proto-
cols for state-machine replication developed in the context of SUPERCLOUD. Namely, Chapter 3
discusses how to treat non-determinism when replicating arbitrary applications when replicas can fail
in an arbitrary (i.e., Byzantine) way. Chapter 4 introduces a novel model for developing reliable dis-
tributed protocols called XFT, as well as the first state-machine replication protocol in this model -
XPaxos. Chapter 5 empirically evaluates latency-optimization for state-machine replication in WANs
and informs the design of novel state-machine replication protocols. Chapter 6 introduces a generic
state-transfer tool for partitioned state-machine replication that enables elasticity.

In the second part of the deliverable, we turn to resilient distributed storage. Chapter 7 describes
Janus, a multi-cloud storage platform that finds the best way to store data in the clouds according to
given user-defined requirements. In Chapter 8 we present new erasure-coded storage emulations on
top of untrusted cloud storage services that support multiple concurrent writers. Chapter 9 concludes
the set of novel dependability components by presenting a solution for cloud-based database disaster-
recovery.

Finally, the third part deals with advanced techniques for enduring data privacy and confidentiality,
as well as security of data sharing and anonymization. In particular, Chapter 10 proposes a privacy-
preserving distributed solution for verifiable computation. Chapter 11 proposes a solution for privacy-
preserving image processing relevant for SUPERCLOUD healthcare use cases. Chapter 12 introduces
further privacy preserving techniques based on key encapsulation, proxy re-encryption and attribute-
based encryption, and includes details about secure deduplication. Finally, Chapter 13 presents our
anonymization techniques.

The deliverable further specifies the integration vectors of the described components and explains how
these components come together within the overall WP3 architecture as defined in D3.1. This informs
the integration of the (subset of) components that will be tackled on in the following months, in the
context of SUPERCLOUD deliverable D3.3.

SUPERCLOUD D3.2 Page II

D3.2 - Specification of security enablers for data management

Contents

Chapter 1 Introduction 1
1.1 Deliverable Organization . 1
1.2 Publications and impact . 2
1.3 Component integration . 2

1.3.1 Review: high-level WP3 architecture . 3
1.3.2 Prospective Integration Vectors . 4

1.3.2.1 State-machine replication . 5
1.3.2.2 Resilient distributed storage . 5
1.3.2.3 Advanced privacy-preserving components 6

I State-machine replication 7
Chapter 2 State-Machine Replication with Hyperledger Blockchain Fabric 8

2.1 Overview . 8
2.2 Hyperledger Fabric . 8
2.3 Architecture . 9
2.4 Discussion . 10
2.5 Conclusion . 10

Chapter 3 Non-deterministic Byzantine Fault-Tolerant State-Machine Replication 11
3.1 Introduction . 11
3.2 Definitions . 12

3.2.1 System model . 12
3.2.2 Broadcast and state-machine replication . 12
3.2.3 Leader election . 13

3.3 Modular protocol . 14
3.4 Master-slave protocol . 19
3.5 Cryptographically secure protocols . 20
3.6 Conclusion . 21

Chapter 4 XFT: Practical Fault Tolerance Beyond Crashes 22
4.1 Background . 22
4.2 System model . 24
4.3 The XFT model . 24

4.3.1 XFT in a nutshell . 25
4.3.2 XFT vs. CFT/BFT . 26
4.3.3 Where to use XFT? . 27

4.4 XPaxos Protocol . 27
4.4.1 Common case . 28
4.4.2 View change . 29

4.4.2.1 Choosing active replicas . 30
4.4.2.2 View change initiation . 30
4.4.2.3 Performing view-change . 30

4.4.3 Correctness arguments . 31

SUPERCLOUD D3.2 Page III

D3.2 - Specification of security enablers for data management

4.5 Performance Evaluation . 31
4.5.1 Experimental setup . 32

4.5.1.1 Synchrony and XPaxos . 32
4.5.1.2 Protocols under test . 32
4.5.1.3 Experimental testbed and benchmarks 32

4.5.2 Fault-free performance . 33
4.5.3 Performance under faults . 34
4.5.4 Macro-benchmark: ZooKeeper . 34

4.6 Reliability Analysis . 37
4.6.1 XPaxos vs. CFT . 37
4.6.2 XPaxos vs. BFT . 38

4.7 Related work and concluding remarks . 39
Chapter 5 WHEAT: An Empirical Design for Geo-Replicated State Machines 40

5.1 State Machine Replication & BFT-SMaRt . 41
5.2 Experiments . 42

5.2.1 Methodology . 42
5.2.2 Number of Communication Steps . 43
5.2.3 Number of Replies . 44
5.2.4 Quorum Size . 45
5.2.5 Leader Location . 46
5.2.6 Discussion . 47

5.3 The WHEAT Protocol . 48
5.3.1 Deriving the protocol . 48
5.3.2 Vote Assignment Schemes . 49

5.4 Implementation and Evaluation . 52
5.5 Related work . 54
5.6 Conclusion . 55

Chapter 6 Elastic State Machine Replication 56
6.1 Elasticity for RSMs . 57

6.1.1 Partition transfer in existing RSMs . 58
6.1.1.0.1 A client-based solution. 58

6.1.2 Partition transfer in Non-SMR Databases . 60
6.2 Partition Transfer for RSMs . 60

6.2.1 System Model . 61
6.2.2 Partition Transfer Protocol . 62
6.2.3 Correctness Argument . 63
6.2.4 Multi-partition Operations . 64

6.3 Implementation . 65
6.4 Evaluation . 66

6.4.1 Partition Transfer on an Idle System . 66
6.4.2 Partition Transfer on a Saturated System . 67
6.4.3 Partition Transfer in Bigger Groups . 71
6.4.4 Faults during the Partition Transfer . 71
6.4.5 Partition Transfer in a Hotspot . 72

6.5 Related work . 72
6.6 Conclusion . 74

II Resilient distributed storage 75
Chapter 7 Janus – A User-Defined Cloud Storage Platform 76

7.1 Introduction . 76
7.2 Janus Overview . 77

SUPERCLOUD D3.2 Page IV

D3.2 - Specification of security enablers for data management

7.2.1 Janus Server . 78
7.2.1.1 Requirements Solver. 78
7.2.1.2 Cloud info collector. 78
7.2.1.3 Billing Manager. 79

7.2.2 Virtual Disk Driver . 79
7.2.3 Solver . 80
7.2.4 Query solving strategy. 81

7.3 Related Work . 81
7.3.1 Distributed file systems. 81
7.3.2 Cloud-backed storage. 81
7.3.3 Multi-cloud storage. 81

7.4 Final Remarks . 82
Chapter 8 Exploring Key-Value Stores in Multi-Writer Byzantine-Resilient Cloud-
of-Clouds Storage 83

8.1 Related Work . 84
8.2 System Model . 85

8.2.1 Register Emulation . 85
8.2.2 Threat Model . 86
8.2.3 Key-Value Store Specification . 86

8.3 Multi-Writer Constructions . 86
8.3.1 Overview . 86
8.3.2 Protocols Mechanisms . 87

8.3.2.1 Byzantine Quorum Systems . 87
8.3.2.2 Multi-Writer Semantics . 87
8.3.2.3 Object integrity and authenticity . 87
8.3.2.4 Erasure codes . 88

8.3.3 Pseudo Code Notation and Auxiliary Functions 88
8.3.4 Two-Step Full Replication Construction . 89
8.3.5 Two-Step Erasure Code Construction . 90
8.3.6 Three-Step Erasure Code Construction . 91

8.4 Correctness . 92
8.4.1 Two-Step Algorithms Proof . 92
8.4.2 Three-Step Algorithm Proof . 93

8.5 Protocols Extensions . 94
8.5.1 Atomicity . 94
8.5.2 Garbage Collection . 95

8.6 Evaluation . 96
8.6.1 Setup and Methodology . 96
8.6.2 List Quorum Performance . 96
8.6.3 Read and Write Latency . 97
8.6.4 Read Under Write Contention . 97

8.7 Conclusion . 98
Chapter 9 Low-cost Cloud-based Disaster Recovery for Databases 99

9.1 Introduction . 99
9.2 Disaster Recovery . 100
9.3 Low-cost Cloud-based Disaster Recovery . 101
9.4 Transactional Database I/O . 102
9.5 Ginja . 103

9.5.1 Controlling Costs and Data Losses . 103
9.5.2 Data Model . 104
9.5.3 Algorithms . 104

SUPERCLOUD D3.2 Page V

D3.2 - Specification of security enablers for data management

9.5.3.1 Initialization. 104
9.5.3.2 Database Update Commits. 105
9.5.3.3 Checkpoints and Garbage Collection. 106

9.5.4 Extensions . 108
9.5.4.1 Compression and encryption. 108
9.5.4.2 Point-in-time recovery. 108
9.5.4.3 Backup verification. 108

9.6 Implementation . 109
9.7 Cost Analysis . 109

9.7.1 Ginja Cost Model . 110
9.7.1.1 Storage of DB objects. 110
9.7.1.2 PUT operations of DB objects. 110
9.7.1.3 Storage of WAL objects. 110
9.7.1.4 PUT operations of WAL objects. 111

9.7.2 The Cost of Running Ginja . 111
9.7.2.1 Real application. 111

9.7.3 The Cost of Recovery . 112
9.8 Experimental Evaluation . 112

9.8.1 Overhead of Ginja . 113
9.8.1.1 Performance overhead. 113
9.8.1.2 Compression and encryption. 114

9.8.2 Resource Usage . 114
9.8.2.1 Cloud usage and its implications. 114
9.8.2.2 Database server resource usage. 114

9.8.3 Recovery Time . 115
9.9 Related Work . 115

9.9.1 Database disaster recovery. 115
9.9.2 Filesystem mirroring. 116
9.9.3 Virtual machine replication. 116
9.9.4 Cloud-backed storage services. 116

9.10 Conclusion . 117

III Advanced privacy-preserving components 118
Chapter 10 Privacy-Preserving Outsourcing by Distributed Verifiable Computa-
tion 119

10.1 Introduction . 119
10.2 Related Work . 120
10.3 Distributing the Prover Computation . 120

10.3.1 Multiparty Computation using Shamir Secret Sharing 120
10.3.1.1 The Trinocchio protocol . 121

10.3.1.1.1 Parameters for Efficient FFTs 122
10.3.1.2 Security of Trinocchio . 123

10.3.1.2.1 Privacy against Active Attacks 123
10.4 Handling Mutually Distrusting In- and Outputters . 124

10.4.1 Multi-Client Proofs and Keys . 124
10.4.2 Protocol Overview . 125
10.4.3 Security of the Trinocchio Protocol . 126

10.5 Performance . 126
10.5.1 Case Study: Multivariate Polynomial Evaluation 126

10.6 Architectural integration and prototyping . 127
10.7 Conclusion . 129

SUPERCLOUD D3.2 Page VI

D3.2 - Specification of security enablers for data management

Chapter 11 Privacy of Image Processing 131
11.1 Image Processing Techniques . 131

11.1.1 Content Based Image Retrieval . 131
11.1.2 Scalar Invariant Feature Transform . 132
11.1.3 Speeded Up Robust Features . 132
11.1.4 Shape-based Image Features . 132

11.2 Privacy-Preserving Techniques for Image Processing 133
11.2.1 Content Based Image Retrieval . 133
11.2.2 Scalar Invariant Feature Transform . 133
11.2.3 Speeded Up Robust Features . 134
11.2.4 Shape-based Image Features . 134
11.2.5 Techniques in other Applications . 134

11.3 Performance and Security Analysis . 134
11.4 Efficient Implementation of Image Processing in SGX 135

11.4.1 Software Guard Extensions (SGX) . 135
11.4.2 Overview of SGX-based Privacy-Preserving Image Processing 136
11.4.3 Structure of SGX-based Privacy-Preserving Image Processing 136
11.4.4 Adversarial model and related assumptions . 137

Chapter 12 Other Encryption-based privacy-preserving components 139
12.1 Context . 139

12.1.1 Some Notations . 140
12.2 Key Encapsulation and Deduplication . 140

12.2.1 Key Encapsulation . 140
12.2.2 Convergent Encryption for Deduplication . 141
12.2.3 Encrypted Data Storage Sequence Diagrams 141

12.3 Proxy re-encryption . 143
12.3.1 Proxy re-encryption in a nutshell . 144
12.3.2 Cryptographic Basis . 144
12.3.3 Management of a File System . 145
12.3.4 High Level Specifications . 146
12.3.5 Sequence Diagrams . 147
12.3.6 A First Implementation . 148

12.4 Attribute-based encryption . 150
12.4.1 Attribute-Based Encryption in a Nutshell . 150
12.4.2 Main Ideas of the Scheme . 151
12.4.3 Sequence Diagrams . 152

12.5 Conclusion . 152
Chapter 13 Data Anonymization 153

13.1 K-anonymity . 154
13.1.1 Detailed Procedure . 155

13.2 Cost Metric . 156
13.3 Optimal Lattice Anonymization Algorithm . 157
13.4 Conclusion . 161

Chapter 14 Conclusion and Future Work 162
Bibliography 163

SUPERCLOUD D3.2 Page VII

D3.2 - Specification of security enablers for data management

List of Figures

1.1 High level logical architecture of the SUPERCLOUD data management layer. 3
1.2 Mapping of SUPERCLOUD data management entities to L1 and L2 virtualization layers. 4
1.3 State-machine replication integration vector and its fit within the SUPERCLOUD data

management architecture. Green components are described in this deliverable in re-
spective chapters. Full lines represent single-partner integration vectors, dashed lines
represent integration vectors across two or more partners. 5

1.4 Resilient distributed storage integration vector and its fit within the SUPERCLOUD
data management architecture. Green components are described in this deliverable in
respective chapters. Full lines represent single-partner integration vectors, dashed lines
represent integration vectors across two or more partners. 6

1.5 Privacy-preserving components integration vector and its fit within the SUPERCLOUD
data management architecture. Blue components are described in this deliverable in
respective chapters. Full lines represent single-partner integration vectors, dashed lines
represent integration vectors across two or more partners. 6

4.1 An illustration of partitioned replicas: {p1, p4, p5} or {p2, p3, p5} are partitioned based
on Definition 1. 25

4.2 XPaxos common-case message patterns for t = 1 and t ≥ 2 (here t = 2). Synchronous
group illustrated are (s0,s1) (when t = 1) and (s0,s1,s2) (when t = 2), respectively. . . 28

4.3 XPaxos view change illustration: synchronous group is changed from (s0,s1) to (s0,s2). 30
4.4 Communication patterns of the three protocols under test (t = 1). 33
4.5 Fault-free performance . 35
4.6 XPaxos under faults. 36
4.7 Latency vs. throughput for the ZooKeeper application (t = 1). 36

5.1 BFT-SMaRt message pattern during fault-free executions. 42
5.2 Evaluated message patterns, besides the one in Fig. 5.1a. 44
5.3 Client latencies’ 50th/90th percentile for each type of execution. 44
5.4 Client latencies’ 50th/90th percentile for different numbers of replies. 45
5.5 Client latencies’ 50th/90th percentile with different quorum sizes. 46
5.6 Client latencies’ 50th/90th percentile when the leader is placed across PlanetLab hosts. 47
5.7 Client latencies’ 50th/90th percentile when the leader is placed across Amazon EC2

regions. 47
5.8 WHEAT’s message pattern for f = 1 and one additional replica. 49
5.9 Quorum formation when f = 1 and n = 4 (CFT mode). 51
5.10 50th/90th percentile latencies observed by BFT-SMaRt and WHEAT clients in dif-

ferent regions of Amazon EC2. 53

6.1 Reconfigurations of a partitionable RSM. 57
6.2 A client-based protocol for partition transfer between RSMs with throughput and operation

latency observed by clients during a 4GB-partition transfer operation (in multiple blocks of

4MB and 16MB). 58

SUPERCLOUD D3.2 Page VIII

D3.2 - Specification of security enablers for data management

6.3 A reconfiguration-based protocol for partition transfer between RSMs with throughput and

operation latency observed by clients during a 4GB-partition transfer operation. 59
6.4 Throughput and operation latency observed by clients during a 8GB state redistribution in

Cassandra. 60
6.5 A partitionable and durable replicated state machine. 62
6.6 The partition transfer (ptransf) protocol. 63
6.7 CREST architecture. 65
6.8 CREST throughput and operation latency in saturated conditions with reconfigurations using

disks and SSDs. Read-heavy (95/5) workload. 68
6.9 CREST throughput and operation latency in saturated conditions with reconfigurations using

disks and SSDs. Write-heavy (50/50) workload. 68
6.10 Latency during 4GB-partition transfers and the duration of such transfers using disks and groups

of three replicas (f = 1) and considering different block sizes and workloads. 69
6.11 Latency during 4GB-partition transfers and the duration of such transfers using disks and groups

of five replicas (f = 2) and considering different block sizes and workloads. 70
6.12 Four failure scenarios during a split using a 256MB block size and disks. 72
6.13 Scale-out in a hotspot group using disks. 73

7.1 Janus architecture. 77
7.2 Janus server modules. 78
7.3 Janus virtual disk driver data processing. 80

8.1 MW-regular register protocols general structure. 87
8.2 Average latency and std. deviation of listQuorum for different number of stored keys. 96
8.3 Median and 90-percentile latencies for read and write operations of register emulations. 97
8.4 Median and 90-percentile read latencies in presence of contending writers. 98

9.1 Database size and number of cloud synchronizations per hour in a S3-based DR solution with a

$1 monthly budget. 102
9.2 Influence of B (Batch) and S (Safety) in the execution of Ginja. In this example B = 2,

thus each cloud backup includes two database updates. It is possible to observe that Ginja

blocks the DBMS whenever more than S = 20 database updates are executed without being

acknowledged by the cloud. 104
9.3 Detailed architecture of Ginja. 109
9.4 Effect of different configurations and workloads in Ginja’s monetary cost for a 10GB-database

and Amazon S3. 111
9.5 Influence of different configurations in the performance of Ginja with PostgreSQL and MySQL.

The values of B are expressed immediately below the columns. Exceptions are the first two

columns (native file system and FUSE), and the last column (S = B = 1). 113
9.6 Effect of compression and cryptography in the performance of Ginja. The columns are grouped

by configuration (B and S), and the values immediately below de columns specify whether

compression, cryptography or both (C+C) are active. 113
9.7 Recovery times of Ginja for different database sizes using a local server and a VM in the same

location as the data. 115

10.1 Trinocchio architectural integration . 128

11.1 Structure in high level . 136
11.2 Adversary channels . 137

12.1 Upload phase . 142
12.2 Download phase . 143
12.3 Additional interactions in the download phase for deduplication 143

SUPERCLOUD D3.2 Page IX

D3.2 - Specification of security enablers for data management

12.4 A tree structure . 145
12.5 Re-conditioning principle . 146
12.6 Upload using proxy re-encryption . 148
12.7 Sharing using proxy re-encryption . 149
12.8 Download using proxy re-encryption . 149
12.9 Re-encryption execution time per depth . 150

13.1 Modified WP3 architecture based on MPC and k-anonymity [308] 153
13.2 Incremental Generalization . 155
13.3 Sequential Generalization . 155
13.4 Lattice Composition . 156
13.5 2-anonymity Globally Optimal Solution . 159

SUPERCLOUD D3.2 Page X

D3.2 - Specification of security enablers for data management

List of Tables

4.1 The maximum numbers of each type of fault tolerated by representative SMR protocols.
Note that XFT provides consistency in two modes, depending on the occurrence of non-
crash faults. 25

4.2 Synchronous group combinations (t = 1). 30
4.3 Round-trip latency of TCP ping (hping3) across Amazon EC2 datacenters, collected

during three months. The latencies are given in milliseconds, in the format: average /
99.99% / 99.999% / maximum. 31

4.4 Configurations of replicas. Greyed replicas are not used in the “common” case. 33

5.1 Hosts used in PlanetLab experiments . 43
5.2 Average roundtrip latency and standard deviation (milliseconds) between Amazon EC2

regions as measured during a 24 hour-period. 53

6.1 Duration of a 4GB partition transfer (in seconds) using ptransf and alternative solutions (see

§6.1.1) in an idle system. 67
6.2 Duration of a 4GB partition transfer (in seconds) using ptransf and alternative solutions (see

§6.1.1) in a saturated system using disks for read- and write-heavy workloads. 71

8.1 Data-centric resilient register emulations. * can be extended to achieve atomic semantics. 85

9.1 How Ginja detects the three most important DBMS events in PostgreSQL and MySQL. . . . 103
9.2 Costs of performing cloud-based disaster recovery with AWS using Ginja or database replication

with VMs. 112
9.3 Ginja’s use of storage cloud. All results are averages collected during five executions of five

minutes of TPC-C for different configurations with both PostgreSQL (PG) and MySQL (MS). 114
9.4 Database server (eight cores with hyper-threading and 32GB of RAM) resource usage with and

without Ginja. 114

10.1 Performance of multivariate polynomial evaluation with Trinocchio: number of multi-
plications in f ; time for single-worker proof; time per party for computing f and proof,
and total; and verification time (all times in seconds) 127

12.1 Implementation results (for a depth = 3) . 150

13.1 Anonymization Example . 154

SUPERCLOUD D3.2 Page XI

D3.2 - Specification of security enablers for data management

Chapter 1 Introduction

SUPERCLOUD WP3 deals with protection of user data and assets in the distributed cloud. The focus
of our work is on autonomic and end-to-end security as well as dependability, but also performance
and cost. This WP provides a common user experience of data protection across multiple underlying
clouds through modular and on-demand data security services such as blind computation, integrity
and verifiability, and data availability.

This deliverable details SUPERCLOUD data management security and dependability components. It
gives specifications of these components and the description of distributed protocols and cryptographic
mechanisms these components are built upon. In a nutshell, this deliverable presents the approach to
implementing the solutions for challenges described in deliverable D3.1, in the context of the SUPER-
CLOUD data management architecture which is itself described in D3.1.

1.1 Deliverable Organization

This deliverable is orchestrated in three parts. The first part of the deliverable deals with state-machine
replication in SUPERCLOUD. As described in more details in Section 1.3, state-machine replication
will serve in SUPERCLOUD as a technique for replicating critical services across multiple clouds and
geographical locations (e.g., metadata management services). This part of the deliverable is organized
as follows:

• SUPERCLOUD state-machine replication will leverage Hyperledger fabric open-source blockchain
as its envelope, which is discussed in Chapter 2. In the subsequent chapters, we introduce novel
distributed protocols for state-machine replication developed in the context of SUPERCLOUD.

• Chapter 3 discusses how to treat non-determinism when replicating arbitrary applications when
replicas can fail in an arbitrary (i.e., Byzantine) way.

• Chapter 4 introduces a novel model for developing reliable distributed protocols called XFT, as
well as the first state-machine replication protocol in this model - XPaxos.

• Chapter 5 empirically evaluates latency-optimization for state-machine replication in WANs and
informing the design of novel state-machine replication protocols.

• Chapter 6 introduces a generic state-transfer tool for partitioned state-machine replication that
enables elasticity.

In the second part of the deliverable, we turn to resilient distributed storage components. These
components provide secure and dependable way to managing bulk data of SUPERCLOUD users.
This part of the deliverable is organized as follows:

• Chapter 7 describes Janus, a multi-cloud storage platform that finds the best way to store data
in the clouds according to given user-defined requirements.

SUPERCLOUD D3.2 Page 1 of 182

D3.2 - Specification of security enablers for data management

• In Chapter 8 we present new erasure-coded storage emulations on top of untrusted cloud storage
services that support multiple concurrent writers.

• Finally, Chapter 9 concludes the set of novel dependability components by presenting a solution
for cloud-based database disaster-recovery solution.

The third part of this deliverable details advanced privacy and confidentiality components for SU-
PERCLOUD data management. The components in this part also focus on security of data sharing
and data anonimization. In particular, in this part we detail the following components

• Chapter 10 proposes a privacy-preserving distributed solution for verifiable computation.

• Chapter 11 proposes a solution for privacy-preserving image processing relevant for SUPER-
CLOUD healthcare use cases.

• Chapter 12 introduces further privacy preserving techniques based on key encapsulation, proxy
re-encryption and attribute-based encryption, and includes details about secure deduplication.

• Finally, Chapter 13 presents our anonymization techniques.

1.2 Publications and impact

It is worth noting that many of the proposed components have been already presented and published
in prestigious peer-reviewed conferences and are already gaining significant traction. Notably:

• Chapter 3 is based on

Christian Cachin, Simon Schubert, Marko Vukolić: Non-determinism in Byzantine fault-tolerant
replication. OPODIS 2016. To appear.

• Chapter 4 is based on

Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, Marko Vukolić: XFT: Practical
Fault-Tolerance Beyond Crashes. OSDI 2016: 485-500.

• Chapter 5 is based on

João Sousa, Alysson Bessani: Separating the WHEAT from the Chaff: An Empirical Design for
Geo-Replicated State Machines. SRDS 2015: 146-155

• Chapter 8 is based on

Tiago Oliveira, Ricardo Mendes and Alysson Bessani: Exploring Key-Value Stores in Multi-
Writer Byzantine-Resilient Register Emulations. OPODIS 2016. To appear.

• Chapter 10 is based on

Berry Schoenmakers, Meilof Veeningen, Niels de Vreede: Trinocchio: Privacy-Preserving Out-
sourcing by Distributed Verifiable Computation. ACNS 2016: 346-366

1.3 Component integration

Deliverable D3.1 defined the high-level architecture of WP3. In this deliverable we describe some of
the individual security and dependability components that are developed in WP3. In the rest of this
introductory chapter, we first recall the high-level WP3 architecture from D3.1 (Chapter 1.3.1), and
then explain integration vectors available to components described in this deliverable.

SUPERCLOUD D3.2 Page 2 of 182

D3.2 - Specification of security enablers for data management

Notice that not all WP3 components described in this deliverable will be integrated — the choice
of components that will actually be integrated will be specified in deliverables D3.3 (M28) and D3.4
(M36).

1.3.1 Review: high-level WP3 architecture

A view of the logical architecture of the SUPERCLOUD data management layer, as defined in Deliv-
erable D3.1, is shown in Figure 1.1.

Figure 1.1: High level logical architecture of the SUPERCLOUD data management layer.

For completeness, we recall the main five classes of entities described in D3.1:

• Storage clients (or simply clients), users of SUPERCLOUD storage infrastructure. These are all
L2 virtual machines (or containers) deployed in the User clouds. Other storage entities may or
may not act as storage clients depending on whether they are deployed as L1 virtual machines,
in which case they use cloud provider storage or L2 virtual machines in which case they act as
storage clients.

Clients are divided into two subcategories: direct accessors (DA) and ordinary clients. Ordinary
clients interact with the SUPERCLOUD data management layer via storage proxy and are
entirely oblivious the SUPERCLOUD data management layer. This requires minimum changes
to clients without installing additional libraries. In contrast, DA clients run SUPERCLOUD
specific logic as a client library and can interact and access directly storage servers and L1
cloud provider services. DA clients can also have certain functionality of storage servers built-in,
making them also possibly independent of storage servers.

• Storage proxies (or simply proxies), are L2 virtual machines (or containers).Proxies are in prin-
ciple stateless, and can be easily added dynamically to the system. Their primary goal is fa-
cilitating clients’ access to SUPERCLOUD storage and data management offerings. As we will
detail later, examples of proxies include encryption proxies, secure deduplication proxies, etc.

• Storage servers (or simply servers) are stateful L1 or L2 virtual machines (or containers). The
main role of servers is housekeeping of critical portions of metadata vital to operation of the

SUPERCLOUD D3.2 Page 3 of 182

D3.2 - Specification of security enablers for data management

Figure 1.2: Mapping of SUPERCLOUD data management entities to L1 and L2 virtualization layers.

SUPERCLOUD data management layer. Examples of SUPERCLOUD storage servers includes
storage metadata servers, data integrity servers, configuration management servers, etc.

• Cloud provider services (CPS) are L1 cloud storage services that DA clients or proxies can
directly access. They expose different APIs notably object storage and block storage. Examples
include Openstack Swift, Amazon S3 and EBS, etc.

• Cloud provider data nodes (or simply data nodes) are L1 virtual machines or containers that
reside on L1 public or private clouds comprising SUPERCLOUD infrastructure. Complementing
CPS, data nodes can perform computation and have locally mounted L1 block storage that ends
up storing SUPERCLOUD user data.

Mapping of SUPERCLOUD storage and data management entities to L1 and L2 SUPERCLOUD
virtualization layers is shown in Figure 1.2.
In the following section, we explain how components described in this deliverable fit into the WP3
architecture.

1.3.2 Prospective Integration Vectors

We identify the following prospective vectors for integration of SUPERCLOUD data management
components identified in this deliverable:

• State machine replication. This vector orchestrates state machine replication components
around open source projects Hyperledger fabric [263] and BFT-SMaRt [5]. It is deployed across
SUPERCLOUD storage servers and cloud provider services.

• Resilient storage. This vector orchestrates resilient multi-cloud and disaster recovery solutions
around the Janus User-Defined Storage. It is deployed across SUPERCLOUD clients (DAs) and
cloud provider data nodes and cloud provider services.

• Privacy-preserving components. This vector orchestrates security and, in particular, privacy-
preserving data management components. It is deployed across SUPERCLOUD clients and
storage proxies.

SUPERCLOUD D3.2 Page 4 of 182

D3.2 - Specification of security enablers for data management

In the following, we overview each of the proposed prospective integration vectors and discuss how
they fit together in the overall WP3 architecture.

1.3.2.1 State-machine replication

Figure 1.3: State-machine replication integration vector and its fit within the SUPERCLOUD data
management architecture. Green components are described in this deliverable in respective chapters.
Full lines represent single-partner integration vectors, dashed lines represent integration vectors across
two or more partners.

This integration vector is foreseen for the following state-machine replication (SMR) components of
SUPERCLOUD:

• Protocols that deal with SMR non-determinism, such as Sieve protocol, described in Chapter 3,

• XFT protocols, described in Chapter 4,

• WHEAT geo-replication, described in Chapter 5, and

• Elastic SMR, described in Chapter 6.

The integration of a subset or all of these components will be made possible through open source
projects Hyperledger fabric described in Chapter 2 and the BFT-SMaRt open-source project main-
tained by FCUL [5]. This integration vector primarily orchestrates SUPERCLOUD storage servers.
Possible integration is depicted in Figure 1.3.

1.3.2.2 Resilient distributed storage

This integration vector is foreseen for the following multi-cloud resilience components of SUPER-
CLOUD:

• Janus, user-centric multi-cloud storage, described in Chapter 7,

• Resilient multi-writer storage component, described in Chapter 8,

• Ginja disaster recovery component, described in Chapter 9.

• Secure deduplication component, described in Chapter 12, Section 12.2.

We plan to integrate a subset of these components as SUPERCLOUD data management clients (DAs),
SUPERCLOUD data nodes and cloud provider services. Some components will be integrated in the
Janus User-Defined Cloud Storage, a component under development by FCUL. Possible integration is
depicted in Figure 1.4.

SUPERCLOUD D3.2 Page 5 of 182

D3.2 - Specification of security enablers for data management

Figure 1.4: Resilient distributed storage integration vector and its fit within the SUPERCLOUD data
management architecture. Green components are described in this deliverable in respective chapters.
Full lines represent single-partner integration vectors, dashed lines represent integration vectors across
two or more partners.

1.3.2.3 Advanced privacy-preserving components

Whereas some components developed in the context of state-machine replication and resilient dis-
tributed storage cover some aspects of confidentiality, we specifically focus on advanced privacy-
preserving components which represents also our third integration vector. This integration vector
is foreseen for the following privacy-preserving components of SUPERCLOUD:

• Trinocchio, distributed verifiable computation component, described in Chapter 10,

• Privacy of image processing, described in Chapter 11,

• Proxy re-encryption and attribute based encryption components, described in Chapter 12, and

• K-anonymity component, described in Chapter 13.

We plan to integrate a subset of these components as SUPERCLOUD data management clients and
SUPERCLOUD data management proxies. Possible integration is depicted in Figure 1.5.

Figure 1.5: Privacy-preserving components integration vector and its fit within the SUPERCLOUD
data management architecture. Blue components are described in this deliverable in respective chap-
ters. Full lines represent single-partner integration vectors, dashed lines represent integration vectors
across two or more partners.

SUPERCLOUD D3.2 Page 6 of 182

D3.2 - Specification of security enablers for data management

Part I

State-machine replication

SUPERCLOUD D3.2 Page 7 of 182

D3.2 - Specification of security enablers for data management

Chapter 2 State-Machine Replication with Hyperledger

Blockchain Fabric

2.1 Overview

State-machine replication [278] is a general method for implementing a fault-tolerant service by repli-
cating servers and coordinating client interactions with server replicas. A replicated service maintains
some state and clients invoke operations that transform the state and generate outputs.
In cloud computing, state-machine replication is widely used for replicating critical services such
as configuration management or metadata replication (e.g., [181]) tolerating primarilycrash faults of
clients and replicas. In SUPERCLOUD, replicas are to be placed across potentially untrusted clouds
and the state-machine replication needs to be resilient to arbitrary (also called Byzantine [212]) faults
of clients and replicas.
These SUPERCLOUD needs from state-machine replication are largely in line with the emerging
blockchain technology [309]. A blockhain can be modeled as a replicated state-machine and emulates a
“trusted” computing service through a distributed protocol, run by nodes connected over the Internet.
The nodes share the common goal of running the service but do not necessarily trust each other
for more. In a “permissionless” blockchain such as the one underlying the Bitcoin cryptocurrency,
anyone can operate a node and participate through spending CPU cycles and demonstrating a “proof-
of-work.” On the other hand, blockchains in the “permissioned” model control who participates in
validation and in the protocol; these nodes typically have established identities and form a consortium.
A report of Swanson compares the two models [292].
To leverage synergies and similarities with blockchain, SUPERCLOUD state-machine replication
will be based around Hyperledger fabric (github.com/hyperledger/fabric) open-source blockchain
project that will serve as an envelope for state-machine replication in SUPERCLOUD. Hyperledger
fabric is a part of the Hyperledger Project (www.hyperledger.org), a major open source blockchain
effort developed in collaboration across several industries, with the goal to effort to create an enterprise-
grade, open-source distributed ledger framework and code base. It aims to advance blockchain tech-
nology by identifying and realizing a cross-industry open standard platform for distributed ledgers,
which can transform the way business transactions are conducted globally. Established as a project
of the Linux Foundation in early 2016, the Hyperledger Project currently has already more than 90
members, with IBM being one of the premier and founding members.
SUPERCLOUD project tightly collaborates with Hyperledger project, notably through contributions
from IBM. This colaboration enhances the visibility of the SUPERCLOUD project and ensures that
results of the project, and WP3 in particular, are contributed to a major open-source projects.
In this Chapter we briefly explain the high-level details of Hyperledger fabric. In Chapters that follow,
we explain novel state-machine replication components and techniques developed in SUPERCLOUD
for which Hyperledger fabric serves as an integration vector (see Chapter 1.3).

2.2 Hyperledger Fabric

Hyperledger Fabric (github.com/hyperledger/fabric) is an implementation of a distributed ledger
platform for running smart contracts, leveraging familiar and proven technologies, with a modular

SUPERCLOUD D3.2 Page 8 of 182

github.com/hyperledger/fabric
www.hyperledger.org
github.com/hyperledger/fabric

D3.2 - Specification of security enablers for data management

architecture allowing pluggable implementations of various functions. It is one of multiple projects
currently in incubation under the Hyperledger Project. A developer-preview of the Hyperledger Fabric
(called “v0.5-developer-preview”) has been released in June 2016 (github.com/hyperledger/fabric/
wiki/Fabric-Releases).
The distributed ledger protocol of the fabric is run by peers. The fabric distinguishes between two
kinds of peers: A validating peer is a node on the network responsible for running consensus, validating
transactions, and maintaining the ledger. On the other hand, a non-validating peer is a node that
functions as a proxy to connect clients (issuing transactions) to validating peers. A non-validating
peer does not execute transactions but it may verify them.
Some key features of the current fabric release are:

• A permissioned blockchain with immediate finality;

• Runs arbitrary smart contracts (called chaincode) implemented in Go (golang.org):

– User-defined chaincode is encapsulated in a Docker container;

– System chaincode runs in the same process as the peer;

• Consensus protocol is pluggable, currently an implementation of Byzantine fault-tolerant con-
sensus using the PBFT protocol [96] is supported, a prototype of SIEVE (see Chapter 3) to
address non-deterministic chaincode is available, and a protocol stub (named NOOPS) serves
for development on a single node;

• Security support through certificate authorities (CAs) for TLS certificates, enrollment certificates,
and transaction certificates;

• Persistent state using a key-value store interface, backed by RocksDB (rocksdb.org);

• An event framework that supports pre-defined and custom events;

• A client SDK (Node.js) to interface with the fabric;

• Support for basic REST APIs and CLIs.

Support for non-validating peers is minimal in the developer preview release.

2.3 Architecture

The validating peers run a BFT consensus protocol for executing a replicated state machine that
accepts three types of transactions as operations:

Deploy transaction: Takes a chaincode (representing a smart contract) written in Go as a parameter;
the chaincode is installed on the peers and ready to be invoked.

Invoke transaction: Invokes a transaction of a particular chaincode that has been installed earlier
through a deploy transaction; the arguments are specific to the type of transaction; the chaincode
executes the transaction, may read and write entries in its state accordingly, and indicates whether it
succeeded or failed.

Query transaction: Returns an entry of the state directly from reading the peer’s persistent state; this
may not ensure linearizability.

Each chaincode may define its own persistent entries in the state. The blockchain’s hash chain is
computed over the executed transactions and the resulting persistent state.
Validation of transactions occurs through the replicated execution of the chaincode and given the fault
assumption underlying BFT consensus, i.e., that among the n validating peers at most f < n/3 may
“lie” and behave arbitrarily, but all others execute the chaincode correctly. When executed on top
of PBFT consensus, it is important that chaincode transactions are deterministic, otherwise the state
of the peers might diverge. A modular solution to filter out non-deterministic transactions that are
demonstrably diverging is available and has been implemented in the SIEVE protocol [85].

SUPERCLOUD D3.2 Page 9 of 182

github.com/hyperledger/fabric/wiki/Fabric-Releases
github.com/hyperledger/fabric/wiki/Fabric-Releases
golang.org
rocksdb.org

D3.2 - Specification of security enablers for data management

Membership among the validating nodes running BFT consensus is currently static and the setup
requires manual intervention. Support for dynamically changing the set of nodes running consensus
is planned for a future version.
As the fabric implements a permissioned ledger, it contains a security infrastructure for authenti-
cation and authorization. It supports enrollment and transaction authorization through public-key
certificates, and confidentiality for chaincode realized through in-band encryption.
More precisely, for connecting to the network every peer needs to obtain an enrollment certificate
from an enrollment CA that is part of the membership services. It authorizes a peer to connect to the
network and to acquire transaction certificates, which are needed to submit transactions. Transaction
certificates are issued by a transaction CA and support pseudonymous authorization for the peers
submitting transactions, in the sense that multiple transaction certificates issued to the same peer
(that is, to the same enrollment certificate) cannot be linked with each other.
Confidentiality for chaincodes and state is provided through symmetric-key encryption of transactions
and states with a blockchain-specific key that is available to all peers with an enrollment certificate
for the blockchain. Extending the encryption mechanisms towards more fine-grained confidentiality
for transactions and state entries is planned for a future version.

2.4 Discussion

Consensus protocols for blockchain are currently being debated very actively, in research [156, 309]
but also by fintech startup companies (e.g., tendermint.com, kadena.io). The fabric’s design uses
a modular notion of consensus, which is aligned with the well-established concept of consensus in
distributed computing. This ensures that the blockchain-related features of the fabric can be developed
independently of the specific consensus protocol. The PBFT protocol [96] has been implemented as
the first one in the fabric because of its prominence: it benefits from the experience of almost 20
years of systems-level research on Byzantine consensus, is closely related to well-known protocols like
viewstamped replication and Paxos [218], has been analyzed in many environments [113, 37], and is
described in textbooks [81].

2.5 Conclusion

The Hyperledger Fabric is a permissioned blockchain platform aimed at business use. It is open-source
and based on standards, runs user-defined smart contracts, supports strong security and identity
features, and uses a modular architecture with pluggable consensus protocols.
The fabric is currently evolving and being actively developed under the governance of the Hyperledger
Project. More information about the fabric is available online at
github.com/hyperledger/fabric/blob/master/docs/protocol-spec.md

SUPERCLOUD D3.2 Page 10 of 182

tendermint.com
kadena.io
github.com/hyperledger/fabric/blob/master/docs/protocol-spec.md

D3.2 - Specification of security enablers for data management

Chapter 3 Non-deterministic Byzantine Fault-Tolerant State-

Machine Replication

Service replication distributes an application over many processes for tolerating faults, attacks, and
misbehavior among a subset of the processes. With the recent interest in multi-cloud architectures
such as the one considered in SUPERCLOUD, as well as blockchain technologies (such as Hyperledger
- see Chapter 2), distributed execution of one logical application over multiple administrative domains
has become a prominent topic. The established state-machine replication paradigm inherently requires
the application to be deterministic. However, applications developed in high-level languages are sel-
dom deterministic and require an effort from the application developer to ensure determinism of the
application.
In this chapter we consider and proposer new techniques for non-deterministic Byzantine fault-tolerant
state-machine replication. We distinguish three models for dealing with non-determinism in replicated
services, where some processes are subject to Byzantine faults: first, the modular case that does not
require any changes to the potentially non-deterministic application (and neither access to its internal
data); second, master-slave solutions, where ties are broken by a leader and the other processes validate
the choices of the leader; and finally, applications that use cryptography and secret keys. Cryptographic
operations and secrets must be treated specially because they require strong randomness to satisfy
their goals.
The chapter also introduces two new protocols. First, Protocol Sieve uses the modular approach and
filters out non-deterministic operations in an application. It ensures that all correct processes produce
the same outputs and that their internal states do not diverge. A second protocol, called Mastercrypt,
implements cryptographically secure randomness generation with a verifiable random function and is
appropriate for most situations in which cryptographic secrets are involved. All protocols are described
in a generic way and do not assume a particular implementation of the underlying consensus primitive.

3.1 Introduction

State-machine replication is an established way to enhance the resilience of a client-server applica-
tion [278]. It works by executing the service on multiple independent components that will not exhibit
correlated failures. We consider the approach of Byzantine fault-tolerance (BFT), where a group of
processes connected only by an unreliable network executes an application [257]. The processes use a
protocol for consensus or atomic broadcast to agree on a common sequence of operations to execute. If
all processes start from the same initial state, if all operations that modify the state are deterministic,
and if all processes execute the same sequence of operations, then the states of the correct processes
will remain the same. (This is also called active replication [102].) A client executes an operation on
the service by sending the operation to all processes; it obtains the correct outcome based on com-
paring the responses that it receives, for example, by a relative majority among the answers or from
a sufficiently large set of equal responses. Tolerating Byzantine faults means that the clients obtain
correct outputs as long as a qualified majority of the processes is correct, even if the faulty processes
behave in arbitrary and adversarial ways.
Traditionally state-machine replication requires the application to be deterministic. But many ap-
plications contain implicit or explicit non-determinism: in multi-threaded applications, the scheduler

SUPERCLOUD D3.2 Page 11 of 182

D3.2 - Specification of security enablers for data management

may influence the execution, input/output operations might yield different results across the processes,
probabilistic algorithms may access a random-number generator, and some cryptographic operations
are inherently not deterministic.
For practical use of state-machine replication, for deploying custom developed applications, ensuring
deterministic operations is crucial since even the smallest divergence among the outputs of different
participants introduces inconsistency.
This chapter presents a general treatment of non-determinism in the context of BFT replication and
introduces a distinction among different models to tackle the problem of non-determinism. For exam-
ple, applications involving cryptography and secret encryption keys should be treated differently from
those that access randomness for other goals. We also distinguish whether the replication mechanism
has access to the application’s source code and may modify it.
We also introduce two novel protocols. The first, called Sieve, replicates non-deterministic programs
using in a modular way, where we treat the application as a black box and cannot change it. We
target workloads that are usually deterministic, but which may occasionally yield diverging outputs.
The protocol initially executes all operations speculatively and then compares the outputs across the
processes. If the protocol detects a minor divergence among a small number of processes, then we
sieve out the diverging values; if a divergence among too many processes occurs, we sieve out the
operation from sequence. Furthermore, the protocol can use any underlying consensus primitive to
agree on an ordering. The second new protocol, Mastercrypt, provides master-slave replication with
cryptographic security from verifiable random functions. It addresses situations that require strong,
cryptographically secure randomness, but where the faulty processes may leak their secrets.

3.2 Definitions

3.2.1 System model

We consider a distributed system of processes that communicate with each other and provide a common
service in a fault-tolerant way. Using the paradigm of service replication [278], requests to the service
are broadcast among the processes, such that the processes execute all requests in the same order.
The clients accessing the service are not modeled here. We denote the set of processes by CPand let
n = |CP|. A process may be faulty, by crashing or by exhibiting Byzantine faults; the latter means
they may deviate arbitrarily from their specification. Non-faulty processes are called correct. Up to f
processes may be faulty and we assume that n > 3f . The setup is also called a Byzantine fault-tolerant
(BFT) service replication system or simply a BFT system.
We present protocols in a modular way using an event-based notation [81]. A process is specified
through its interface, consumes input events, and generates output events. Every two processes can
send messages to each other using an authenticated point-to-point communication primitive. When a
message arrives, the receiver learns also which process has sent the message. The primitive guarantees
message integrity, i.e., when a message m is received by a correct process with indicated sender ps,
and ps is correct, then ps previously sent m.
The system is partially synchronous [141] in the sense that there is no a priori bound on message
delays and the processes have no synchronized clocks, as in an asynchronous system. However, there
is a time (not known to the processes) after which the system is stable in the sense that message delays
and processing times are bounded. In other words, the system is eventually synchronous. This model
represents a broadly accepted network model and covers a wide range of real-world situations.

3.2.2 Broadcast and state-machine replication

Atomic broadcast. Suppose n processes participate in a broadcast primitive. Every process may
broadcast a request or message m to the others. When a request has been agreed, it is delivered.
Atomic broadcast also solves the consensus problem [170, 81]. We use a variant that delivers only
messages satisfying a given external validity condition [83].

SUPERCLOUD D3.2 Page 12 of 182

D3.2 - Specification of security enablers for data management

More precisely, Byzantine atomic broadcast with external validity (abv) is defined with a validation
predicate V () and uses two events: abv-broadcast(m), to broadcast a message m to all processes, and
abv-deliver(p,m), which delivers a message m broadcast by process p.
Predicate V () validates messages. It can be computed locally by every process and ensures that a
correct process only delivers messages that satisfy V (). More precisely, V () must guarantee that when
two correct processes p and q have both delivered the same sequence of messages up to some point, then
p obtains V (m) = true for any message m if and only if q also determines that V (m) = true. The
standard properties of Byzantine atomic broadcast [81] (validity, no duplication, integrity, agreement,
and total order) are extended by:

External validity: When a correct process delivers some message m, then V (m) = true.

In practice it may occur that not all processes agree in the above sense on the validity of a message.
For instance, some correct process may conclude V (m) = true while others find that V (m) = false.
For this case it is useful to reason with the following relaxation:

Weak external validity: When a correct process delivers some message m, then at least one correct
process has determined that V (m) = true at some time between when m was broadcast and
when it was delivered.

Every protocol for Byzantine atomic broadcast with external validity of which we are aware either
ensures this weaker notion or can easily be changed to satisfy it.

State machine replication. Atomic broadcast is the main tool to implement state-machine repli-
cation (SMR), which executes a service on multiple processes for tolerating process faults. Throughout
this work we assume that many operation requests are generated concurrently by all processes; in other
words, there is request contention.
A state machine consists of variables and operations that transform its state and may produce
some output. Traditionally, operations are deterministic. The state machine functionality is de-
fined by execute(), a function that takes a state s ∈ S, initially s0, and operation o ∈ O as input, and
outputs a successor state s′ and a response or output value r, such that execute(s, o) → (s′, r).
A replicated state-machine is defined by two events: an input event rsm-execute(operation) that a
process uses to invoke the execution of an operation o of the state machine; and an output event
rsm-output(o, s, r), which is produced by the state machine. The output indicates the operation has
been executed and carries the resulting state s and response r. We assume here that an operation o
includes both the name of the operation to be executed and any relevant parameters.
More formally, a replicated state machine (rsm) receives requests that the state machine executes the
operation o, in the form of rsm-execute(o) events; it produces rsm-output(o, s, r) events, to indicate
that the state machine has executed an operation o, resulting in new state s, and producing response r.
It is defined using standard properties [81], ensuring agreement on the executed sequence of operations
among all correct processes; correctness in the sense that when a correct process has executed a
sequence of operations o1, . . . , ok, then the sequences of output states s1, . . . , sk and responses r1, . . . , rk
satisfies (si, ri) = execute(si−1, oi) for i = 1, . . . , k; and finally, termination.
The standard implementation of a replicated state machine relies on an atomic broadcast protocol to
disseminate the requests to all processes [278, 170].

3.2.3 Leader election

Implementations of atomic broadcast need to make some synchrony assumptions or employ random-
ization [148]. A very weak timing assumption that is also available in many practical implementations
is an eventual leader-detector oracle [101, 170].
We define an eventual leader-detector primitive, denoted Ω, for a system with Byzantine processes. It
informs the processes about one correct process that can serve as a leader, so that the protocol can

SUPERCLOUD D3.2 Page 13 of 182

D3.2 - Specification of security enablers for data management

progress. When faults are limited to crashes, such a leader detector can be implemented from a failure
detector [101], a primitive that, in practice, exploits timeouts and low-level point-to-point messages
to determine whether a remote process is alive or has crashed.
With processes acting in arbitrary ways, though, one cannot rely on the timeliness of simple responses
for detecting Byzantine faults. One needs another way to determine remotely whether a process is
faulty or performs correctly as a leader. Detecting misbehavior in this model depends inherently on the
specific protocol being executed [138]. We use the approach of “trust, but verify,” where the processes
monitor the leader for correct behavior. More precisely, a leader is chosen arbitrarily, but ensuring
a fair distribution among all processes (in fact, it is only needed that a correct process is chosen at
least with constant probability on average, over all leader changes). Once elected, the chosen leader
process gets a chance to perform well. The other processes monitor its actions. Should the leader not
have achieved the desired goal after some time, they complain against it, and initiate a switch to a
new leader.
This notion of “performance” depends on the specific algorithm executed by the processes, which relies
on the output from the leader-detection module. Therefore, eventual leader election with Byzantine
processes is not an isolated low-level abstraction, as with crash-stop processes, but requires some input
from the higher-level algorithm. The Ω-complain(p) event allows to express this. Every process may
complain against the current leader p by triggering this event.
Formally, a Byzantine leader detector (Ω) is defined with an output Ω-trust(p), designating process p to
be trusted as leader, and an input event Ω-complain(p) that receives a complaint about the performance
of leader process p. Its formal properties [81] ensure that eventually, every correct process trusts some
correct process; that when more than f correct processes that trust some process p complain about p,
then every correct process eventually trusts a different process than p. Moreover, a correct process q
does not trust a new leader unless at least one correct process has complained against the leader
which q trusted before, and that eventually no two correct processes trust different processes.
It is possible to lift the output from the Byzantine leader detector to an epoch-change primitive, which
outputs not only the identity of a leader but also an increasing epoch number. This abstraction divides
time into a series of epochs at every participating process, where epochs are identified by numbers.
The numbers of the epochs started by one particular process increase monotonically (but they do
not have to form a complete sequence). Moreover, the primitive also assigns a leader to every epoch,
such that any two correct processes in the same epoch receive the same leader. The mechanism for
processes to complain about the leader is the same as for Ω.
More precisely, Byzantine epoch-change (Ψ) outputs events of the form Ψ-start-epoch(e, p), which
indicate that epoch with number e and leader p starts; it also receives Ψ-complain(e, p) events similar
to Ω. Its formal properties appears in the literature [81].
When an epoch-change abstraction is initialized, it is assumed that a default epoch with number 0
and a leader p0 has been started at all correct processes. All “practical” BFT systems in the eventual-
synchrony model starting from PBFT [96] implicitly contain an implementation of Byzantine epoch-
change; this notion was described explicitly by Cachin et al. [81, Chap. 5].

3.3 Modular protocol

In this section we discuss the modular execution of replicated non-deterministic programs. Here
the program is given as a black box, it cannot be changed, and the BFT system cannot access its
internal data structures. Very informally speaking, if some processes arrive at a different output during
execution than “most” others, then the output of the disagreeing processes is discarded. Instead they
should “adopt” the output of the others, e.g., by asking them for the agreed-on state and response.
When the outputs of “too many” processes disagree, the correct output may not be clear; the operation
is then ignored (or, as an optimization, quarantined as non-deterministic) and the state rolled back.
In this modular solution any application can be replicated without change; the application developers
may not even be aware of potential non-determinism. On the other hand, the modular protocol

SUPERCLOUD D3.2 Page 14 of 182

D3.2 - Specification of security enablers for data management

requires that most operations are deterministic and produce almost always the same outputs at all
processes; it would not work for replicating probabilistic functions.
More precisely, a non-deterministic state machine may output different states and responses for the
same operation, which are due to probabilistic choices or other non-repeatable effects. Hence we
assume that execute is a relation and not a deterministic function, that is, repeated invocations of the
same operation with the same input may yield different outputs and responses. This means that the
standard approach of state-machine replication based directly on atomic broadcast fails.
There are two ways for modular black-box replication of non-deterministic applications in a BFT
system:

Order-then-execute: Applying the SMR principle directly, the operations are first ordered by atomic
broadcast. Whenever a process delivers an operation according to the total order, it executes the
operation. It does not output the response, however, before checking with enough others that
they all arrive at the same outputs. To this end, every process atomically broadcasts its outputs
(or a hash of the outputs) and waits for receiving a given number (up to n− f) of outputs from
distinct processes. Then the process applies a fixed decision function to the atomically delivered
outputs, and it determines the successor state and the response.

This approach ensures consistency due to its conceptual simplicity but is not very efficient
in typical situations, where atomic broadcast forms the bottleneck. In particular, in atomic
broadcast with external validity, a process can only participate in the ordering of the next
operation when it has determined the outputs of the previous one. This eliminates potential
gains from pipelining and increases the overall latency.

Execute-then-order: Here the steps are inverted and the operations are executed speculatively be-
fore the system commits their order. As in other practical protocols, this solution uses the
heuristic assumption that there is a designated leader which is usually correct. Thus, every
process sends its operations to the leader and the leader orders them. It asks all processes to
execute the operations speculatively in this order, the processes send (a hash of) their outputs
to the leader, and the leader determines a unique output. Note that this value is still specula-
tive because the leader might fail or there might be multiple leaders acting concurrently. The
leader then tries to obtain a confirmation of its speculative order by atomically broadcasting the
chosen output. Once every process obtains this output from atomic broadcast, it commits the
speculative state and outputs the response.

In rare cases when a leader is replaced, some processes may have speculated wrongly and executed
other operations than those determined through atomic broadcast. Due to non-determinism in
the execution a process may also have obtained a different speculative state and response than
what the leader has obtained and broadcast. This implies that the leader must either send the
state (or state delta) and the response resulting from the operation though atomic broadcast, or
that a process has a different way to recover the decided state from other processes.

In the following we describe Protocol Sieve, which adopts the approach of execute-then-order with
speculative execution.

Protocol Sieve. Protocol Sieve runs a Byzantine atomic broadcast with weak external validity
(abv) and uses a sieve-leader to coordinate the execution of non-deterministic operations. The leader
is elected through a Byzantine epoch-change abstraction, as defined in Section 3.2.3, which outputs
epoch/leader tuples with monotonically increasing epoch numbers. For the Sieve protocol these epochs
are called configurations, and Sieve progresses through a series of them, each with its own sieve-leader.
The processes send all operations to the service through the leader of the current configuration,
using an invoke message. The current leader then initiates that all processes execute the operation
speculatively; subsequently the processes agree on an output from the operation and thereby commit

SUPERCLOUD D3.2 Page 15 of 182

D3.2 - Specification of security enablers for data management

the operation. As described here, Sieve executes one operation at a time, although it is possible to
greatly increase the throughput using the standard method of batching multiple operations together.
The leader sends an execute message to all processes with the operation o. In turn, every process
executes o speculatively on its current state s, obtains the speculative next state t and the speculative
response r, signs those values, and sends a hash and the signature back to the leader in an approve
message.
The leader receives 2f + 1 approve messages from distinct processes. If the leader observes at least
f + 1 approvals for the same speculative output, then it confirms the operation and proceeds to
committing and executing it. Otherwise, the leader concludes that the operation is aborted because of
diverging outputs. There must be f + 1 equal outputs for confirming o, in order to ensure that every
process will eventually learn the correct output, see below.
The leader then abv-broadcasts an order message, containing the operation, the speculative output
(t, r) for a confirmed operation or an indication that it aborted, and for validation the set of approve
messages that justify the decision whether to confirm or abort. During atomic broadcast, the external
validity check by the processes will verify this justification.
As soon as an order message with operation o is abv-delivered to a process in Sieve, o is committed.
If o is confirmed, the process adopts the output decided by the leader. Note this may differ from the
speculative output computed by the process. Protocol Sieve therefore includes the next state t and
the response r in the order message. In practice, however, one might not send t, but state deltas, or
even only the hash value of t while relying on a different way to recover the confirmed state. Indeed,
since f + 1 processes have approved any confirmed output, a process with a wrong speculative output
is sure to reach at least one of them for obtaining the confirmed output later.
In case the leader abv-broadcasted an order message with the decision to abort the current operation
because of the diverging outputs (i.e., no f + 1 identical hashes in 2f + 1 approve messages), the
process simply ignores the current request and speculative state. As an optimization, processes may
quarantine the current request and flag it as non-deterministic.
As described so far, the protocol is open to a denial-of-service attack by multiple faulty processes
disguising as sieve-leaders and executing different operations. Note that the epoch-change abstraction,
in periods of asynchrony, will not ensure that any two correct processes agree on the leader, as some
processes might skip configurations. Therefore Sieve also orders the configuration and leader changes
using consensus (with the abv primitive).
To this effect, whenever a process receives a start-epoch event with itself as leader, the process abv-
broadcasts a new-sieve-config message, announcing itself as the leader. The validation predicate
for broadcast verifies that the leader announcement concerns a configuration that is not newer than
the most recently started epoch at the validating process, and that the process itself endorses the same
next leader. Every process then starts the new configuration when the new-sieve-config message is
abv-delivered. If there was a speculatively executed operation, it is aborted and its output discarded.
The design of Sieve prevents uncoordinated speculative request execution, which may cause contention
among requests from different self-proclaimed leaders and can prevent liveness easily. Naturally, a
faulty leader may also violate liveness, but this is not different from other leader-based BFT protocols.
The details of Protocol Sieve are shown in Algorithms 1–2. The pseudocode assumes that all point-
to-point messages among correct processes are authenticated, cannot be forged or altered, and respect
FIFO order. The invoked operations are unique across all processes and self denotes the identifier of
the executing process. Not shown in the pseudocode is a periodic concurrent check for leader progress.
The process determines the age of every o ∈ I since it has been invoked and added to I; if there are
“old” operations in I, then the process invokes Ψ-complain(leader).
The following two optimizations for Sieve are described in the full version [85]: First, when run in
practice, every process directly executes operations and does not include the potentially large state in
order messages. If a rollback operation exists to complement execute, a process that has computed a
diverging state can roll the operation back and obtain the state from other processes. Second, when the
well-known PBFT protocol [96] implements abv-broadcast, then the leader information and Byzantine

SUPERCLOUD D3.2 Page 16 of 182

D3.2 - Specification of security enablers for data management

Algorithm 1 Protocol Sieve

State
I: set of invoked operations at every process B[p], for p ∈ CP: buffer at sieve-leader
config: sieve-config number leader: sieve-leader, initially p0
next-epoch: next sieve-config, initially ⊥ next-leader: next sieve-leader, initially ⊥
s: current state, initially s0 cur: current operation, initially ⊥
t: speculative state, initially ⊥ r: speculative response, initially ⊥

upon invocation rsm-execute(o) do
I ← I ∪ {o}
send msg. [invoke, config, o] over point-to-point link to leader

upon recv. msg. [invoke, c, o] from p such that B[p] = ⊥ and c = config and leader = self do
B[p]← o // buffer only the latest operation from each process

upon exists p that B[p] 6= ⊥ such that cur = ⊥ and leader = self do
cur← B[p]
send [execute, config, cur] over point-to-point links to all processes

upon recv. msg. [execute, c, o] from p such that p = leader and c = config and t = ⊥ do
(t, r)← execute(s, o)
σ ← signself(speculate‖config‖hash(t‖r))
send msg. [approve, config, o,hash(t‖r),σ] to leader

upon recv. 2f + 1 msgs. [approve, cp, op,hp,σp], each from a distinct process p, such that
cp = config and opp = cur and verifyp(σp, speculate‖config‖hp) and leader = self do

if there is a set E of f + 1 received approve msgs. whose hp value is equal to hash(t‖r) then
abv-broadcast([order,confirm, config, cur, t, r, E])

else
let U be the set of 2f + 1 received approve msgs.
abv-broadcast([order,abort, config, cur,⊥,⊥,U])

upon abv-deliver(p, [order, decision, c, o, tc, rc, ·]) such that c = config do // commit o
if leader = self then

B[p]← ⊥
cur← ⊥

if o ∈ I then
I ← I \ {o}

if decision = confirm then
s← tc // adopt the agreed-on state and response, needed if (tc, rc) 6= (t, r)
rsm-output(o, s, rc)

t← ⊥

upon Ψ-start-epoch(e, p) do
(next-epoch, next-leader)← (e, p)
if p = self ∧ e > config then

abv-broadcast([new-sieve-config, e, self])

upon abv-deliver(p, [new-sieve-config, c, p]) do
(config, leader)← (c, p)
t← ⊥

SUPERCLOUD D3.2 Page 17 of 182

D3.2 - Specification of security enablers for data management

Algorithm 2 Validation predicate V () for Byzantine atomic broadcast used inside Algorithm Sieve

upon invocation V (m) do
if m = [order,decision, c, o,M] then

if M is a set of f + 1 msgs. of the form [approve, cp, op,hp,σp] such that
cp = config and op = o and verifyp(σp, speculate‖cp‖hp) = true and
all hp values in M are equal then

return true
else if m = [order,abort, c, o,M] then

if M is a set of 2f + 1 msgs. of the form [approve, cp, op,hp,σp] such that
cp = config and op = o and verifyp(σp, speculate‖cp‖hp) = true and
no f + 1 of the hp values in M are equal then

return true
else if m = [new-sieve-config, c, p] then

if c ≤ next-epoch and p = next-leader then
return true

return false

epoch-change mechanism can be directly obtained from PBFT. This simplifies the description of Sieve
but breaks modularity.

Theorem 1. Protocol Sieve implements a replicated state machine allowing a non-deterministic func-
tionality execute(), except that demonstrably non-deterministic operations may be filtered out and not
executed.

To see why this holds, we consider first the agreement condition of a replicated state machine: this
follows directly from the protocol and from the abv primitive. Every rsm-output event is immediately
preceded by an abv-delivered order message, which is the same for all correct processes due to
agreement of abv. Since all correct processes react to it deterministically, their outputs are the same.
For the correctness property, note that the outputs (si, ri) (state and response) resulting from an
operation o must have been confirmed by the protocol and therefore the values were included in an
approve message from at least one correct process. This process computed the values such that they
satisfy (si, ri) = execute(si−1, o) according to the protocol for handling an execute message. On the
other hand, no correct process outputs anything for committed operations that were aborted, this is
permitted by the exception in the theorem statement. Moreover, only operations are filtered out for
which distinct correct processes computed diverging outputs, as ensured by the sieve-leader when it
determines whether the operation is confirmed or aborted. In order to abort, no set of f + 1 processes
must have computed the same outputs among the 2f + 1 processes sending the approve messages.
Hence, at least two among every set of f + 1 correct processes arrived at diverging outputs.
Termination is only required for deterministic operations, they must terminate despite faulty processes
that approve wrong outputs. The protocol ensures this through the condition that at least f+1 among
the 2f + 1 approve messages received by the sieve-leader are equal. The faulty processes, of which
there are at most f , cannot cause an abort through this. But every order message is eventually
abv-delivered and every confirmed operation is eventually executed and generates an output.

Discussion. Non-deterministic operations have not often been discussed in the context of BFT sys-
tems. The literature commonly assumes that deterministic behavior can be imposed on an application
or postulates to change the application code for isolating non-determinism. In practice, however, it is
often not possible.
Liskov [218] sketches an approach to deal with non-determinism in PBFT which is similar to Sieve in
the sense that it treats the application code modularly and uses execute-then-order. This proposal is
restricted to the particular structure of PBFT, however, and does not consider the notion of external
validity for abv broadcast.

SUPERCLOUD D3.2 Page 18 of 182

D3.2 - Specification of security enablers for data management

For applications on multi-core servers, the Eve system [192] also executes operation groups specula-
tively across processes and detects diverging states during a subsequent verification stage. In case
of divergence, the processes must roll back the operations. The approach taken in Eve resembles
that of Sieve, but there are notable differences. Specifically, the primary application of Eve continues
to assume deterministic operations, and non-determinism may only result from concurrency during
parallel execution of requests. Furthermore, this work uses a particular agreement protocol based on
PBFT and not a generic abv broadcast primitive.
It should be noted that Sieve not only works with Byzantine atomic broadcast in the model of eventual
synchrony, but can equally well be run over randomized Byzantine consensus [83, 236].

3.4 Master-slave protocol

By adopting the master-slave model one can support a broader range of non-deterministic application
behavior compared to the modular protocol. This design generally requires source-code access and
modifications to the program implementing the functionality. In a master-slave protocol for non-deter-
ministic execution, one process is designated as master. The master executes every operation first and
records all non-deterministic choices. All other processes act as slaves and follow the same choices. To
cope with a potentially Byzantine master, the slaves must be given means to verify that the choices
made by the master are plausible. The master-slave solution presented here follows primary-backup
replication [77], which is well-known to handle non-deterministic operations. For instance, if the
application accesses a pseudorandom number generator, only the master obtains the random bits from
the generator and the slaves adopt the bits chosen by the master. This protocol does not work for
functionalities involving cryptography, however, where master-slave replication typically falls short of
achieving the desired goals. Instead a cryptographically secure protocol should be used; they are the
subject of Section 3.5.

Non-deterministic execution with evidence. As introduced in Section 3.3, the execute oper-
ation of a non-deterministic state machine is a relation. Different output values are possible and
represent acceptable outcomes. We augment the output of an operation execution by adding evidence
for justifying the resulting state and response. The slave processes may then replay the choices of the
master and accept its output.
More formally, we now extend execute to nondet-execute as follows:

nondet-execute(s, o) → (s′, r, ρ).

Its parameters s, o, s′, and r are the same as for execute; additionally, the function also outputs
evidence ρ. Evidence enables the slave processes to execute the operation by themselves and obtain
the same output as the master, or perhaps only to validate the output generated by another execution.
For this task there is a function

verify-execution(s, o, s′, r, ρ) → {false,true}

that outputs true if and only if the set of possible outputs from nondet-execute(s, o) contains (s′, r, ρ).
For completeness we require that for every s and o, when (s′, r, ρ) ← nondet-execute(s, o), it always
holds verify-execute(s, o, s′, r, ρ) = true.
As a basic verification method, a slave could rerun the computation of the master. Extensions to use
cryptographic verifiable computation [310] are possible. Note that we consider randomized algorithms
to be a special case of non-deterministic ones. The evidence for executing a randomized algorithm
might simply consist of the random coin flips made during the execution.

Replication protocol. Implementing a replicated state machine with non-deterministic operations
using master-slave replication does not require an extra round of messages to be exchanged, as in

SUPERCLOUD D3.2 Page 19 of 182

D3.2 - Specification of security enablers for data management

Protocol Sieve. It suffices that the master is chosen by a Byzantine epoch-change abstraction and that
the master broadcasts every operation together with the corresponding evidence.
More precisely, the processes operate on top of an underlying broadcast primitive abv and a Byzantine
epoch-change abstraction Ψ. Whenever a process receives a start-epoch event with itself as leader
from Ψ, the process considers itself to be the master for the epoch and abv-broadcasts a message that
announces itself as the master for the epoch. The epochs evolve analogously to the configurations
in Sieve, with the same mechanism to approve changes of the master in the validation predicate of
atomic broadcast. Similarly, non-master processes send their operations to the master of the current
epoch for ordering and execution.
For every invoked operation o, the master computes (s′, r, ρ)← nondet-execute(s, o) and abv-broadcasts
an order message containing the current epoch c and parameters o, s′, r, and ρ. The validation pred-
icate of atomic broadcast for order messages verifies that the message concerns the current epoch
and that verify-execution(s, o, s′, r, ρ) = true using the current state s of the process. Once an order
message is abv-delivered, a process adopts the response and output state from the message as its own.

Discussion. The master-slave protocol is inspired by primary-backup replication [77], and for the
concrete scenario of a BFT system, it was first described by Castro, Rodrigues, and Liskov in
BASE [97]. The protocol of BASE addresses only the particular context of PBFT, however, and
not a generic atomic broadcast primitive. As mentioned before, the master-slave protocol requires
changes to the application for extracting the evidence that will convince the slave processes that
choices made by the master are valid.

3.5 Cryptographically secure protocols

Security functions implemented with cryptography are more important today than ever. Replicating
an application that involves a cryptographic secret, however, requires a careful consideration of the
attack model. If the BFT system should tolerate that f processes become faulty in arbitrary ways, it
must be assumed that their secrets leak to the adversary against whom the cryptographic scheme is
employed.
Service-level secret keys must be protected and should never leak to an individual process. Two solu-
tions have been explored to address this issue. One could delegate this responsibility to a third party,
such as a centralized service or a secure hardware module at every process. However, this contradicts
the main motivation behind replication: to eliminate central control points. Alternatively one may
use distributed cryptography [131], share the keys among the processes so that no coalition of up to
f among them learns anything, and perform the cryptographic operations under distributed control.
This model was pioneered by Reiter and Birman [269] and exploited, for instance, by SINTRA [80, 84]
or COCA [322].
In this section we introduce a novel protocol, called Mastercrypt, for integrating non-deterministic
cryptographic operations in a BFT system, based on the master-slave paradigm and using verifiable
random functions to generate pseudorandom bits. This randomness is unpredictable and cannot be
biased by a Byzantine process. In the full version [85] we furthermore review a protocol based on
the well-known idea of using distributed cryptography, as discussed above. Both schemes adopt the
master-slave replication protocol from the previous section.

Randomness from verifiable random functions. A verifiable random function (VRF) [234]
resembles a pseudorandom function but additionally permits anyone to verify non-interactively that
the choice of random bits occurred correctly. The function therefore guarantees correctness for its
output without disclosing anything about the secret seed, in a way similar to non-interactive zero-
knowledge proofs of correctness.
Efficient implementations of VRFs have not been easy to find, but the literature nowadays contains
a number of reasonable constructions under broadly accepted hardness assumptions [226, 183]. In

SUPERCLOUD D3.2 Page 20 of 182

D3.2 - Specification of security enablers for data management

practice, when adopting the random-oracle model, VRFs can immediately be obtained from unique
signatures such as ordinary RSA signatures [226].

Protocol Mastercrypt: Replication with cryptographic randomness from a VRF. With
master-slave replication, cryptographically strong randomness secure against faulty non-leader pro-
cesses can be obtained from a VRF as follows. Initially every process generates a VRF-seed and
a verification key. Then it passes the verification key to a trusted entity, which distributes the n
verification keys to all processes consistently, ensuring that all correct processes use the same list of
verification keys. At every place where the application needs to generate (pseudo-)randomness, the
VRF is used by the master to produce the random bits and all processes verify that the bits are unique.
Details of this protocol can be found in the full version [85].

3.6 Conclusion

This chapter has introduced a distinction between three models for dealing with non-deterministic
operations in BFT replication: modular where the application is a black box; master-slave that needs
internal access to the application; and cryptographically secure handling of non-deterministic ran-
domness generation. In the past, dedicated BFT replication systems have often argued for using the
master-slave model, but we have learned in the context of distributed applications that changes of
the code and understanding an application’s logic can be difficult. Hence, our novel Protocol Sieve
provides a modular solution that does not require any manual intervention. For a BFT-based state-
machine replication platform, Sieve can simply be run without incurring large overhead as a defense
against non-determinism, which may be hidden in smart contracts.

SUPERCLOUD D3.2 Page 21 of 182

D3.2 - Specification of security enablers for data management

Chapter 4 XFT: Practical Fault Tolerance Beyond Crashes

Despite years of intensive research, Byzantine fault-tolerant (BFT) systems have not yet been adopted
in practice. This is due to additional cost of BFT in terms of resources, protocol complexity and
performance, compared with crash fault-tolerance (CFT). This overhead of BFT comes from the
assumption of a powerful adversary that can fully control not only the Byzantine faulty machines,
but at the same time also the message delivery schedule across the entire network, effectively inducing
communication asynchrony and partitioning otherwise correct machines at will. To many practitioners,
however, such strong attacks appear irrelevant.
In this chapter, we introduce cross fault tolerance or XFT, a novel approach to building reliable and
secure distributed systems and apply it to the classical state-machine replication (SMR) problem. In
short, an XFT SMR protocol provides the reliability guarantees of widely used asynchronous CFT
SMR protocols such as Paxos and Raft, but also tolerates Byzantine faults in combination with network
asynchrony, as long as a majority of replicas are correct and communicate synchronously. This allows
the development of XFT systems at the price of CFT (already paid for in practice), yet with strictly
stronger resilience than CFT — sometimes even stronger than BFT itself.
As a showcase for XFT, we present XPaxos, the first XFT SMR protocol, and deploy it in a geo-
replicated setting. Although it offers much stronger resilience than CFT SMR at no extra resource
cost, the performance of XPaxos matches that of the state-of-the-art CFT protocols.

4.1 Background

Tolerance to any kind of service disruption, whether caused by a simple hardware fault or by a large-
scale disaster, is key for the survival of modern distributed systems. Cloud-scale applications must be
inherently resilient, as any outage has direct implications on the business behind them [203].
Modern production systems (e.g., [117, 87]) increase the number of nines of reliability1 by employing
sophisticated distributed protocols that tolerate crash machine faults as well as network faults, such
as network partitions or asynchrony, which reflect the inability of otherwise correct machines to com-
municate among each other in a timely manner. At the heart of these systems typically lies a crash
fault-tolerant (CFT) consensus-based state-machine replication (SMR) primitive [278].
These systems cannot deal with non-crash (or Byzantine [212]) faults, which include not only malicious,
adversarial behavior, but also arise from errors in the hardware, stale or corrupted data from storage
systems, memory errors caused by physical effects, bugs in software, hardware faults due to ever smaller
circuits, and human mistakes that cause state corruptions and data loss. However, such problems do
occur in practice — each of these faults has a public record of taking down major production systems
and corrupting their service [118, 47].
Despite more than 30 years of intensive research since the seminal work of Lamport, Shostak and
Pease [212], no practical answer to tolerating non-crash faults has emerged so far. In particular, asyn-
chronous Byzantine fault-tolerance (BFT), which promises to resolve this problem [96], has not lived
up to this expectation, largely because of its extra cost compared with CFT. Namely, asynchronous
(that is, “eventually synchronous” [141]) BFT SMR must use at least 3t + 1 replicas to tolerate t

1As an illustration, five nines reliability means that a system is up and correctly running at least 99.999% of the time.
In other words, malfunction is limited to one hour every 10 years on average.

SUPERCLOUD D3.2 Page 22 of 182

D3.2 - Specification of security enablers for data management

non-crash faults [74] instead of only 2t+ 1 replicas for CFT, as used by Paxos [210] or Raft [251], for
example.
The overhead of asynchronous BFT is due to the extraordinary power given to the adversary, which
may control both the Byzantine faulty machines and the entire network in a coordinated way. In
particular, the classical BFT adversary can partition any number of otherwise correct machines at
will. In line with observations by practitioners [205], we claim that this adversary model is actually
too strong for the phenomena observed in deployed systems. For instance, accidental non-crash faults
usually do not lead to network partitions. Even malicious non-crash faults rarely cause the whole
network to break down in wide-area networks and geo-replicated systems. The proverbial all-powerful
attacker as a common source behind those faults is a popular and powerful simplification used for the
design phase, but it has not seen equivalent proliferation in practice.
In this chapter, we introduce XFT (short for cross fault tolerance), a novel approach to building
efficient resilient distributed systems that tolerate both non-crash (Byzantine) faults and network
faults (asynchrony). In short, XFT allows building resilient systems that

• do not use extra resources (replicas) compared with asynchronous CFT;

• preserve all reliability guarantees of asynchronous CFT (that is, in the absence of Byzantine
faults); and

• provide correct service (i.e., safety and liveness [34]) even when Byzantine faults do occur, as long
as a majority of the replicas are correct and can communicate with each other synchronously
(that is, when a minority of the replicas are Byzantine-faulty or partitioned because of a network
fault).

In particular, we envision XFT for wide-area or geo-replicated systems [117], as well as for any other
deployment where an adversary cannot easily coordinate enough network partitions and Byzantine-
faulty machine actions at the same time.
As a showcase for XFT, we present XPaxos, the first state-machine replication protocol in the XFT
model. XPaxos tolerates faults beyond crashes in an efficient and practical way, achieving much greater
coverage of realistic failure scenarios than the state-of-the-art CFT SMR protocols, such as Paxos or
Raft. This comes without resource overhead as XPaxos uses 2t+1 replicas. To validate the performance
of XPaxos, we deployed it in a geo-replicated setting across Amazon EC2 datacenters worldwide. In
particular, we integrated XPaxos within Apache ZooKeeper, a prominent and widely used coordination
service for cloud systems [181]. Our evaluation on EC2 shows that XPaxos performs almost as well in
terms of throughput and latency as a WAN-optimized variant of Paxos, and significantly better than
the best available BFT protocols. In our evaluation, XPaxos even outperforms the native CFT SMR
protocol built into ZooKeeper [189].
Finally, and perhaps surprisingly, we show that XFT can offer strictly stronger reliability guarantees
than state-of-the-art BFT, for instance under the assumption that machine faults and network faults
occur as independent and identically distributed random variables, for certain probabilities. To this
end, we calculate the number of nines of consistency (system safety) and availability (system liveness) of
resource-optimal CFT, BFT and XFT (e.g., XPaxos) protocols. Whereas XFT always provides strictly
stronger consistency and availability guarantees than CFT and always strictly stronger availability
guarantees than BFT, our reliability analysis shows that, in some cases, XFT also provides strictly
stronger consistency guarantees than BFT.
The remainder of this chapter is organized as follows. In Section 4.2, we define the system model,
which is then followed by the definition of the XFT model in Section 4.3. In Section 4.4 and Section 4.5,
we present XPaxos and its evaluation in the geo-replicated context, respectively. Section 4.6 provides
simplified reliability analysis comparing XFT with CFT and BFT. We overview related work and
conclude in Section 4.7.

SUPERCLOUD D3.2 Page 23 of 182

D3.2 - Specification of security enablers for data management

4.2 System model

Machines. We consider a message-passing distributed system containing a set Π of n = |Π|machines ,
also called replicas . Additionally, there is a separate set C of client machines.
Clients and replicas may suffer from Byzantine faults: we distinguish between crash faults, where a
machine simply stops all computation and communication, and non-crash faults, where a machine acts
arbitrarily, but cannot break cryptographic primitives we use (cryptographic hashes, MACs, message
digests and digital signatures). A machine that is not faulty is called correct. We say a machine is
benign if the machine is correct or crash-faulty. We further denote the number of replica faults at a
given moment s by

• tc(s): the number of crash-faulty replicas, and

• tnc(s): the number of non-crash-faulty replicas.

Network. Each pair of replicas is connected with reliable point-to-point bi-directional communication
channels. In addition, each client can communicate with any replica.
The system can be asynchronous in the sense that machines may not be able to exchange messages
and obtain responses to their requests in time. In other words, network faults are possible; we define
a network fault as the inability of some correct replicas to communicate with each other in a timely
manner, that is, when a message exchanged between two correct replicas cannot be delivered and
processed within delay ∆, known to all replicas. Note that ∆ is a deployment specific parameter: we
discuss practical choices for ∆ in the context of our geo-replicated setting in Section 6.4. Finally, we
assume an eventually synchronous system in which, eventually, network faults do not occur [141].
Note that we model an excessive processing delay as a network problem and not as an issue related to
a machine fault. This choice is made consciously, rooted in the experience that for the general class of
protocols considered in this work, a long local processing time is never an issue on correct machines
compared with network delays.
To help quantify the number of network faults, we first give the definition of partitioned replica.

Definition 1 (Partitioned replica). Replica p is partitioned if p is not in the largest subset of replicas,
in which every pair of replicas can communicate among each other within delay ∆.

If there is more than one subset with the maximum size, only one of them is recognized as the largest
subset. For example in Figure 4.1, the number of partitioned replicas is 3, counting either the group
of p1, p4 and p5 or that of p2, p3 and p5. The number of partitioned replicas can be as much as n− 1,
which means that no two replicas can communicate with each other within delay ∆. We say replica p
is synchronous if p is not partitioned. We now quantify network faults at a given moment s as

• tp(s): the number of correct, but partitioned replicas.

Problem. We focus on the deterministic state-machine replication problem (SMR) [278]. In short,
in SMR clients invoke requests, which are then committed by replicas. SMR ensures

• safety, or consistency, by (a) enforcing total order across committed client’s requests across all
correct replicas; and by (b) enforcing validity, i.e., that a correct replica commits a request only
if it was previously invoked by a client;

• liveness, or availability, by eventually committing a request by a correct client at all correct
replicas and returning an application-level reply to the client.

4.3 The XFT model

This section introduces the XFT model and relates it to the established crash-fault tolerance (CFT)
and Byzantine-fault tolerance (BFT) models.

SUPERCLOUD D3.2 Page 24 of 182

D3.2 - Specification of security enablers for data management

p2

p3

p1

p4

p5

☎ �

☎ �

☎ �

Figure 4.1: An illustration of partitioned replicas: {p1, p4, p5} or {p2, p3, p5} are partitioned based on
Definition 1.

4.3.1 XFT in a nutshell

Maximum number of each type of replica faults

non-crash faults crash faults partitioned replicas

Asynchronous CFT (e.g., Paxos [211])
consistency 0 n n− 1

availability 0 bn−1
2 c (combined)

Asynchronous BFT (e.g., PBFT [96])
consistency bn−1

3 c n n− 1

availability bn−1
3 c (combined)

(Authenticated) Synchronous BFT (e.g., [212])
consistency n− 1 n 0

availability n− 1 (combined) 0

XFT (e.g., XPaxos)
consistency

0 n n− 1

bn−1
2 c (combined)

availability bn−1
2 c (combined)

Table 4.1: The maximum numbers of each type of fault tolerated by representative SMR protocols.
Note that XFT provides consistency in two modes, depending on the occurrence of non-crash faults.

Classical CFT and BFT explicitly model machine faults only. These are then combined with an
orthogonal network fault model, either the synchronous model (where network faults in our sense
are ruled out), or the asynchronous model (which includes any number of network faults). Hence,
previous work can be classified into four categories: synchronous CFT [120, 278], asynchronous CFT
[278, 210, 249], synchronous BFT [212, 135, 64], and asynchronous BFT [96, 44].
XFT, in contrast, redefines the boundaries between machine and network fault dimensions: XFT
allows the design of reliable protocols that tolerate crash machine faults regardless of the number of
network faults and that, at the same time, tolerate non-crash machine faults when the number of
machines that are either faulty or partitioned is within a threshold.
To formalize XFT, we first define anarchy, a very severe system condition with actual non-crash
machine (replica) faults and plenty of faults of different kinds, as follows:

Definition 2 (Anarchy). The system is in anarchy at a given moment s iff tnc(s) > 0 and tc(s) +
tnc(s) + tp(s) > t.

Here, t is the threshold of replica faults, such that t ≤ bn−1
2 c. In other words, in anarchy, some replica

is non-crash-faulty, and there is no correct and synchronous majority of replicas. Armed with the
definition of anarchy, we can define XFT protocols for an arbitrary distributed computing problem in
function of its safety property [34].

SUPERCLOUD D3.2 Page 25 of 182

D3.2 - Specification of security enablers for data management

Definition 3 (XFT protocol). Protocol P is an XFT protocol if P satisfies safety in all executions in
which the system is never in anarchy.

Liveness of an XFT protocol will typically depend on a problem and implementation. For instance, for
deterministic SMR we consider, our XPaxos protocol eventually satisfies liveness, provided a majority
of replicas is correct and synchronous. This can be shown optimal.

4.3.2 XFT vs. CFT/BFT

Table 4.1 illustrates differences between XFT and CFT/BFT in terms of their consistency and avail-
ability guarantees for SMR.
State-of-the-art asynchronous CFT protocols [211, 251] guarantee consistency despite any number of
crash-faulty replicas and any number of partitioned replicas. They also guarantee availability whenever
a majority of replicas (t ≤ bn−1

2 c) are correct and synchronous. As soon as a single machine is non-
crash-faulty, CFT protocols guarantee neither consistency nor availability.
Optimal asynchronous BFT protocols [96, 197, 44] guarantee consistency despite any number of crash-
faulty or partitioned replicas, with at most t = bn−1

3 c non-crash-faulty replicas. They also guarantee
availability with up to bn−1

3 c combined faults, i.e., whenever more than two-thirds of replicas are
correct and not partitioned. Note that BFT availability might be weaker than that of CFT in the
absence of non-crash faults — unlike CFT, BFT does not guarantee availability when the sum of
crash-faulty and partitioned replicas is in the range [n/3,n/2).
Synchronous BFT protocols (e.g., [212]) do not consider the existence of correct, but partitioned
replicas. This makes for a very strong assumption — and helps synchronous BFT protocols that use
digital signatures for message authentication (so called authenticated protocols) to tolerate up to n−1
non-crash-faulty replicas.
In contrast, XFT protocols with optimal resilience, such as our XPaxos, guarantee consistency in two
modes: (i) without non-crash faults, despite any number of crash-faulty and partitioned replicas (i.e.,
just like CFT), and (ii) with non-crash faults, whenever a majority of replicas are correct and not
partitioned, i.e., provided the sum of all kinds of faults (machine or network faults) does not exceed
bn−1

2 c. Similarly, it also guarantees availability whenever a majority of replicas are correct and not
partitioned.
It may be tempting to view XFT as some sort of a combination of the asynchronous CFT and syn-
chronous BFT models. However, this is misleading, as even with actual non-crash faults, XFT is
incomparable to authenticated synchronous BFT. Specifically, authenticated synchronous BFT pro-
tocols, such as the seminal Byzantine Generals protocol [212], may violate consistency with a single
partitioned replica. For instance, with n = 5 replicas and an execution in which three replicas are
correct and synchronous, one replica is correct but partitioned and one replica is non-crash-faulty, the
XFT model mandates that the consistency be preserved, whereas the Byzantine Generals protocol
may violate consistency.2

Furthermore, from Table 4.1, it is evident that XFT offers strictly stronger guarantees than asyn-
chronous CFT, for both availability and consistency. XFT also offers strictly stronger availability
guarantees than asynchronous BFT. Finally, the consistency guarantees of XFT are incomparable to
those of asynchronous BFT. On the one hand, outside anarchy, XFT is consistent with the number of
non-crash faults in the range [n/3,n/2), whereas asynchronous BFT is not. On the other hand, unlike
XFT, asynchronous BFT is consistent in anarchy provided the number of non-crash faults is less than
n/3. We discuss these points further in Section 4.6, where we also quantify the reliability comparison
between XFT and asynchronous CFT/BFT assuming the special case of independent faults.

2XFT is not stronger than authenticated synchronous BFT either, as the latter tolerates more machine faults in the
complete absence of network faults.

SUPERCLOUD D3.2 Page 26 of 182

D3.2 - Specification of security enablers for data management

4.3.3 Where to use XFT?

The intuition behind XFT starts from the assumption that “extremely bad” system conditions, such
as anarchy, are very rare, and that providing consistency guarantees in anarchy might not be worth
paying the asynchronous BFT premium.
In practice, this assumption is plausible in many deployments. We envision XFT for use cases in
which an adversary cannot easily coordinate enough network partitions and non-crash-faulty machine
actions at the same time. Some interesting candidate use cases include:

• Tolerating “accidental” non-crash faults. In systems which are not susceptible to malicious
behavior and deliberate attacks, XFT can be used to protect against “accidental“ non-crash
faults, which can be assumed to be largely independent of network faults. In such cases, XFT
could be used to harden CFT systems without considerable overhead of BFT.

• Wide-area networks and geo-replicated systems. XFT may reveal useful even in cases where the
system is susceptible to malicious non-crash faults, as long as it may be difficult or expensive for
an adversary to coordinate an attack to compromise Byzantine machines and partition sufficiently
many replicas at the same time. Particularly interesting for XFT are WAN and geo-replicated
systems which often enjoy redundant communication paths and typically have a smaller surface
for network-level DoS attacks (e.g., no multicast storms and flooding).

• Blockchain. A special case of geo-replicated systems, interesting to XFT, are blockchain systems.
In a typical blockchain system, such as Bitcoin [243], participants may be financially motivated
to act maliciously, yet may lack the means and capabilities to compromise the communication
among (a large number of) correct participants. In this context, XFT is particularly interesting
for so-called permissioned blockchains, which are based on state-machine replication rather than
on Bitcoin-style proof-of-work [309].

4.4 XPaxos Protocol

In a nutshell, XPaxos consists of two main components:

• a common-case protocol, which replicates and totally orders requests across replicas; this has,
roughly speaking, the message pattern and complexity of communication among replicas of state-
of-the-art CFT protocols (e.g., Phase 2 of Paxos), hardened by the use of digital signatures;

• a novel view change protocol, in which the information is transferred from one view (system
configuration) to another in a decentralized, leaderless fashion.

XPaxos is orchestrated in a sequence of views [96]. The central idea in XPaxos is that, during common-
case operation in a given view, XPaxos synchronously replicates clients’ requests to only t+ 1 replicas,
which are the members of a synchronous group (out of n = 2t+1 replicas in total). Each view number
i uniquely determines the synchronous group, sgi, using a mapping known to all replicas. Every
synchronous group consists of one primary and t followers, which are jointly called active replicas.
Remaining t replicas in a given view are called passive replicas; optionally, passive replicas learn the
order from the active replicas using the lazy replication approach [206]. A view is not changed unless
there is a machine or network fault within the synchronous group.
In the common case (Section 4.4.1), the clients send digitally signed requests to the primary which are
then replicated across t+1 active replicas. These t+1 replicas digitally sign and locally log the proofs
for all replicated requests to their commit logs. Commit logs then serve as the basis for maintaining
consistency in view changes.
XPaxos view change (Section 4.4.2), reconfigures the entire synchronous group and not only the leader.
All t+1 active replicas from the new synchronous group sgi+1 try to transfer the state from preceding
views to view i + 1. This decentralized approach to view change is in sharp contrast to classical

SUPERCLOUD D3.2 Page 27 of 182

D3.2 - Specification of security enablers for data management

s
0

s
1

s
2

client

with MAC

with signature
1

2

3
2

REPLICATE 1

COMMIT 2

3 REPLY

(a) t = 1

s
0

s
1

s
2

s
3

client 1

2

REPLICATE 1

PREPARE 2
3

3 COMMIT

4 REPLY

4

4

4

3

s
4

with MAC

with signature

(b) t ≥ 2

Figure 4.2: XPaxos common-case message patterns for t = 1 and t ≥ 2 (here t = 2). Synchronous
group illustrated are (s0,s1) (when t = 1) and (s0,s1,s2) (when t = 2), respectively.

reconfiguration/view-change in CFT and BFT protocols (e.g., [210, 96]), in which only a single replica
(the primary) leads the view change and transfers the state from previous views. This difference is
crucial to maintaining consistency (i.e., linearizability) across XPaxos views in the presence of non-
crash faults (but in the absence of full anarchy), despite replicating only across t + 1 replicas in the
common case. XPaxos novel and decentralized view-change scheme guarantees that, even in presence
of non-crash faults, but outside anarchy, at least one correct replica from the new synchronous group
sgi+1 will be able to transfer the correct state from previous views, as it will be able to contact some
correct replicas from old synchronous groups.
Besides, we specially design a fault detection (FD) mechanism, which can help detect, outside anarchy,
non-crash faults that would leave the system in an inconsistent state in anarchy. The FD mechanism
serves to minimize the impact of long-lived non-crash faults in the system and help detect them before
they coincide with a sufficient number of crash faults and network faults to push the system into
anarchy.
The main idea behind the FD scheme of XPaxos is the following. In view change, a non-crash faulty
replica (of an old synchronous group) might omit to transfer its latest state to a correct replica in
the new synchronous group. This fault is dangerous, as it may violate consistency when the system
is in anarchy. However, such a fault can be detected using digital signatures from the commit log
of some correct replicas (from an old synchronous group), provided that such correct replicas can
synchronously communicate with correct replicas from the new synchronous group. In a sense, with
XPaxos FD, a critical non-crash machine fault must occur for the first time together with enough crash
or partitioned machines (i.e., in anarchy) to violate consistency.
In the following, we explain the core of XPaxos for the common-case (Sec. 4.4.1) and view-change
(Sec. 4.4.2) components. XPaxos correctness arguments are given in Sec. 4.4.3.

4.4.1 Common case

Figure 4.2 gives XPaxos common-case message patterns in the special case when t = 1 and in the
general case when t ≥ 2. XPaxos is specifically optimized for the case where t = 1, as in this case,

SUPERCLOUD D3.2 Page 28 of 182

D3.2 - Specification of security enablers for data management

there are only two active replicas in each view. The special case t = 1 is also very relevant in practice
(see e.g., Google Spanner [117]). In the following, we denote the digest of a message m by D(m),
whereas 〈m〉σp denotes a message that contains both D(m) signed by the private key of machine p
and m.

Tolerating a single fault. For t = 1 (see Fig. 4.2a), the XPaxos common case involves only 2
messages between 2 active replicas. Upon receiving a signed request req = 〈replicate, op, tsc, c〉σc
from client c (where op is the client’s operation and tsc is the clients’ timestamp), the primary (say
s0) increments the sequence number sn, signs sn along the digest of req and view number i in message
m0 = 〈commit,D(req), sn, i〉σs0 , stores 〈req,m0〉 into its prepare log (PrepareLogs0 [sn] = 〈req,m0〉)
(we say s0 prepares req), and sends the message 〈req,m0〉 to the follower, say s1.
On receiving 〈req,m0〉, the follower s1 verifies the client’s and primary’s signatures, and checks if
its local sequence number equals sn − 1. Then, the follower updates its local sequence number to
sn, executes the request producing reply R(req), and signs message m1; m1 is similar to m0 yet
also includes the client’s timestamp and the digest of the reply: m1 = 〈commit, 〈D(req), sn, i, req.tsc,
D(R(req))〉σs1 . The follower then saves the tuple 〈req,m0,m1〉 to its commit log (CommitLogs1 [sn] =
〈req,m0,m1〉) and sends m1 to the primary. The primary, on receiving a valid commit message from
the follower (with a matching entry in its prepare log) executes the request, compares the reply R(req)
to the follower’s digest contained in m1, and stores 〈req,m0,m1〉 in its commit log. Finally, it returns
an authenticated reply containing m1 to c, which commits the request if all digests and the follower’s
signature match.

General case. In case t ≥ 2, the common-case message pattern of XPaxos (see Fig. 4.2b) contains
an explicit prepare phase. More specifically, the primary (s0) assigns a sequence number sn to a
client’s signed replicate request req and forwards req to all other active replicas (i.e, the t followers)
together with the prep = 〈prepare,D(req), sn, i〉σs0 message. Each follower verifies the primary’s
and client’s signatures, checks if its local sequence number equals sn− 1, and logs 〈req, prep〉 into its
prepare log PrepareLog∗[sn]. Then, a follower updates its local sequence number, signs the digest of
the request, the view number and the sequence number, and forwards it to all active replicas within
a commit message. Upon receiving t signed commit messages — one from each follower — (with a
matching entry in the prepare log), an active replica logs prep and the t signed commit messages into
its commit log CommitLog∗[sn]. Finally, each active replica executes the request and sends the reply
to the client (followers may only send the digest of the reply). The client commits the request when
it receives matching reply messages from all t+ 1 active replicas.
In both cases (t = 1 and t ≥ 2), a client that timeouts without committing the requests, broadcasts
the request to all replicas. Active replicas then forward such request to the primary and trigger a
retransmission timer within which a correct active replica expects the client’s request to be committed.

4.4.2 View change

Intuition. The ordered requests in commit logs of correct replicas are the key to enforcing consistency
(total order) in XPaxos. To illustrate XPaxos view change, consider synchronous groups sgi and sgi+1

of views i and i + 1, respectively, each containing t + 1 replicas. Proofs of requests committed in sgi
might be logged by as few as a single correct replica in sgi. Nevertheless, XPaxos view change must
ensure that (outside anarchy) these proofs are transferred to the new view i + 1. To this end, we
had to depart from traditional view change techniques [96, 197, 113] where the entire view change is
led by a single replica, usually the primary of the new view. Namely, in XPaxos view-change, every
active replica in sgi+1 retrieves information about requests committed in preceding views. Intuitively,
at least one correct replica from sgi+1 will contact (at least one) correct replica from sgi and transfer
the latest correct commit log to the new view i+ 1.
In the following, we first describe how we choose active replicas for each view. Then, we explain how
view changes are initiated, and, finally, how view changes are performed.

SUPERCLOUD D3.2 Page 29 of 182

D3.2 - Specification of security enablers for data management

Synchronous Groups
(i ∈ N0)

sgi sgi+1 sgi+2

Active replicas
Primary s0 s0 s1
Follower s1 s2 s2

Passive replica s2 s1 s0

Table 4.2: Synchronous group combinations (t = 1).

s
0

s
1

s
2

2✂

SUSPECT1

VIEW-CHANGE2

3 VC-FINAL

4 NEW-VIEW

1 2

2

2

3

3

4 with signature

Figure 4.3: XPaxos view change illustration: synchronous group is changed from (s0,s1) to (s0,s2).

4.4.2.1 Choosing active replicas

To choose active replicas for view i, we enumerate all sets containing t + 1 replicas (i.e.,
(

2t+1
t+1

)
sets)

which then alternate as synchronous groups across views in a round robin fashion. Additionally, each
synchronous group uniquely determines the primary. We assume that the mapping from view numbers
to synchronous groups is known to all replicas (see e.g., Table 4.2).

4.4.2.2 View change initiation

If a synchronous group in view i (denoted by sgi) does not make progress, XPaxos performs a view
change. Only an active replica of sgi may initiate a view change.
An active replica sj ∈ sgi initiates a view change if: (i) sj receives a message from another active
replica that does not conform to the protocol (e.g., an invalid signature), (ii) the retransmission timer
at sj expires, (iii) sj does not complete a view change to view i in a timely manner, or (iv) sj receives
a valid suspect message for view i from another replica. Upon view change initiation, sj stops
participating in the current view and sends 〈suspect, i, sj〉σsj to all other replicas.

4.4.2.3 Performing view-change

Upon receiving suspect message from active replica in view i (see the message pattern in Fig. 4.3),
replica sj stops processing messages of view i and sendsm = 〈view-change, i+1, sj ,CommitLogsj 〉σsj
to t + 1 replicas in sgi+1. A view-change message contains the commit log CommitLogsj of sj .
Commit logs might be empty (e.g., if sj was passive). Moreover, sj sends the suspect message to all
replicas to accelerate the view change.
Note that XPaxos requires all active replicas in new view to collect the most recent state and its proof
(i.e., view-change messages), rather than the new primary only. Otherwise, a faulty new primary
could purposely omit the view-change message which contains the most recent state, even outside
anarchy. Active replica sj in view i+ 1 waits for at least n− t view-change messages from all, but
also waits for 2∆ time trying to collect messages as many as possible.
Upon completion of the above protocol, each active replica sj ∈ sgi+1 inserts all view-change
messages it has received in set V CSeti+1

sj . Then sj sends 〈vc-final, i + 1, sj ,V CSet
i+1
sj 〉σsj to every

active replica in view i+1. This serves to exchange the received view-change messages among active
replicas.
Every active replica sj ∈ sgi+1 must receive vc-final messages from all active replicas in sgi+1, after
which sj enriches V CSeti+1

sj by combining V CSeti+1
∗ sets piggybacked in vc-final messages. Then,

SUPERCLOUD D3.2 Page 30 of 182

D3.2 - Specification of security enablers for data management

for each sequence number sn, active replicas select the commit log with the highest view number in
all view-change messages, to confirm the committed request at sn (might be null).
Afterwards, to prepare and commit selected requests in view i + 1, the new primary psi+1 sends
〈new-view, i+1,PrepareLog〉σpsi+1

to every active replica in sgi+1, where array PrepareLog contains
prepare logs generated in view i + 1 for each selected request. Upon receiving new-view message,
every active replica sj ∈ sgi+1 processes prepare logs in PrepareLog as described in the common case
(see Sec. 4.4.1).
Finally, every active replica sj ∈ sgi+1 makes sure that all selected requests in PrepareLog are
committed in view i+ 1. When this condition is satisfied, XPaxos can start processing new requests.

4.4.3 Correctness arguments

Consistency (Total Order). XPaxos enforces the following invariant, which is key to total order.

Lemma 1. Outside anarchy, if a benign client c commits a request req with sequence number sn in
view i, and a benign replica sk commits the request req′ with sn in view i′ > i, then req = req′.

A benign client c commits request req with sequence number sn in view i, only after c receives matching
replies from t+ 1 active replicas in sgi. This implies that every benign replica in sgi stores req into its
commit log under sequence number sn. In the following, we focus on the special case where: i′ = i+1.
This serves as the base step for the proof of Lemma 1 by induction across views that we postpone
to [41].
Recall that, in view i′ = i + 1, all (benign) replicas from sgi+1 wait for n − t = t + 1 view-change
messages containing commit logs transferred from other replicas, as well as the timer set to 2∆ to
expire. Then, replicas in sgi+1 exchange this information within vc-final messages. Notice that,
outside anarchy, there exists at least one correct and synchronous replica in sgi+1, say sj . Hence, a
benign replica sk that commits req′ in view i+ 1 under sequence number sn must have had received
vc-final from sj . In turn, sj waited for t+ 1 view-change messages (and timer 2∆), so it received
a view-change message from some correct and synchronous replica sx ∈ sgi (such a replica exists in
sgi as at most t replicas in sgi are non-crash faulty or partitioned). As sx stored req under sn in its
commit log in view i, it forwards this information to sj in a view-change message and sj forwards
this information to sk within a vc-final. Hence req = req′ follows.

Availability. Availability in XPaxos is guaranteed in case the synchronous group contains only correct
and synchronous replicas. With eventual synchrony we can assume that, eventually, there will be no
network faults. Additionally, with all combinations of t+ 1 replicas (out of 2t+ 1) rotating in the role
of active replicas, XPaxos guarantees that, eventually, view change in XPaxos will complete with t+ 1
correct and synchronous active replicas.

4.5 Performance Evaluation

US West (CA) Europe (EU) Tokyo (JP) Sydney (AU) Sao Paolo (BR)
US East (VA) 88 /1097 /82190 /166390 92 /1112 /85649 /169749 179 /1226 /81177 /165277 268 /1372 /95074 /179174 146 /1214 /85434 /169534
US West (CA) 174 /1184 /1974 /15467 120 /1133 /1180 /6210 186 /1209 /6354 /51646 207 /1252 /90980 /169080
Europe (EU) 287 /1310 /1397 /4798 342 /1375 /3154 /11052 233 /1257 /1382 /9188
Tokyo (JP) 137 /1149 /1414 /5228 394 /2496 /11399 /94775
Sydney (AU) 392 /1496 /2134 /10983

Table 4.3: Round-trip latency of TCP ping (hping3) across Amazon EC2 datacenters, collected during
three months. The latencies are given in milliseconds, in the format: average / 99.99% / 99.999% /
maximum.

In this section, we evaluate the performance of XPaxos and compare it to Zyzzyva [197], PBFT [96]
and a WAN-optimized version of Paxos [210], using the Amazon EC2 worldwide cloud platform. We
chose a geo-replicated, WAN settings as we believe that these are a better fit for protocols that tolerate
Byzantine faults, including XFT and BFT. Indeed, in WAN settings: (i) there are no single point of

SUPERCLOUD D3.2 Page 31 of 182

D3.2 - Specification of security enablers for data management

failure such as a switch interconnecting machines, (ii) there are no correlated failures due to, e.g., a
power-outage, a storm, or other natural disasters, and (iii) it is difficult for the adversary to flood the
network, correlating network and non-crash faults (the last point is relevant for XFT).
In the rest of this section, we first present the experimental setup (Section 4.5.1), and then evaluate the
performance (throughput and latency) in the fault-free scenario (Section 4.5.2), as well as under faults
(Section 4.5.3). Finally, we perform a performance comparison using a real application: the Zookeeper
coordination service [181] (Section 4.5.4), by comparing native Zookeeper to Zookeper variants that
use the four above mentioned replication protocols.

4.5.1 Experimental setup

4.5.1.1 Synchrony and XPaxos

In a practical deployment of XPaxos, a critical parameter is the value of timeout ∆, i.e., the upper
bound on communication delay between any two correct machines. If the communication between two
correct machines takes more than ∆, we declare a network fault (see Sec. 4.2). Notably, ∆ is vital to
the XPaxos view-change (Sec. 4.4.2).
To understand the value of ∆ in our geo-replicated context, we ran a 3-month experiment during
which we continuously measured round-trip latency across six Amazon EC2 datacenters worldwide
using TCP ping (hping3). We used the least expensive EC2 micro instances, that arguably have the
highest probability of experiencing variable latency due to virtualization. Each instance was pinging
all other instances every 100 ms. The results of this experiment are summarized in Table 4.3. While
we detected network faults lasting up to 3 minutes, our experiment showed that the round-trip latency
between any two datacenters was less than 2.5 seconds 99.99% of the time. Therefore, we adopted the
value of ∆ = 2.5/2 = 1.25 seconds, yielding psynchrony = 0.9999 (i.e., 9synchrony = 4).

4.5.1.2 Protocols under test

We compare XPaxos against three protocols whose common case message patterns when t = 1 are
depicted in Figure 4.4. The first two are BFT protocols, namely (a speculative variant of) PBFT [96]
and Zyzzyva [197] and require 3t + 1 replicas to tolerate t faults. We chose PBFT because it is
possible to derive a speculative variant of the protocol that relies on a 2-phase common case commit
protocol across only 2t+ 1 replicas (Figure 4.4a; see also [96]). In this PBFT variant, the remaining t
replicas are not involved in the common case, which is more efficient in a geo-replicated settings. We
chose Zyzzyva because it is the fastest BFT protocol that involves all replicas in the common case
(Figure 4.4b). The third protocol we compare against is a very efficient WAN-optimized variant of
crash-tolerant Paxos inspired by [49, 200, 117]. We have chosen the variant of Paxos that exhibits
the fastest write pattern (Figure 4.4c). This variant requires 2t + 1 replicas to tolerate t faults, but
involves t+ 1 replicas in the common case, i.e., just like XPaxos.
In order to provide a fair comparison, all protocols rely on the same Java code base. We rely on
HMAC-SHA1 to compute MACs and RSA1024 to sign and verify signatures.

4.5.1.3 Experimental testbed and benchmarks

We run the experiments on the Amazon EC2 platform that comprises widely distributed datacenters,
interconnected by the Internet. Communications between datacenters have a low bandwdith and a
high latency. We run the experiments on mid-range virtual machines that contain 8 vCPUs, 15GB of
memory, 2 x 80 GB SSD Storage, and run Ubuntu Server 14.04 LTS (PV) with the Linux 3.13.0-24-
generic x86 64 kernel.
In the case t = 1, Table 4.4 gives the deployment of the different replicas at different datacenters,
for each analyzed protocol. Clients are always located in the same datacenter as the (initial) primary

SUPERCLOUD D3.2 Page 32 of 182

D3.2 - Specification of security enablers for data management

primary

S1

S2

S3

client

(a) PBFT

primary

S1

S2

S3

client

(b) Zyzzyva

leader

S1

S2

client

(c) Paxos

Figure 4.4: Communication patterns of the three protocols under test (t = 1).

replica to better emulate what is done in modern geo-replicated systems where clients are served by
the closest datacenter [289, 117].3

To stress the protocols, we run a microbenchmark that is similar to the one used in [96, 197]. In
this microbenchmark, each server replicates a null service (this means that there is no execution of
requests). Moreover, clients issue requests in closed-loop: a client waits for a reply to its current
request before issuing a new request. The benchmark allows varying the request size and the reply
size. For space limitations, we only report results for two request sizes (1kB, 4kB) and one reply size
(0kB). We refer to these microbenchmarks as 1/0 and 4/0 benchmarks, respectively.

4.5.2 Fault-free performance

We first compare the performance of protocols when t = 1 in replica configurations as shown in
Table 4.4, using 1/0 and 4/0 microbenchmarks. The results are depicted in Figures 4.5a and 4.5b. On
each graph, the X-axis shows throughput (in kops/s), and Y-axis shows latency (in ms).

PBFT Zyzzyva Paxos XPaxos EC2 Region
Primary Primary Primary Primary US West (CA)

Active
Active

Active Follower US East (VA)
Passive Passive Tokyo (JP)

Passive - - Europe (EU)

Table 4.4: Configurations of replicas. Greyed replicas are not used in the “common” case.

As we can see, in both benchmarks, XPaxos achieves significantly better performance than PBFT and

3In practice, modern geo-replicated system, like Spanner [117], use hundreds of CFT SMR instances across different
partitions to accommodate for geo-distributed clients.

SUPERCLOUD D3.2 Page 33 of 182

D3.2 - Specification of security enablers for data management

Zyzzyva. Moreover, its performance are very close to that of Paxos. This comes from the fact that
in a worldwide cloud environment, network is the bottleneck and message patterns of BFT protocols,
namely PBFT and Zyzzyva, reveal costly. Paxos and XPaxos implement a round-trip across two
replicas, which renders them very efficient.
Next, to assess the fault scalability of XPaxos, we ran the 1/0 micro-benchmark in configurations that
tolerate two faults (t = 2). We use the following EC2 datacenters for this experiment: CA (California),
OR (Oregon), VA (Virginia), JP (Tokyo), EU (Ireland), AU (Sydney) and SG (Singapore). We place
Paxos and XPaxos active replicas at the first t + 1 datacenters, and their passive replicas to next t
datacenters. PBFT uses the first 2t+1 datacenters for active replicas and the last t for passive replicas.
Finally, Zyzzyva uses all replicas as active replicas.
We observe that XPaxos again clearly outperforms PBFT and Zyzzyva and achieves performance very
close to that of Paxos. Moreover, unlike PBFT and Zyzzyva, Paxos and XPaxos only suffer a moderate
performance decrease with respect to the t = 1 case.

4.5.3 Performance under faults

In this section, we analyze the behavior of XPaxos under faults. We run the 1/0 micro-benchmark
on three replicas (CA, VA, JP) to tolerate one fault (see also Table 4.4). The experiment starts with
CA and VA as active replicas, and with 2500 clients in CA. At time 180s, we crash the follower,
VA. At time 300s, we crash the CA replica. At time 420s, we crash the third replica, JP. Each
replica recovers 20s after having crashed. Moreover, the timeout 2∆ (used during state transfer in
view change, Section 4.4.2) is set to 2.5s (see Sec. 4.5.1.1). We show the throughput of XPaxos in
function of time in Figure 4.6, which also indicates active replicas in each view. We observe that
after each crash, the system performs a view change that lasts less than 10s, which is very reasonable
in a geo-distributed setting. This fast execution of the view change subprotocol is a consequence of
XPaxos lazy replication that keeps passive replicas updated. We also observe that XPaxos throughput
changes with views. This is because the latency between the primary and the follower, and between
the primary and clients, varies from view to view.

4.5.4 Macro-benchmark: ZooKeeper

In order to assess the impact of our work on real-life applications, we measured the performance
achieved when replicating the ZooKeeper coordination service [181] using all protocols considered
in this study: Zyzzyva, PBFT, Paxos and XPaxos. We also compare with the native ZooKeeper
performance, when the system is replicated using a built-in replication protocol, called Zab [189].
This protocol is crash-resilient and requires 2t+ 1 replicas to tolerate t faults.
We used the ZooKeeper 3.4.6 codebase. The integration of the various protocols inside ZooKeeper has
been carried out by replacing the Zab protocol. For fair comparison to native ZooKeeper, we made a
minor modification to native ZooKeeper to force it to use (and keep) a given node as primary. To focus
the comparison on performance of replication protocols, and avoid hitting other system bottlenecks
(such as storage I/O that is not very efficient in virtualized cloud environments), we store ZooKeeper
data and log directories on a volatile tmpfs file system.The tested configuration tolerates one fault
(t = 1). ZooKeeper clients were located in the same region as the primary replica (CA). Each client
invokes 1kB write operations in a closed-loop.
Figure 4.7 depicts the results. The X-axis represents the throughput in kops/sec. The Y-axis represents
the latency in ms. As for micro-benchmarks, we observe that Paxos and XPaxos clearly outperform
BFT protocols and achieve performance close to that of Paxos. More surprisingly, we can see that
XPaxos is more efficient than the built-in Zab protocol, although the latter only tolerates crash faults.

SUPERCLOUD D3.2 Page 34 of 182

D3.2 - Specification of security enablers for data management

0 5 10 15 20 25 30
0

100

200

300

400

500

throughput (kops/sec)

la
te

nc
y

(m
s)

XPaxos
Paxos
PBFT
Zyzzyva

(a) 1/0 benchmark, t = 1

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900
4/0

throughput (kops/sec)

la
te

nc
y

(m
s)

XPaxos
Paxos
PBFT
Zyzzyva

(b) 4/0 benchmark, t = 1

0 5 10 15 20
0

100

200

300

400

500

throughput (kops/sec)

la
te

nc
y

(m
s)

XPaxos
Paxos
PBFT
Zyzzyva

(c) 1/0 benchmark, t = 2

Figure 4.5: Fault-free performance

SUPERCLOUD D3.2 Page 35 of 182

D3.2 - Specification of security enablers for data management

0 100 200 300 400 500
0

5

10

15

20

25

time (sec)

th
ro

ug
hp

ut
 (

ko
ps

/s
ec

)
CA, VA

CA, JP

VA, JP

CA, VA

Figure 4.6: XPaxos under faults.

0 5 10 15 20
0

50

100

150

200

250

300

350

400

throughput (kops/sec)

la
te

nc
y

(m
s)

XPaxos
Paxos
PBFT
Zyzzyva
Zab

Figure 4.7: Latency vs. throughput for the ZooKeeper application (t = 1).

SUPERCLOUD D3.2 Page 36 of 182

D3.2 - Specification of security enablers for data management

4.6 Reliability Analysis

In order to estimate the coverage of a fault model we consider the fault states of the machines to be
independent and identically distributed random variables.
We denote the probability that a replica is correct (resp., crash faulty) by pcorrect (resp., pcrash). The
probability that a replica is benign is pbenign = pcorrect + pcrash. Hence, a replica is non-crash faulty
with probability pnon-crash = 1 − pbenign. Besides, we assume there is a probability psynchrony that a
replica is not partitioned, where psynchrony is a function of ∆, the network, and the system environment.
Therefore, the probability that a replica is partitioned equals 1− psynchrony.
Aligned with the industry practice, we measure reliability guarantees and coverage of fault scenarios
using nines of reliability. Specifically, we distinguish nines of consistency and nines of availability and
use these measures to compare different fault models. We introduce a function 9of(p) that turns a
probability p into the corresponding number of “nines”, by letting 9of(p) = b− log10(1 − p)c. For
example, 9of(0.999) = 3. For brevity, 9benign stands for 9of(pbenign), and so on, for other probabilities
of interest.
We focus here on consistency, as XPaxos guarantees better availability than both CFT and BFT in
any case (see Table 4.1).We postpone availability analysis to [41].
We start with the number of nines of consistency for an asynchronous CFT protocol, denoted by 9ofC(CFT) =
9of(P [CFT is consistent]). As P [CFT is consistent] = pnbenign, a straightforward calculation yields:

9ofC(CFT) =
⌊
− log10(1− pbenign)− log10(

n−1∑
i=0

pibenign)
⌋
,

which gives 9ofC(CFT) ≈ 9benign − dlog10(n)e for values of pbenign close to 1, when pibenign decreases
slowly. As a rule of thumb, for small values of n, i.e., n < 10, we have 9ofC(CFT) ≈ 9benign − 1.
In other words, in typical configurations, where few faults are tolerated [117], a CFT system as a whole
loses one nine of consistency from the likelihood that a single replica is benign.

4.6.1 XPaxos vs. CFT

We now quantify the advantage of XPaxos over asynchronous CFT. From Table. 4.1, if there is no non-
crash fault, or there are no more than t faults (machine faults or network faults), XPaxos is consistent,
i.e.,

P [XPaxos is consistent] = pnbenign +

t=bn−1
2
c∑

i=1

(
n

i

)
pinon-crash

×
t−i∑
j=0

(
n− i
j

)
pjcrash × p

n−i−j
correct ×

t−i−j∑
k=0

(
n− i− j

k

)
×

pn−i−j−ksynchrony × (1− psynchrony)k.

To quantify the difference between XPaxos and CFT more tangibly, we calculated 9ofC(XPaxos) and
9ofC(CFT) for all values of 9benign, 9correct and 9synchrony (9benign ≥ 9correct) between 1 and 20 in the
special cases where t = 1 and t = 2, which are most relevant in practice. For t = 1, we observed the
following relation (t = 2 case is postponed to [41]):

9ofC(XPaxost=1)− 9ofC(CFTt=1) =
9correct − 1, 9benign > 9synchrony and

9synchrony = 9correct,

min(9synchrony, 9correct), otherwise.

SUPERCLOUD D3.2 Page 37 of 182

D3.2 - Specification of security enablers for data management

Hence, for t = 1 we observe that the number of nines of consistency XPaxos adds on top of CFT is
proportional to the nines of probability for correct or synchronous machine. The added nines are not
directly related to pbenign, although pbenign ≥ pcorrect must hold.

Example 1. When pbenign = 0.9999 and pcorrect = psynchrony = 0.999, we have pnon-crash = 0.0001 and
pcrash = 0.0009. In this example, 9 × pnon-crash = pcrash, i.e., if a machine suffers a faults 10 times,
then one of these is a non-crash fault and the rest are crash faults. In this case, 9ofC(CFTt=1) =
9benign−1 = 3, whereas 9ofC(XPaxost=1)−9ofC(CFTt=1) = 9correct−1 = 2, i.e., 9ofC(XPaxost=1) = 5.
XPaxos adds 2 nines of consistency on top of CFT and achieves 5 nines of consistency in total.

Example 2. In a slightly different example, let pbenign = psynchrony = 0.9999 and pcorrect = 0.999, i.e.,
the network behaves more reliably than in Example 1. 9ofC(CFTt=1) = 9benign − 1 = 3, whereas
9ofC(XPaxost=1) − 9ofC(CFTt=1) = pcorrect = 3, i.e., 9ofC(XPaxost=1) = 6. XPaxos adds 3 nines of
consistency on top of CFT and achieves 6 nines of consistency in total.

4.6.2 XPaxos vs. BFT

Recall that (see Table 4.1) SMR in asynchronous BFT model is consistent whenever no more than
one-third machines are non-crash faulty. Hence,

P [BFT is consistent] =

t=bn−1
3
c∑

i=0

(
n

i

)
(1− pbenign)i × pn−ibenign.

We first examine the conditions under which XPaxos has stronger consistency guarantees than BFT.
Fixing the value t of tolerated faults, we observe that P [XPaxos is consistent] > P [BFT is consistent]
is equivalent to:

p2t+1
benign +

t∑
i=1

(
2t+ 1

i

)
pinon-crash ×

t−i∑
j=0

(
2t+ 1− i

j

)
pjcrash×

p2t+1−i−j
correct ×

t−i−j∑
k=0

(
2t+ 1− i− j

k

)
p2t+1−i−j−k

synchrony ×

(1− psynchrony)k >
t∑
i=0

(
3t+ 1

i

)
p3t+1−i

benign (1− pbenign)i.

In the special case when t = 1, the above inequality simplifies to

pcorrect × psynchrony > p1.5
benign.

Hence, for t = 1, XPaxos has stronger consistency guarantees than any asynchronous BFT protocol
whenever the probability that a machine is correct and not partitioned is larger than 1.5 power of the
probability that a machine is benign. This is despite the fact that BFT is more expensive than XPaxos
as t = 1 implies 4 replicas for BFT and only 3 for XPaxos.
In terms of nines of consistency, again for t = 1 (t = 2 is again postponed to [41]), we calculated the
difference in consistency between XPaxos and BFT SMR, for all values of 9benign, 9correct and 9synchrony

ranging between 1 and 20, and observed the following relation:

9ofC(BFTt=1)− 9ofC(XPaxost=1) =
9benign − 9correct + 1, 9benign > 9synchrony &

9synchrony = 9correct,

9benign −min(9correct, 9synchrony), otherwise.

SUPERCLOUD D3.2 Page 38 of 182

D3.2 - Specification of security enablers for data management

Notice that in cases where XPaxos guarantees better consistency than BFT (pcorrect × psynchrony >
p1.5

benign), it is only “slightly” better and does not materialize in additional nines.
Example 1 (cont’d.). Building upon our example, pbenign = 0.9999 and psynchrony = pcorrect = 0.999,
we have 9ofC(BFTt=1)−9ofC(XPaxost=1) = 9benign−9synchrony + 1 = 2, i.e., 9ofC(XPaxost=1) = 5 and
9ofC(BFTt=1) = 7. BFT brings 2 nines of consistency on top of XPaxos.
Example 2 (cont’d.). When pbenign = psynchrony = 0.9999 and pcorrect = 0.999, we have 9ofC(BFTt=1)−
9ofC(XPaxost=1) = 1, i.e., 9ofC(XPaxost=1) = 6 and 9ofC(BFTt=1) = 7. XPaxos has one nine of
consistency less than BFT (albeit the only 7th).

4.7 Related work and concluding remarks

In this chapter we introduced XFT, a novel fault-tolerance model that allows design of efficient pro-
tocols that tolerate non-crash faults. We demonstrated XFT through XPaxos, a novel state machine
replication protocol that features many more nines of reliability than state of the art crash fault-tolerant
(CFT) protocols with roughly the same communication complexity, performance and resource cost.
Namely, XPaxos uses 2t + 1 replicas and provides all the reliability guarantees of CFT, yet is also
capable of tolerating non-crash faults, so long as a majority of XPaxos replicas are correct and can
communicate synchronously among each other.
As XFT is entirely realized in software, it is fundamentally different from an established approach
that relies on trusted hardware to reducing the resource cost of BFT to 2t+ 1 replicas only (e.g.,[119,
216, 191, 305]).
XPaxos is also different from PASC [118] approach, which makes CFT protocols tolerate a subset of
Byzantine faults using ASC-hardening. ASC-hardening modifies an application by keeping two copies
of the state at each replica. It then tolerates Byzantine faults under the “fault diversity” assumption:
i.e., a fault will not corrupt both copies of the state in the same way. Unlike XPaxos, PASC does not
tolerate Byzantine faults that affect the entire replica (e.g., both state copies).
In this chapter, we did not explore the impact on varying the number of tolerated faults per fault
class. In short, this approach, known as the hybrid fault model and introduced in [300] distinguishes
the threshold of non-crash faults (say b) despite which safety should be ensured, from the threshold
t of faults (of any class) despite which the availability should be ensured (where often b ≤ t). The
hybrid fault model and its refinements [112, 261] appear orthogonal to our XFT approach.
Visigoth Fault Tolerance (VFT) [261] is another recent extension of the hybrid fault model. Besides
having different thresholds for non-crash and crash faults, VFT also refines the space between network
synchrony and asynchrony by defining the threshold of network faults that a VFT protocol can tolerate.
VFT is however different from XFT, in that it fixes separate fault thresholds for non-crash and network
faults. This difference is fundamental rather than notational, as XFT cannot be expressed by choosing
specific values of VFT thresholds.4 In addition, VFT protocols have more complex communication
patterns than XPaxos. That said, many of the VFT concepts remain orthogonal to XFT. In future, it
would be very interesting to explore interactions between the hybrid fault model and its refinements
such as VFT with our XFT.
Beyond some research directions outlined above, this work opens more avenues for future work. For
instance, many important distributed computing problems beyond SMR, such as distributed storage
(see Chapter 7), deserve a novel look through the XFT prism. In addition, we plan to evaluate XFT
in the context of blockchain by integrating it with Hyperledger fabric (see Chapter 2).

4More specifically, XPaxos can tolerate, with 2t + 1 replicas, t network faults, t non-crash faults and t crash faults,
albeit not simultaneously. Specifying such requirements in VFT would yield at least 3t + 1 replicas.

SUPERCLOUD D3.2 Page 39 of 182

D3.2 - Specification of security enablers for data management

Chapter 5 WHEAT: An Empirical Design for Geo-Replicated

State Machines

State machine replication (SMR) [208, 278] is a well-known technique to implement fault-tolerant
services. The basic idea is to have an arbitrary number of clients issuing requests to a set of replicas in
such a way that: (1) all correct replicas execute the same sequence of requests; and (2) clients receive
a reply for their requests despite the failure of a fraction of these replicas. This technique is adopted
by many modern distributed systems, ranging from cluster-based coordination services (e.g., Chubby
[79] and Zookeeper [181]) to geo-replicated databases (e.g., Spanner [117]).
The core of a replicated state machine is an agreement protocol (e.g., Paxos [210]) used to establish
a total order in the messages delivered to the replicas. This protocol, which usually requires multi-
ple communication steps, is responsible for a significant latency overhead when SMR is employed for
geo-replication, which is the case in many multi-cloud scenarios such as the one we want to consider
in Hyperledger and SUPERCLOUD. To mitigate this problem, many SMR protocols have been pro-
posed for wide area networks (WANs) (e.g., [35, 229, 304, 241]). These WAN SMR protocols employ
optimizations to reduce latency, usually by decreasing the number of communication steps across the
WAN. All these protocols were evaluated in real, emulated or simulated environments, showing the
proposed optimizations were indeed effective in decreasing the protocol latency.
However, even though such evaluations generally use comparable methodologies, they do not use the
same experimental environments and codebase across independent works. This lack of a common
ground makes it hard to not only compare results across distinct papers, but also to assess which
optimizations are actually effective in practice. This is aggravated by the fact that these evalua-
tions tend to compare SMR protocols in an holistic manner and generally do not compare individual
optimizations.
In this chapter we present an extensive evaluation of several latency-related optimizations scattered
across the literature (both for local data centers and geo-replication) using the same testbeds, method-
ology and codebase (see §5.2). More specifically, we selected a subset of optimizations for decreasing
the latency of strongly-consistent geo-replicated systems, implemented them in the BFT-SMaRt
replication library [68] (see §5.1) and deployed the experiments in the PlanetLab testbed and in the
Amazon EC2 cloud. During the course of this evaluation, we obtained some unexpected results. The
most notorious example is related with the use of multiple leaders – a widely accepted optimization
used by several WAN-optimized protocols such as Mencius [229] and EPaxos [241]. Specifically, our
results indicate that this optimization does not bring significant latency reduction just by itself; in-
stead, we observed that using a fixed leader in a fast replica is a more effective (and simpler) strategy
to reduce latency. Moreover, we also found that adding a few more replicas to the system without
increasing the size of the quorums required by the protocol may lead to significant latency improve-
ments. These results shed light on which optimizations are really effective for improving the latency
of geo-replicated state machines, and constitute the first contribution of this work.
The aforementioned results showcasing the benefit of having extra replicas without necessarily increas-
ing the quorum sizes required by the system led to the second contribution of the work: two novel vote
(weight) assignment schemes designed to preserve (CFT and BFT) SMR protocol correctness while
also allowing the emergence of quorums of variable size (see §5.3.2). By allowing quorums of different
sizes, it is possible to avoid the need of accessing a majority of replicas – a requirement of many SMR

SUPERCLOUD D3.2 Page 40 of 182

D3.2 - Specification of security enablers for data management

protocols. We introduce two vote assignment schemes (for CFT [210] and BFT [96] SMR) and show
that they enable the formation of safe and minimal quorums without endangering the consistency
and availability of the underlying quorum system [228]. To the best of our knowledge, this is the
first work that incorporates the idea of assigning different votes for different replicas (i.e., weighted
replication) [162, 262, 157] in replicated state machines.
Our third and final contribution is the design, implementation and evaluation of WHEAT (WeigHt-
Enabled Active replicaTion), a flexible WAN-optimized SMR protocol developed by extending BFT-
SMaRt with the most effective optimizations (according to our experiments) and our vote assignment
schemes (see §5.3.1). The evaluation of WHEAT – conducted in Amazon EC2 (see §5.4) – shows
that this protocol could outperform BFT-SMaRt by up to 56% in terms of latency. WHEAT was
designed to operate both under crash and Byzantine faults. To the best of our knowledge, WHEAT is
the first SMR protocol that is both optimized for geo-replication and capable of withstanding general
Byzantine faults; Mencius [229] and EPaxos [241] tolerate only crash faults while BFT protocols like
EBAWA [304] or Steward [35] requires either each replica to have a trusted component that can only
fail by crash, or only tolerate Byzantine faults within a site (i.e., do not tolerate compromised sites),
respectively.

5.1 State Machine Replication & BFT-SMaRt

In the SMR model[208, 278] an arbitrary number of clients send requests to a set of servers, which
hosts replicas of a stateful service that updates its state after processing those requests. The goal of
this technique is to make the state at each replica evolve in a consistent way, resulting in a service
which is accurately replicated across all replicas. Since the service state was already updated by the
time clients receive a reply from the service, this technique is able to offer strong consistency, i.e.,
linearizability [175]. To enforce this behavior, it is necessary that: (1) client requests are delivered
to the replicas via total order broadcast; (2) replicas start their execution in the same state; and (3)
replicas modify their state in a deterministic way.
All the experimental work done in this work is based on the BFT-SMaRt open-source library [68].
BFT-SMaRt implements a modular SMR protocol on top of a Byzantine consensus algorithm [288].
Under favourable network conditions and the absence of faulty replicas BFT-SMaRt executes the
message pattern depicted in Fig.5.1a, which is similar to the PBFT protocol [96].
Clients send their requests to all replicas, triggering the execution of the consensus protocol. Each
consensus instance i begins with one replica – the leader – proposing a batch of requests to be decided
within that consensus. This is done by sending a PROPOSE message containing the aforementioned
batch to the other replicas. All replicas that receive the PROPOSE message verify if its sender is the
leader and if the batch proposed is valid. If this is the case, they register the batch being proposed and
send a WRITE message to all other replicas containing a cryptographic hash of the proposed batch.
If a replica receives dn+f+1

2 e WRITE messages with the same hash, it sends an ACCEPT message to

all other replicas containing this hash. If some replica receives dn+f+1
2 e ACCEPT messages for the

same hash, it deliver its correspondent batch as the decision for its respective consensus instance.
This is the message pattern that is executed if the leader is correct and the system is synchronous. If
these conditions do not hold, the protocol needs to elect a new leader and force all replicas to converge
to the same consensus execution. This mechanism is dubbed synchronization phase and is described
in detail in [288].
As mentioned before, BFT-SMaRt can also be configured for crash fault tolerance (CFT). In this
case it implements a Paxos-like message pattern [210], illustrated in Fig. 5.1b. The main differences
are that the CFT protocol does not require WRITE messages, waits only for dn+1

2 e ACCEPT messages
and requires a simple majority of non-faulty replicas to preserve correctness (the BFT protocol requires
that more than three quarters of the replicas remain correct).

SUPERCLOUD D3.2 Page 41 of 182

D3.2 - Specification of security enablers for data management

ACCEPTWRITEPROPOSE

P0

P1

P2

P3

Client

Byzantine Consensus

(a) BFT message pattern.

ACCEPTPROPOSE

Crash ConsensusP0

P1

P2

Client

(b) CFT message pattern.

Figure 5.1: BFT-SMaRt message pattern during fault-free executions.

5.2 Experiments

In this section we present the experiments conducted to assess the effectiveness of certain optimizations
proposed for SMR in wide area networks [210, 96, 229, 323, 304, 241, 197] and quorum systems [162,
262]. Before presenting our results, we describe some general aspects of our methodology.

5.2.1 Methodology

The considered optimizations were evaluated by implementing variants of the BFT-SMaRt’s code
and executing them simultaneously with the original protocol. Our experiments focus on measuring
latency instead of throughput, in particular the median and 90th percentile latency perceived by
clients. This is due to the fact that throughput can be effectively improved by adding more resources
(CPU, memory, faster disks) to replicas or by using better links, whereas geo-replication latency will
always be affected by the speed of light limit and perturbations caused by bandwidth sharing.
During the experiments, clients were equally distributed across all hosts, i.e., a BFT-SMaRt replica
and a BFT-SMaRt client were deployed at each host that executed the protocol. Similarly to other
works (e.g., [181, 241]), each client invokes 1kB-requests and receive 1kB-replies from the replicas,
which run a null service. Requests were sent to the replicas every 2 seconds, and each client writes
its observed latency into a log file. This setup enabled us to retrieve results that are gathered under
similar network conditions without saturating either the CPU or memory of the hosts used.
The experiments in which we evaluated optimizations to the SMR protocol were conducted mostly
in PlanetLab.1 This testbed is known for displaying unpredictable latency spikes and highly loaded
nodes [140]. These conditions allow us to evaluate the optimizations within unfavorable conditions.
Since our experiments are designed to evaluate solely the client latency in fault-free executions, we
only report executions in which all hosts were online. However, since PlanetLab’s host are regularly
restarted and sometimes become unreachable, we could seldom execute each experiment during the
same amount of time [140]. Therefore, we had to launch multiple executions for the same experiment,
so that within each execution there would be a period in which all hosts were online. In any case,
every experiment reported in this chapter considers at least 24 hours of measurements.
All experiments were configured to tolerate a single faulty replica. Each experiment was executed using
between three to five hosts spread through Europe. The unavailability of nodes already mentioned led
us to use a total of eight hosts through all experiments (see Table 5.1).
To validate our results in a global scale, two of the experiments described in the chapter were executed
on Amazon EC2,2 using t1.micro instances distributed among five different regions. We used the same
methodology described for the PlanetLab experiments.

1http://www.planet-lab.org.
2http://aws.amazon.com/ec2/.

SUPERCLOUD D3.2 Page 42 of 182

http://www.planet-lab.org
http://aws.amazon.com/ec2/

D3.2 - Specification of security enablers for data management

Country City Hostname

Poland Wroclaw planetlab1.ci.pwr.wroc.pl

England London planetlab-1.imperial.ac.uk

Spain Madrid planetlab2.dit.upm.es

Germany Munich planetlab2.lkn.ei.tum.de

Portugal Aveiro planet1.servers.ua.pt

Norway Oslo planetlab1.ifi.uio.no

France Nancy host4-plb.loria.fr

Finland Helsinki planetlab-1.research.netlab.hut.fi

Italy Rome planet-lab-node1.netgroup.uniroma2.it

Table 5.1: Hosts used in PlanetLab experiments

5.2.2 Number of Communication Steps

The purpose of our first experiment is to observe how the client latency is affected by the number
of communication steps performed by the SMR protocol. More precisely, we wanted to observe how
efficient read-only, tentative, speculative and fast executions are in a WAN. The first two optimizations
are proposed in PBFT [96], whereas the other two optimization are used by Zyzzyva [197] and Paxos
at War [323], respectively. Since these optimizations target Byzantine-resilient protocols, we only
evaluate them in BFT mode.
The message pattern for each of these optimizations is illustrated in Fig. 5.2. Fig. 5.1a displays BFT-
SMaRt’s standard message pattern. Fig. 5.2a displays the message pattern for tentative executions.
This optimization consists of delivering client requests right after finishing the WRITE phase, thus
executing the ACCEPT phase asynchronously. This optimization comes at the cost of (1) potentially
needing to perform a rollback on the application state if there is a leader change, and (2) forcing
clients to wait for dn+f+1

2 e messages from replicas (instead of f + 1) [96]. Fig. 5.2b displays the
message pattern for fast executions. This optimization consists of delivering client requests right
after gathering dn+3f+1

2 e WRITE messages (before the ACCEPT phase finishes). If such amount of
WRITE messages arrive fast enough, the protocol can safely bypass the ACCEPT phase. Fig. 5.2c
displays the message pattern for speculative executions. This optimization enables the protocol to
finish executions directly after the PROPOSE message is received in the replicas, as long as the clients
are able to gather replies from all the replicas within a pre-established time window. If the clients
are not able to gather all the replies within such time window, at least one additional round-trip
message exchange is required to commit the requests. Fig. 5.2d displays the message pattern for
read-only executions. This optimization enables clients to obtain a response from the service in two
communication steps. However, it can only be used to read the state from the service. Similarly
to tentative executions, this optimization also demands that clients gather dn+f+1

2 e messages from
replicas, even for non-read-only operations, to ensure linearizability [96].
Setting: We created three BFT-SMaRt variants to evaluate fast, tentative and speculative execu-
tions (read-only executions were already supported). The replicas were deployed in Nancy (leader),
Wroclaw, Helsinki and Rome.
Results: The values for the median and 90th percentile latency for each client are shown in Fig. 5.3.
All evaluated optimizations exhibited latency reduction across all clients, with read-only executions
finishing the protocol execution significantly faster than any of the other optimizations (i.e., 90th
percentile latency from 43% to 63% smaller than in standard executions). Moreover, speculative
executions also displayed significant latency reduction, reaching a 90th percentile latency 35% lower
than standard execution. In the same way, tentative and fast executions also manage to reach a
lower median and 90th percentile than standard executions, albeit with more modest differences.
Furthermore, whereas fast executions displayed a latency decrease of about 10%, tentative executions
managed to reduce latency by almost 20% (when compared to standard executions).
Main conclusion: The lowest latency displayed by read-only executions were to be expected, since
they bypass all three communications steps executed between sending requests and gathering replies.

SUPERCLOUD D3.2 Page 43 of 182

planetlab1.ci.pwr.wroc.pl
planetlab-1.imperial.ac.uk
planetlab2.dit.upm.es
planetlab2.lkn.ei.tum.de
planet1.servers.ua.pt
planetlab1.ifi.uio.no
host4-plb.loria.fr
planetlab-1.research.netlab.hut.fi
planet-lab-node1.netgroup.uniroma2.it

D3.2 - Specification of security enablers for data management

ACCEPTWRITEPROPOSE

P0

P1

P2

P3

Client

Byzantine Consensus

(a) Tentative execution.

ACCEPTWRITEPROPOSE

P0

P1

P2

P3

Client

Byzantine Consensus

(b) Fast execution.

ACCEPTWRITEPROPOSE

P0

P1

P2

P3

Client

Byzantine Consensus

(c) Speculative execution.

ACCEPTWRITEPROPOSE

P0

P1

P2

P3

Client

Byzantine Consensus

(d) Read-only execution.

Figure 5.2: Evaluated message patterns, besides the one in Fig. 5.1a.

 0

 50

 100

 150

N R S T F N R S T F N R S T F N R S T FLa
te

n
cy

 (
m

ill
is

e
co

n
d
s) N=Standard, R=Read-only, S=Speculative, T=Tentative, F= Fast

50th
90th

RomeHelsinkiWroclawNancy (L)

Figure 5.3: Client latencies’ 50th/90th percentile for each type of execution.

Since speculative executions require the PROPOSE phase, they show higher latency than read-only
executions. The advantage of tentative executions over fast executions can be explained by the fact
that the latter require gathering WRITE messages from all four replicas, whereas the former only need
it from three.

5.2.3 Number of Replies

In this experiment we intended to observe how the amount of replies required by clients affects the
operation latency. By default, BFT-SMaRt clients wait for dn+f+1

2 e (BFT) or dn+1
2 e (CFT) replies

from replicas in order to ensure linearizability. However, this number of replies is required due to the
use of read-only executions [96]: if this optimization were not supported, f+1 matching replies (BFT)
or 1 (CFT) replies would suffice.
Setting: We created a variant of a BFT-SMaRt client that waited only for f + 1 (BFT) or 1
(CFT) replies, thus satisfying only sequential consistency (similarly to Zookeeper [181]) if the read-
only optimization is employed. This experiment was deployed on hosts located in Nancy (leader),
Wroclaw, Helsinki and Rome. The modified clients waited for two out of four replica replies (or one
out of three in CFT), while the original version waited for the usual three out of four (two out of three

SUPERCLOUD D3.2 Page 44 of 182

D3.2 - Specification of security enablers for data management

 0

 50

 100

 150

3/4 2/4 3/4 2/4 3/4 2/4 3/4 2/4

La
te

n
cy

 (
m

ill
is

e
co

n
d
s)

50th
90th

HelsinkiRomeWroclawNancy (L)

(a) BFT Mode.

 0

 50

 100

 150

2/3 1/3 2/3 1/3 2/3 1/3

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

50th
90th

RomeWroclawNancy (L)

(b) CFT Mode.

Figure 5.4: Client latencies’ 50th/90th percentile for different numbers of replies.

in CFT). CFT experiments did not require the Helsinki’s host.
Results: The values for the median and 90th percentile latency for each client are shown in Fig. 5.4.
It can be observed that both the original and modified protocols present very similar performance in
BFT mode. On the other hand, the optimization was quite effective in the CFT mode. For the 90th
percentile, this optimization showed an improvement from 8% to 11% in BFT mode and from 26% to
36% in CFT mode.
Main conclusion: The lower latency displayed when the protocol requires less replies was to be
expected, but such reduction was more significant in CFT mode. This can be explained by the fact
that the BFT mode employed one more replica and required one more reply when compared to CFT.

5.2.4 Quorum Size

This experiment is motivated by the works of Gifford [162] and Pris [262], which use voting schemes
with additional hosts to improve the availability of quorum protocols. As described in §5.1, BFT-
SMaRt’s clients and replicas always wait for dn+f+1

2 e messages from other replicas to advance to
the next communication step (or dn+1

2 e in CFT mode). More precisely, BFT-SMaRt waits for
dissemination Byzantine quorums [228] if operating in BFT mode and majority quorums [157] if oper-
ating in CFT mode. During this experiment, we enable the system to make progress without waiting
for the aforementioned quorum types if spare replicas are present. Notice that this optimization, which
is not employed in any SMR protocol, might lead to safety violations (discussed below).
Setting: We modified BFT-SMaRt to make replicas wait for only 2f + 1 (resp. f + 1) messages
in each phase of the BFT (resp. CFT) protocol, independently from the total number of replicas n.3

This experiment was deployed on hosts located in Aveiro (leader), London, Oslo, Munich and Madrid.
The original BFT-SMaRt was configured to execute across four replicas (three in CFT mode) and
the modified version was configured to execute in five (four in CFT mode). The extra replica needed
for executing the modified version was placed in Madrid, both for BFT and CFT mode. Experiments
for CFT mode did not require the use of Munich’s host. Since the modified version waits only for
three out of five (3/5) messages (or 2/4 messages in CFT mode), both versions of BFT-SMaRt will
wait for the same number of messages, even though the optimized versions use one additional replica.
Results: The values for the median and 90th percentile latency for each client are shown in Fig. 5.5.
The results show that the modified protocols – which used one extra replica – exhibited lower latency
than the original protocols. This difference is more discernible in the CFT mode for two reasons.
First, the ratio between the quorum size and the number of replicas (2/4) is smaller than the BFT
case (3/5). Second, it did not use London’s host (which observed a much worse 90th percentile latency
than others). It can be observed that in the 90th percentile, the optimizations showed an improvement
of 12%-17% in the BFT mode and 4%-72% in CFT mode, depending on the location of clients.

3If the original BFT-SMaRt were deployed in five hosts, the quorums would be comprised of four hosts (in the case
of BFT mode).

SUPERCLOUD D3.2 Page 45 of 182

D3.2 - Specification of security enablers for data management

 0

 50

 100

 150

 200

 250

3/4 3/5 3/4 3/5 3/4 3/5 3/4 3/5 3/5

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

50th
90th

6469 5639

MadridMunichOsloLondonAveiro (L)

(a) BFT Mode.

 0

 50

 100

 150

 200

 250

2/3 2/4 2/3 2/4 2/3 2/4 2/4

La
te

n
cy

 (
m

ill
is

e
co

n
d
s)

50th
90th

5856 5650

MadridOsloLondonAveiro (L)

(b) CFT Mode.

Figure 5.5: Client latencies’ 50th/90th percentile with different quorum sizes.

Main conclusion: The modified version BFT-SMaRt was able to experience lower latency because
it was given more choice: since both versions still waited for the same number of messages in each
communication step, the slowest replica was replaced by the extra replica hosted in Madrid, thus
decreasing the observed latency of the modified version. In normal protocols this benefit would be
smaller, since the quorum size would normally increase with n.
Even though the use of additional replicas decreases the protocol latency, this kind of optimization
cannot be directly applied to existing protocols without impairing their correctness. Limiting the
amount of messages to 2f + 1 (or f + 1) regardless of the total number of replicas available n does not
guarantee the formation of intersecting quorums, which are required to ensure safety in both BFT and
CFT modes [210, 96]. For example, in the CFT mode, our setup of n = 4 and f = 1 did not ensure
majority quorums, which could had lead to safety violations. In order to preserve correctness, it is
necessary to force any combination of 2f+1 (or f+1) replicas to intersect in at least one correct server.
In §5.3.2 we present a technique that ensures this property and allows the use of this optimization in
SMR systems.

5.2.5 Leader Location

The goal of our last experiment is to observe how much the leader’s location can affect the client
latency. This experiment is motivated by the fact that Mencius [229], EBAWA [304] and EPaxos [241]
use different techniques to make each client use its closest (or co-located) replica as the leader for
its operations. The rationale behind these techniques is to make client-leader communication faster,
bringing down the end-to-end SMR latency (see Fig. 5.1).
Setting: We deployed BFT-SMaRt in PlanetLab and conducted several experiments considering
different replicas assuming the role of the leader. The hosts used were located in Wroclaw, Madrid,
Munich and London (not used in CFT mode). Moreover, the experiment was repeated across Amazon
EC2, using replicas in Ireland, Oregon, So Paulo and Sydney regions (Sydney was only used in BFT
mode).
Results: Before launching this experiment, we expected that, for any client, its latency would be the
lowest when its co-located replica were the protocol’s leader. However, as seen in Fig. 5.6, the median
and 90th percentiles of the latency observed by the different clients do not change significantly when
the leader location changes. In particular, the 90th percentile latency is, in general, lower when the
leader was either in Madrid or Wroclaw.
Since these results appeared to contradict the intuition of [229, 304, 241], we repeated this experiment
in Amazon EC2, to find if this phenomenon is due to our choice of testbed. Fig. 5.7 shows the results
observed in each Amazon EC2 region. As with the PlanetLab results, the latency observed by the
different clients do not present any significant change as we change the leader location. However,
having the leader in Oregon results in a slightly lower 90th percentile for all clients, both for BFT and
CFT modes.

SUPERCLOUD D3.2 Page 46 of 182

D3.2 - Specification of security enablers for data management

 0

 100

 200

 300

W M N L W M N L W M N L W M N LLa
te

n
cy

 (
m

ill
is

e
co

n
d
s) W=Wroclaw, M=Madrid, N=Munich, L=London

50th
90th

LondonMunichMadridWroclaw

(a) BFT Mode.

 0

 100

 200

 300

W M N W M N W M NLa
te

n
cy

 (
m

ill
is

e
co

n
d
s) W=Wroclaw, M=Madrid, N=Munich

50th
90th

MunichMadridWroclaw

(b) CFT Mode.

Figure 5.6: Client latencies’ 50th/90th percentile when the leader is placed across PlanetLab hosts.

 0

 200

 400

 600

 800

I S O Y I S O Y I S O Y I S O YLa
te

n
cy

 (
m

ill
is

e
co

n
d
s) I=Ireland, S=São Paulo, O=Oregon, Y=Sydney

50th
90th

SydneyOregonSão PauloIreland

(a) BFT Mode.

 0

 200

 400

 600

 800

I S O I S O I S OLa
te

n
cy

 (
m

ill
is

e
co

n
d
s) I=Ireland, S=São Paulo, O=Oregon

50th
90th

OregonSão PauloIreland

(b) CFT Mode.

Figure 5.7: Client latencies’ 50th/90th percentile when the leader is placed across Amazon EC2 regions.

Main conclusion: The obtained results depict a similar trend in the two different testbeds, which let
us assert that co-locating clients with the leader does not necessarily improve the latency of replicated
state machines. On the other hand, placing the leader in the host with better connectivity with the
remaining replicas can yield more consistent improvements. More precisely, the benefit of reaching
the leader faster is not as important as hosting the leader in the replica with faster links with others.

5.2.6 Discussion

The results presented in §5.2.2 indicate that, as expected, bypassing communication steps reduces
client latency in BFT SMR protocols. However, even though read-only (resp. speculative) executions
are up to 63% (resp. 35%) faster than standard executions, the benefits of tentative and fast executions
are not so impressive: about 20% and 10%, respectively. The difference, as explained before, is due to
the fact that fast executions requires larger quorums than tentative execution, which requires waiting
for more messages (that can be slow in an heterogeneous environment such as a WAN). In the end,
tentative execution matches the theoretically expected benefits: by avoiding 20% of the communication
steps (see Fig. 5.2), we did reduce latency to approximately 20%.
The results of §5.2.3 and §5.2.4 show that decreasing the ratio between the number of expected mes-
sages and the total number of replicas can decrease latency significantly, especially for CFT replication.
More specifically, clients that wait less replies had a 90th percentile latency improvement of up to 36%
(resp. 11%) in CFT (resp. BFT) mode; and adding more replicas to the system while maintaining
the same quorum size brings improvements of up to 72% (resp. 17%) in CFT (resp. BFT) mode.
These results are mainly due to the performance-heterogeneity of hosts and links in real wide area
networks: if the latency between all replicas were similar and network delivery variance were small, the
observed improvements would be much more modest. Furthermore, they are in accordance with other

SUPERCLOUD D3.2 Page 47 of 182

D3.2 - Specification of security enablers for data management

studies showing that using smaller quorums may bring better latency than decreasing the number of
communication steps (e.g., [188]).
The results of §5.2.5 indicates that having the leader close to a client will not significantly reduce the
SMR latency for this client. This result is unexpected since several protocols implement mechanisms
such as rotating coordinator [229, 304] and multiple proposers [241] to make each client submit its
requests to the closest replica. We found two main explanations for this apparent contradiction. First,
the heterogeneity of real environments such as PlanetLab and Amazon EC2 make optimizations for
reducing latency less effective. In fact, the authors of Mencius acknowledge that the protocol achieves
lower latency than Paxos only in networks with small latency variances [229]. Second, in CFT mode,
BFT-SMaRt clients wait for replies from a majority of replicas to ensure linearizability due to the
use of the read-only optimization. EPaxos, Mencius and Paxos clients wait only for a single reply from
the leader. This means that client-leader co-location in these protocols potentially reduce the latency
in two communication steps, while in BFT-SMaRt this reduction is in only one (clients still need
to wait for at least one additional reply). Consequently, having a client co-located with the leader
should decrease the number of communication steps 25% in CFT mode and 20% in BFT mode, while
in Mencius and EPaxos such theoretical improvement can reach 50%. Moreover, its worth to point
out that these benefits appear only in favorable conditions. For example, EPaxos presents almost the
same latency of Paxos when under high request interference [241].
As a final remark, it is worth noting that our results show that having a leader in a well-connected
replica brings, in general, more benefits than having clients co-located with leaders. For instance, we
observed that latency was usually lower when the leader replica was hosted in Madrid, rather than
when the leader replica was placed in the same location as a particular client. In the same line, adding
faster replicas to the system may significantly improve latency, as shown in §5.2.4. For example, the
addition of Madrid to the set of replicas decreased the 90th percentile latency in Oslo and Aveiro by
39% and 72%, respectively (CFT mode). More generally, these results highlight the fact that not all
replicas are the same in geo-replication and that both the leader location and quorum formation rules
must take into account the characteristics of the sites being used.

5.3 The WHEAT Protocol

This section describes WHEAT, a WAN-optimized SMR protocol implemented on top of BFT-
SMaRt. We start by discussing the WAN optimizations employed in the protocol and then introduce
two novel vote assignment schemes to use smaller quorums without endangering the safety of SMR.
We conclude the section with an evaluation of WHEAT in Amazon EC2.

5.3.1 Deriving the protocol

WHEAT employs the optimizations that were most effective in improving the latency of SMR in
WANs. The selected optimizations (discussed below) reduce the number of communication steps,
the number of replies that clients wait and the ratio between the quorum size and the total number
of replicas. Since the results of client-leader co-location were not so expressive, and given that its
implementation would require substantial changes in the base SMR protocol (which is already complex
enough [68, 100]), we rejected this optimization and followed the fixed leader approach. As with BFT-
SMaRt, WHEAT can be used in BFT or CFT modes, implementing the message patterns illustrated
in Fig. 5.8.
Reducing the number of communication steps: In BFT mode, WHEAT employs the read-only
and tentative execution optimizations introduced in PBFT [96]. The reason to support tentative ex-
ecutions instead of fast or speculative executions is as follows: (1) during our experiments, tentative
executions displayed slightly better latency than fast executions (i.e., they had a lower 90th percentile);
(2) speculative executions are useful in environments were the network is predictable and stable, which
we cannot expect in many geo-distributed settings. If such conditions are not met by the network (i.e,
not delivering replies from all replicas within the required time window), clients need to trigger the

SUPERCLOUD D3.2 Page 48 of 182

D3.2 - Specification of security enablers for data management

ACCEPTACCEPTPROPOSE WRITE

P0

P1

P2

P3

Client

P4

(a) BFT message pattern.

PROPOSE ACCEPT

P0

P1

P2

P3

Client

(b) CFT message pattern.

Figure 5.8: WHEAT’s message pattern for f = 1 and one additional replica.

commit phase and force the protocol to execute five communications steps [197]; and (3) tentative ex-
ecutions do not require modifications to the synchronization phase of BFT-SMaRt. Fast executions
would required modifications to account for cases where a value was decided solely with dn+3f+1

2 e
WRITE messages, whereas the rollback operation can be triggered using the state transfer protocol
already implemented in BFT-SMaRt [68]. Furthermore, usage of speculative executions would de-
mand the complete re-implementation of the original protocol, to account for the several corner cases
necessary to preserve correctness under this type of executions, such as the aforementioned commit
phase. Another advantage of tentative executions is that ACCEPT messages can be piggybacked in
the next PROPOSE or WRITE messages, similarly to PBFT[96].
Reducing the number of replies a client waits: In BFT mode, the use of read-only and tentative
executions lead WHEAT clients to always gather responses from a Byzantine quorum of replicas, i.e.,
at least dn+f+1

2 e replies. This means that it is impossible to enforce the optimization evaluated in
§5.2.3 without giving up linearizability [175]. However, single-reply read-only executions can still be
used in the CFT mode as long as clients always contact the leader replica.4 Consequently, in CFT
mode WHEAT clients only need to wait for one reply (from any replica during write operations and
from the leader during read-only operations).
Reducing the ratio between the quorum size and the number of replicas: As observed
in §5.2.4, it is possible to significantly decrease latency by adding more replicas to the system, as
long as the quorums used in the protocol remain with the same size. Both the Byzantine and crash
variants of WHEAT are designed to exploit this phenomenon by modifying the quorum requirements
of the protocol. However, to avoid breaking the safety properties of traditional SMR protocols (e.g.,
[210, 96, 304]), we need to introduce a mechanism to secure the formation of intersecting quorums of
variable size. In the next section we introduce a voting scheme that preserves this requirement.

5.3.2 Vote Assignment Schemes

Our novel voting assignment schemes integrate the classical ideas of weighted replication [157, 162, 262]
to SMR protocols. The goal is to extend quorum-based SMR protocols to (1) rely primarily on the
fastest replicas present in the system, and (2) preserve its original safety and liveness properties.
The most important guarantees that quorum-based protocols need to preserve are (1) all possible
quorums overlap in some correct replica and (2) even with up to f failed replicas, there is always
some quorum available in the system. In CFT protocols like Paxos [210], quorums must overlap in
at least one replica. Such intersection is enforced by accessing a simple majority of replicas during
each communication step of a protocol. More specifically, protocols access dn+1

2 e replicas out of
n ≥ 2f+1. BFT protocols like PBFT [96], on the other hand, usually employ disseminating Byzantine
quorums [228] with at least f + 1 replicas in the intersection. In this case, protocols access dn+f+1

2 e
replicas out of n ≥ 3f + 1. With this strategy, adding a single extra replica to the system results

4It is also necessary to use leases on the client, since the leader can be demoted at any point.

SUPERCLOUD D3.2 Page 49 of 182

D3.2 - Specification of security enablers for data management

in higher latency, since any possible quorum becomes larger in size – unlike the weighted quorums
strategy we present below.
The fundamental observation we make is that accessing a majority of replicas guarantees the afore-
mentioned intersection, but this is not the only way to secure such intersection. More specifically, if
n is greater than 2f + 1 (in CFT mode), it is possible to distribute weights across replicas in such
way that a majority is not always required to (correctly) make progress. As an example, consider
the quorums illustrated in Fig. 5.9 (with one extra replica in the system). Whereas in Fig. 5.9a the
intersection is obtained by strictly accessing a majority of replicas, in Fig. 5.9b we see that we can
still obtain an intersection with a variable number of replicas (since we can obtain a sum of 3 votes
by either accessing 2 or 3 replicas). In particular, if the replica with weight 2 is successfully probed,
the protocol can finish a communication step with a quorum comprised by only half of the replicas.
Otherwise, a quorum comprised by all replicas with weight 1 is necessary to make progress. Notice
that for this distribution to be effective, it is necessary to attribute weight 2 to the fastest replica in
the system.
We now generalize the weight distribution proposed in Fig. 5.9b to account for other values of f .
The objective is to assign certain numbers of votes (i.e., weights) to each replica in accordance with
their connectivity/performance. This vote assignment must be done carefully to ensure that minimal
quorums composed by faster replicas will be used under normal conditions (i.e., when the faster replicas
are indeed faster) and larger, yet available quorums can be used to ensure that up to f faulty replicas
are tolerated (despite their weights).
Let Qv be the minimum number of votes that a quorum of replicas must hold to guarantee that
quorums overlap by at least one correct replica. A quorum is said to be safe and minimal (or just
minimal) if it is comprised by only f + 1 replicas that together hold Qv votes. This quorum size is
minimal because if f or less replicas were considered a quorum, other intersecting quorums would
require more than n−f replicas. These quorums will not be available when there are f faulty replicas
in the system. This means that having quorums with less than f + 1 replicas implies giving up
consistency or availability, as described in classical quorum definitions [228]. In a BFT system, for the
same reasons, a minimal quorum must be comprised of 2f + 1 replicas.
Using the above definitions, we consider vote distribution schemes that satisfy the following properties:

• Safe minimality: There exists at least one minimal quorum in the system.

• Availability: There is always a quorum available in the system that holds Qv votes.

• Consistency: All quorums that hold Qv votes intersect by at least one correct replica.

In the following, we describe vote assignment schemes for CFT and BFT modes that satisfy these
properties.
CFT vote distribution: To calculate the vote distribution under CFT mode, we start by introducing
the parameter ∆, which represents the number of extra replicas available in the system. Thus, n can
be calculated using ∆ as follows:

n = 2f + 1 + ∆ (5.1)

We now introduce two additional variables. Nv represents the sum of the number of votes
∑
Vi that

are attributed to each replica i. Fv is the maximum number of votes that can be dismissed in the
system. Having these parameters, we can apply the standard quorum rules to the votes instead of the
replicas. Hence, Nv is calculated as follows:

Nv =
∑

Vi = 2Fv + 1 (5.2)

As an example, consider Fig. 5.9b: the sum of all votes adds up to 5, which represents an abstract
quorum system comprised by 5 hosts capable of withstanding 2 faults. Therefore, for this case, Nv = 5
and Fv = 2.

SUPERCLOUD D3.2 Page 50 of 182

D3.2 - Specification of security enablers for data management

(a) Classical (always a majority of
replicas).

3 votes

3 votes
2 1 1 1

(b) Weighted (from f + 1 to n − f
replicas).

Figure 5.9: Quorum formation when f = 1 and n = 4 (CFT mode).

Since ∆ and f are the input parameters, we need to (1) find a relation between ∆ and f and values
for Nv, Fv and Vi; (2) use those variables to force the emergence of replica quorums that intersect by
one replica. More precisely, votes must be distributed in such a way that once Qv = Fv + 1 votes are
gathered, quorums always overlap by at least one correct replica.
If we assume that only two possible values can be assigned to replicas (e.g., a binary vote distribution),
as in Fig. 5.9b, we can introduce variables Vmax and Vmin. However, we need to find how many replicas
are assigned Vmax and Vmin. Let u be the number of replicas holding Vmax votes and, consequently,
n− u the number of replicas holding Vmin. Since the sum of all votes must be equal to Nv, we have:

Nv = 2Fv + 1 = uVmax + (n− u)Vmin (5.3)

In the example of Fig. 5.9b, Vmax = 2, Vmin = 1 and Qv = Fv+1 = 3. We can observe two cases where
3 votes can be obtained: either by (1) accessing the single Vmax replica and one of the Vmin replicas,
or (2) accessing all Vmin replicas. Notice that in both cases, the same number of votes is dismissed,
but not the same number of replicas; in case (1) two replicas are ignored, but in case (2) only one
single replica is left unprobed. Also note that the number of votes dismissed is 2 – which happens to
be the value of Fv (as we pointed out previously). This indicates that Fv has a direct relation to Vmax
and Vmin. Given this observation, we generalize this example scenario to represent any ∆ and f :

Fv = (∆ + f)Vmin = fVmax (5.4)

We derive the relation between Vmax and Vmin as follows:

Vmax =
(∆ + f)

f
Vmin (5.5)

If we assume Vmin = 1, equations 5.4 and 5.5 become:

Fv = ∆ + f (5.6)

Vmax =
∆ + f

f
= 1 +

∆

f
(5.7)

Having now more refined formulas for Fv, Vmax and Vmin, we can return to equation 5.3 and obtain
the value of u:

2(∆ + f) + 1 = u(1 +
∆

f
) + (n− u)⇒ u = f (5.8)

Knowing that u = f , still by equation 5.3, there must be f replicas holding Vmax votes and n − f
replicas holding 1 vote (since Vmin = 1). We thus have our CFT vote assignment scheme: equations 5.7
and 5.8 give us the values for Fv and Vmax respectively, all in function of ∆ and f .
The main benefit of this scheme is that if all the f replicas holding Vmax are probed faster than any
other, then just one of the ∆ + f + 1 other replicas holding Vmin votes will be disregarded (like the
two-replica quorum of Fig. 5.9b). However, in the worst case, if f replicas holding Vmax votes fail (or
are slow), then all replicas with Vmin votes will be accessed instead (as the three-replica quorum of
Fig. 5.9b).
CFT proof of correctness: In the following we briefly outline the proof that our vote assignment
scheme satisfies the three properties described before. The full proof is available in the extended
technical report [287].

SUPERCLOUD D3.2 Page 51 of 182

D3.2 - Specification of security enablers for data management

Safe minimality: Let Smax to be the subset of f replicas that hold Vmax votes each. By equation 5.4
these f replicas will add up to Fv votes. A safe and minimal quorum can be built using Smax plus one
additional replica holding Vmin = 1 votes, making a quorum with Qv = Fv + 1 votes. �
Availability: Let Smin be the subset of n − f replicas holding Vmin votes each. In the worst case
(maximum number of votes lost due to faults), when all the f replicas holding Vmax fail, there will
be still the n− f = ∆ + f + 1 replicas from Smin. According to equation 5.7, ∆ + f account already
for Fv votes. With the additional replica from Smin, we reach the required Qv = Fv + 1 votes to form
a quorum, even with the fVmax votes lost. Furthermore, any other combination of Vmax and Vmin
replicas will always contain at least Qv votes (as long there are at least f + 1 replicas), since they will
either be a minimal quorum (as proved before), a Smin quorum, or a hybrid of both (which will result
in Qv ≥ Fv + 1). �
Consistency: Any quorum overlaps by at least one correct replica for the following reason: since a
minimal quorum contains Qv votes (as proved before), it must contain at least one Vmin replica, which
in turn must be a member of the Smin quorum (which also contains Qv votes, as proved before). Since
any other allowed combination of Vmax and Vmin replicas will either be a superset of a minimal or
Smin quorum, they will also intersect by one replica (or more). �
BFT assignment: The reasoning here is similar to the CFT scheme, but with the following differ-
ences. First, equations 5.1 and 5.2 become n = 3f + 1 + ∆ and Nv =

∑
Vi = 3Fv + 1, respectively.

These equations still lead to the same values of Fv and Vmax, but u becomes 2f instead of f . This
forces the system to have 2f replicas holding Vmax and ∆ + f + 1 replicas holding one vote (Vmin).
Moreover, it is necessary to gather 2Fv + 1 votes on each quorum, which makes Qv = 2Fv + 1. Finally,
a minimal quorum must be comprised by 2f + 1 replicas instead of f + 1. A complete description of
the BFT voting assignment scheme and its correctness proof can be found in the extended technical
report [287].
Additional resilience benefits: Besides the performance benefits, our voting assignment schemes
present three benefits in terms of resilience. First, it allows the system to tolerate more than f
crash faults in certain scenarios. For instance, in Fig. 5.9b, two of the Vmin replicas could fail by
crash and the protocol would still make progress without violating safety. However, this is not the
case if one of two failed replicas holds Vmax votes. Second, our assignment schemes could be used
to assign a higher number of votes to replicas on more reliable and available sites (instead of the
faster ones), improving thus the reliability and availability of the system. Third, when any of the
faster replicas is detected as slow or unavailable, BFT-SMaRt’s reconfiguration protocol [68] can be
used to redistribute votes, so that other replicas take the place of the ones that are no longer the
fastest. Notice that this approach is better than using BFT-SMaRt’s reconfiguration protocol to
replace unavailable replicas. Such replacement would require a state transfer, which can be a slow
operation for large state sizes and limited wide-area links. For example, a 4GB-state will take more
than fifty minutes to be transferred in a 10 Mbps network (which is better than most links between
EC2 regions). With our approach, the extra replicas are already active and up-to-date in the system,
so the reconfiguration takes approximately the time to execute a “normal” SMR operation. Finally, it
is worth mentioning that in the event that the systems experiences a period of high load, it is possible
that the minimal quorum becomes overloaded and unable to reply faster than other quorums, thus
forcing the system to make progress with different quorums. Nonetheless, any SMR protocol based on
quorum systems is subject to this issue.

5.4 Implementation and Evaluation

We implemented WHEAT by extending BFT-SMaRt for supporting the chosen optimizations (§5.3.1)
and considering replicas with different number of votes (§5.3.2). Most of the modifications to the code
took into account the vote assignment schemes that calculate the quorums used in the protocol.
We evaluated WHEAT by running a set of experiments in Amazon EC2 and comparing the results
with the original BFT-SMaRt system. As in the EC2 experiments reported in §5.2.5, we use sites on

SUPERCLOUD D3.2 Page 52 of 182

D3.2 - Specification of security enablers for data management

Sites Ireland So Paulo Oregon Sydney Virginia

Ireland 0 211 ± 10 171 ± 11 340 ± 11 88 ± 10

So Paulo 208 ± 14 0 217 ± 19 359 ± 4 123 ± 3

Oregon 171 ± 14 217 ± 11 0 205 ± 7 70 ± 12

Sydney 336 ± 26 359 ± 4 205 ± 10 0 255 ± 12

Virginia 88 ± 10 123 ± 4 71 ± 13 256 ± 5 0

Table 5.2: Average roundtrip latency and standard deviation (milliseconds) between Amazon EC2
regions as measured during a 24 hour-period.

 0

 200

 400

 600

B W B W B W B W W

La
te

n
cy

 (
m

ill
is

e
co

n
d
s) B= BFT-SMaRt, W= WHEAT

50th
90th

VirginiaSão PauloSydneyIrelandOregon (L)

(a) BFT Mode.

 0

 200

 400

 600

B W B W B W W

La
te

n
cy

 (
m

ill
is

e
co

n
d

s) B= BFT-SMaRt, W= WHEAT
50th
90th

VirginiaSydneyIrelandOregon (L)

(b) CFT Mode.

Figure 5.10: 50th/90th percentile latencies observed by BFT-SMaRt and WHEAT clients in different
regions of Amazon EC2.

Ireland, Oregon, Sydney and So Paulo (only in BFT mode) for BFT-SMaRt using also Virginia as
the additional replica of WHEAT. This means that the original version of BFT-SMaRt employed
4 replicas in BFT mode (resp. 3 in CFT mode) whereas WHEAT employed 5 replicas in BFT mode
(resp. 4 in CFT mode), with two of these replicas in North America. In BFT mode, the following
parameters were employed (obtained through the voting schemes described previously): Nv = 7,
Fv = 2, Vmax = 2 for the replicas in Oregon and Virginia. In CFT mode, the configuration was
Nv = 5, Fv = 2, Vmax = 2 for the replica in Virginia. We attributed the Vmax values to the these sites
because they were the ones with better connectivity to others, as shown in Table 5.2.
The median and 90th percentile latencies for each client location and protocol is presented in Fig. 5.10.
By employing the selected optimizations (§5.3.1) and using an additional replica in Virginia without
increasing the quorum requirements (i.e., three and two replicas for BFT and CFT, respectively),
WHEAT achieves, when compared to BFT-SMaRt, a 90th percentile latency improvement between
21% and 44% (BFT) and between 23% and 73% (CFT). Interestingly, the client in the leader region
(Oregon) observed significant improvements, with median latency values matching the roundtrip times
between Oregon and Ireland (BFT mode) or Virginia (CFT mode). This is a consequence of the fact
that this client is co-located with the leader in the most well-connected site of the system. Moreover,
upon considering all clients’ measurements together, we found that WHEAT improved the global
90th percentile by 35% (BFT) and 28% (CFT). The global median improvement is even higher: 37%
in BFT and 56% in CFT.
The improvements shown in this experiment should be taken with a bit of salt since they may be due
the use of an additional site with a good roundtrip latency with other replicas (see Table 5.2). If the
new replica used in WHEAT were added on an hypothetical Amazon EC2 region “moon” (instead
of Virginia), with a higher roundtrip latency with all other sites, the WHEAT results would be less
impressive since the faster quorums will be the same of BFT-SMaRt. The only benefits will be due
to the other optimizations (tentative executions for BFT and single-reply for CFT) implemented in
the system. Nonetheless, our results illustrate the fact that in a real geo-replication setup there are
significant benefits in assigning different weights to different replicas. Furthermore, even with the
required algorithmic support, it is important to choose the location of the spare replicas employed in
WHEAT, to ensure the minimal quorums will bring significant benefits.
A note on throughput: WHEAT aims to improve geo-replication latency, and thus all of its

SUPERCLOUD D3.2 Page 53 of 182

D3.2 - Specification of security enablers for data management

optimizations target this performance metric. However, the fact it uses ∆ more replicas than BFT-
SMaRt, implies it might achieve a slight lower peak throughput than the original system. This
happens because more replicas lead to more message transmissions, which results in higher CPU and
network bandwidth utilization. More precisely, each consensus instance on BFT-SMaRt requires
the exchange of 3f + 18f2 (resp. 2f + 4f2) messages in BFT mode (resp. CFT mode), whereas in
WHEAT it requires 3f + ∆ + 2(3f + ∆)2 (resp. 2f + ∆ + (2f + ∆)2) message exchanges. Although
undesirable, this drawback will only affect a saturated system, which is rarely the case in production
environments. Moreover, as discussed in §5.2.1, throughput can be improved by increasing CPU and
network resources, while latency can only be addressed by better protocols.

5.5 Related work

The criticality of modern internet-scale services have created the need for geo-replication protocols for
disaster tolerance, including whole-datacenter failures (e.g., [117]). Following this trend, several works
proposed strongly consistent WAN SMR protocols [35, 229, 304, 241].
Steward [35] is a hierarchical Byzantine fault-tolerant protocol for geographically dispersed multi-site
systems. It employs a hybrid algorithm that runs a BFT agreement protocol within each site, and a
lightweight, crash fault-tolerant protocol across sites. Even though Steward is able to perform well in
WANs (when compared with PBFT [96]), that comes at the cost of a very complex protocol (over ten
specialized algorithms that run within and among sites) that demands plenty of resources (e.g., each
site requires at least 4 replicas). Although we advocate the use of additional replicas for improving
latency in WHEAT, our protocol is not radically different from “normal” protocols, requiring no
specialized subprotocols or a specific number of replicas on a site.
Mencius [229] is an SMR protocol derived from Paxos [210] also optimized to execute in WANs. Like
Paxos, it can survive up to f crashed replicas out of at least 2f + 1. Replicas take turns as the leader
and propose client requests in their turns. Clients send requests to the replicas in their sites, which
are submitted for ordering when the replicas become the leader. EBAWA [304] is a Byzantine-resilient
SMR protocol optimized for WANs. It considers a hybrid fault model in which each replica uses
a local trusted/trustworthy service (that cannot be compromised) to provide tolerance to up to f
Byzantine faults using only 2f + 1 replicas. Similarly to Mencius, it uses a rotating leader to allow
clients to send requests to the replicas that are close to them. Egalitarian Paxos (EPaxos) [241] is a
recent SMR protocol also derived from Paxos and designed to execute in WANs. Unlike most SMR
protocols inspired by Paxos, EPaxos does not rely on a single designated leader for ordering operations.
Instead, it enables clients to choose which replica should propose their operations, and employs a
mechanism for solving conflicts between interfering operations. Differently from Mencius, EBAWA
and EPaxos, WHEAT does not employ any mechanism to make clients use their closer replicas as
leaders/coordinators/proposers. Our decision to avoid this optimization comes from observing that
having a leader in the same site as the client gives less benefits in terms of latency than using the
fastest replica as the leader.
Weighted replication was originally proposed by Gifford [162], and then revisited by Garcia-Molina [157]
and Pris [262]. While Gifford made all hosts hold a copy of the state with distinct voting weights,
Pris made a distinction between hosts that hold a copy of the state and hosts that do not hold such
copy, but still participate in the voting process (thus acting solely as witnesses). More recent works
confirmed the usefulness of these ideas also for performance by showing that adding few servers to
a group of replicas can significantly improve the access latency of majority quorums [51], and the
same kind of technique is being used in practical systems to improve tolerance to slow servers [129].
By contrast, Garcia-Molina addresses the idea of weighted replication in [157] for coterie systems,
which later evolved into the classic quorum systems without including vote distribution. Unlike our
approach, none of these works target geo-replication: [262] and [157] are strictly theoretical contribu-
tions and [162] considers a local datacenter. To the best of our knowledge, we present the first vote
assignment scheme that unpacks a weight distribution in function of the expected number of faults

SUPERCLOUD D3.2 Page 54 of 182

D3.2 - Specification of security enablers for data management

and the amount of spare replicas available in the system.
There are empirical studies which evaluate the availability of quorum systems (e.g., [36, 51]), the
latency of distributed algorithms over the internet (e.g., [50]) and the performance of different total
order broadcast protocols – a fundamental building block for SMR – over a WAN (e.g., [40, 142, 277]).
Our experiments have a different goal: instead of evaluating the performance of distinct protocols,
we compare geo-replication-related optimizations employed by different protocols, but implemented in
the same codebase, to validate the effectiveness of these optimizations in real WANs.

5.6 Conclusion

In this chapter we revisited some optimizations proposed in the literature for improving the latency
of SMR protocols in wide area networks. More concretely, we implemented such optimizations in an
open-source SMR library and compared its latency with a non-optimized version in the PlanetLab
testbed and Amazon EC2 cloud to assess which of these optimizations bring significant benefits. Our
results indicated that removing communication steps and demanding less replies from replicas lead
to latency reductions of up to 20%, depending on the hosts and fault model. Surprisingly, using
the closer replica as the leader held less benefits than what was expected. These results guided our
design for WHEAT, an SMR protocol optimized for geo-replication that can be configured either for
crash-only or Byzantine fault tolerance. WHEAT was implemented by extending BFT-SMaRt with
the optimizations we observed as most effective and implementing novel vote assignment schemes for
efficient quorum usage. Our evaluation showed gains of up to 56% for certain configurations, when
compared with the unmodified BFT-SMaRt.

SUPERCLOUD D3.2 Page 55 of 182

D3.2 - Specification of security enablers for data management

Chapter 6 Elastic State Machine Replication

As discussed in previous chapters, State Machine Replication (SMR) is a well-known approach to
replicate a service for fault tolerance [278]. The key idea is to make replicas deterministically execute
the same sequence of requests in such a way that, despite the failure of a fraction of the replicas,
the remaining ones have the same state and ensure the availability of the system. Many production
systems use this approach to tolerate crash faults [7, 11, 88, 79, 100, 117, 181], mostly by implementing
Paxos [210] or a similar algorithm [189, 248, 250].
A critical limitation of the basic SMR approach is its lack of scalability: (1) the services usually need
to be single-threaded to ensure replica determinism [278], (2) there is normally a leader replica which
is the bottleneck of the SMR ordering protocol, and (3) adding more replicas does not improve the
system performance. Different techniques have been developed to deal with these limitations. Some
works propose SMR implementations that take advantage of multiple cores to execute requests in
parallel [198, 169, 192], solving (1). Although effective, the improvements are limited by the number
of cores available on servers. In the same way, some unorthodox protocols spread the additional
load imposed to the leader among all the system replicas [229, 241]. These protocols solve (2), but
scalability remains limited because every replica still needs to execute all the operations.
A recent line of work proposes partitioning of the SMR-based systems in multiple Replicated State
Machines (RSMs) [163, 253, 117, 258] for addressing (3). Although partitioning solves the scalability
of SMR, the existing solutions are quite limited in terms of elasticity, i.e., the capacity to dynamically
increase (scale-out) and decrease (scale-in) the number of partitions at runtime. More specifically, some
scalable systems consider only static partitions [258, 253], with no elasticity at all, while others [163,
117] provide dynamic partitioning through ad-hoc protocols that are executed in the background to
avoid performance disruption, but with negative implications on the time needed to complete the
partitioning.
This chapter introduces a generic partition transfer primitive (and protocol) that enables SMR-based
services to be elastic and more fitted to the Cloud environment. The proposed protocol is designed to
perform partition transfers efficiently and with minimal perturbations on the client-perceived perfor-
mance on top of any existing SMR protocol.
Although SMR was traditionally employed for building metadata and coordination services (e.g., [88,
79, 181]), recent works have been pushing the use of this technique for implementing high-performance
storage services [7, 11, 117, 67, 70, 253, 268, 313]. Elastic SMR gives these services the ability to
increase and decrease their capacity in terms of storage and throughput. Figure 6.1 illustrates three
situations in which such elasticity might be beneficial. A group G is used up to its maximum load
capacity and, then, the state managed by this group is split to another group L to balance the load
among the two groups and open room for the system to handle more work. When two groups are
processing requests, a non-uniform access pattern might unbalance the load handled by the two groups,
as shown in the second case. Here, part of the state of the overloaded group G can be transferred
to the underloaded group L to rebalance the system. Finally, if the load decreases and one of the
partitions becomes underutilized, it is possible to merge the state of the two groups in a single RSM,
for freeing the underutilized resources.
An important issue in elastic systems is to define when and how to perform reconfigurations like the
ones shown in Figure 6.1. There are many works on dynamic resource configuration managers [202, 246,
155], which decide when and how to adapt according to specified policies. A fundamental parameter

SUPERCLOUD D3.2 Page 56 of 182

D3.2 - Specification of security enablers for data management

Rebalance load
by migrating heavily
accessed partition to
another replica group

G

Split state to create
more storage and

processing capacity

Merge state to
better use
resources

G L

G L G L

G L L

Figure 6.1: Reconfigurations of a partitionable RSM.

used in these systems is the amount of time required for deploying a new server and make it ready to
process requests, i.e., the setup cost. A high setup cost always discourages reconfigurations, leading
to over-provisioning and increased operational costs [155]. Given that, it is extremely important to
reduce the setup cost.
In contrast to a stateless service, where servers start processing requests as soon as they are launched,
in a stateful service a partition transfer must be performed before a server starts processing requests.
As a result, the setup cost increases. Therefore, tackling the cost of performing a partition transfer
is crucial when stateful services are deployed on cloud systems in order to meet the requirements
defined in Service Level Agreements (SLA). Usually, elastic stateful systems rely on distributed cache
layers [247], write-offloading [244] and, ultimately, over-provisioning [155]. These techniques are useful
to create buffers to either absorb unexpected load spikes or buy time for the stateful backend to
reconfigure. In this work we challenge this design, at least for an important class of systems (SMR- or
Paxos-based systems), and define a principled way for replicated stateful systems to scale-in and -out
efficiently, for non-negligible partition sizes and workloads.
We implement our partition transfer protocol in an existing state machine replication programming
library, and build a strongly-consistent elastic key-value store on top of it. We evaluate this system by
performing several scaling operations, measuring the duration of partition transfers and the impact of
these reconfigurations on the latency and throughput of the system. Our results show that the proposed
solution effectively supports fast reconfigurations, allowing the system to quickly adapt to changes in
its workload, something that is not achievable in current elastic (stateful) systems [116, 121, 196].
In summary, the contributions of this work are:

1. Surveys how elasticity is (or can be) implemented in existing SMR-based services and experi-
mentally demonstrates their inefficiencies (§6.1);

2. Introduces a modular partition transfer primitive and protocol that enables SMR-based services
to efficiently split and merge its state (§6.2);

3. Describes an implementation of this primitive in an open-source SMR library (§6.3);

4. Provides an extensive evaluation of the partition transfer protocol assessing its impact on key
SLA-related metrics such as the duration of the reconfiguration process, the service throughput
and the operation latency (§6.4).

SUPERCLOUD D3.2 Page 57 of 182

D3.2 - Specification of security enablers for data management

C 1. Get Partition 2. Write Partition

3. Delete Partition

(a) Client-based partition transfer.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000
 0

 20

 40

 60

 80

 100

k
o
p
e
r/

s

9
9
%

-i
le

 (
m

s
)

Time (sec)

Split (981s)

Throughput
Latency

(b) Blocks of 4MB.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200
 0

 20

 40

 60

 80

 100

k
o
p
e
r/

s

9
9
%

-i
le

 (
m

s
)

Time (sec)

Split (1220s)

(c) Blocks of 16MB.

Figure 6.2: A client-based protocol for partition transfer between RSMs with throughput and operation latency
observed by clients during a 4GB-partition transfer operation (in multiple blocks of 4MB and 16MB).

6.1 Elasticity for RSMs

Dividing a RSM in multiple independent shards allows the system to scale linearly with the number
of servers (as long as most operations affect a single partition). Most works following this approach
assume statically defined partitions. The few that do support dynamic state partitioning [117, 163],
neither specify how the partition is transferred to the new set of replicas nor how to make such
transference as fast as possible and with minimal performance interference on the system. Having a
partition transfer primitive for executing the operations illustrated in Figure 6.1 will allow SMR-based
services to grow and shrink with the demand, thus supporting elasticity. In this section we discuss
some potential solutions for implementing such primitive and discuss their limitations.

6.1.1 Partition transfer in existing RSMs

None of the classical SMR protocols support a primitive for dynamically creating partitions. However,
this functionality can be added to an existing SMR-based service with minor or no modifications to
the replication code. In the following we describe and evaluate two simple solutions that can be easily
integrated in existing protocols. The objective is to characterize a baseline performance, which can be
obtained with such straightforward approaches.

6.1.1.0.1 A client-based solution.

Our first candidate solution can be integrated to existing systems by adding three new operations on
its interface, without modifying the replication code. As shown in Figure 6.2a, the idea is to have a
special client (coordinator), that moves part of the state from a source RSM to a destination RSM,
which will host the partition. To ensure there is no violation on the consistency of the service, the
source RSM stops serving the transferred partition right after the first step, although this data is only
deleted after it is installed in destination RSM.
Unfortunately, this straightforward design does not work well for large partitions. We implemented
this protocol in a simple consistent key-value store built on top of BFT-SMaRt1 [68] and conducted
experiments to illustrate the mentioned problem. We used the YCSB benchmark read-heavy workload
(95% reads and 5% writes) [116] to measure the performance of the system during a 4GB-partition
transfer. Figures 6.2b and 6.2c show the throughput and the 99-percentile latency, calculated at every
2 seconds interval (see details about our experimental environment and methodology in §6.4), when
the protocol described above is used for transferring 1024 blocks of 4MB and 256 blocks of 16MB.
The figures show that transferring a 4GB-partition takes 16.5 minutes, almost 21× more than a
4GB-transfer between two machines using rsync (see §6.4.1). More importantly, client operations
accessing the block being transferred are blocked until the operation completes, causing spikes on the
latency. This effect is more prominent when larger key-value blocks are transferred (Figure 6.2c), as

1Despite its name, BFT-SMaRt can be configured to tolerate only crash faults, using a protocol similar to Paxos [210].
This is the configuration used in this work.

SUPERCLOUD D3.2 Page 58 of 182

D3.2 - Specification of security enablers for data management

1. Add replicas
(reconfiguration)

3. Partition state
(new operation)

2. Synchronize state
(reconfiguration)

(a) Reconfiguration-based partition transfer.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250
 0

 20

 40

 60

 80

 100

k
o
p
e
r/

s

9
9
%

-i
le

 (
m

s
)

Time (sec)

Reconf (238s)

+3R

Throughput
Latency

(b) Adding 3 replicas at once.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

k
o
p
e
r/

s

9
9
%

-i
le

 (
m

s
)

Time (sec)

Reconf (599s)

+R +R +R

(c) Adding 1 replica at a time.

Figure 6.3: A reconfiguration-based protocol for partition transfer between RSMs with throughput and oper-
ation latency observed by clients during a 4GB-partition transfer operation.

the throughput decreases and latency spikes occur. When we transfer the whole 4GB-partition at once
(not shown), the system stops serving client operations for 10 minutes.
In conclusion, despite the modularity of this naive protocol, it is clearly too disruptive and slow to be
used in a practical elastic system.

A reconfiguration-based solution.

Another solution to dynamically manage partitions with no significant modifications on the replication
code is to make use of SMR group reconfiguration, present in many practical protocols [210, 250, 241,
68, 284, 219]. This solution is being implemented for splitting groups in CockroachDB [7], an open-
source version of Google Spanner [117] (which is described in §6.5).
SMR reconfiguration protocols allow the addition, removal and replacement of replicas within a single
group. Adding a replica to a group means that the replica starts participating in the SMR ordering
protocol, thus being able to process client requests. However, before processing such requests, new
replicas must also be brought up to date by retrieving the state from the other members of the group.
In contrast, removing a replica means that it stops participating in the ordering protocol.
Figure 6.3a illustrates the three main steps required for executing a split on a group of three replicas.
First, three replicas are added to the source group using SMR reconfiguration. Second, and still within
the reconfiguration, new replicas receive a copy of the RSM state. The experiments uses BFT-SMaRt
“classical” state transfer protocol [68, 96], in which the new replica fetches the service state from one
of the old configuration replicas and validates it using hashes obtained from other f replicas from the
same configuration. Apart from the hash validation, this protocol is similar to what is employed in
popular protocols and systems like Paxos [210], RAFT [250] and Zookeeper [181]. When the state
transfer completes, a message is sent to all replicas to update their state metadata in a way that each
half of the state is served by half of the replicas. In the end, each replica changes its replication layer
to consider only the replicas responsible for the same part of the state as its group.
To understand the limitations of this protocol, we executed an experiment similar to the one described
before, i.e., a 4GB-partition transfer. In this experiment, we were only concerned with the effect on
the performance during the first two steps of the protocol, as the third one implies no substantial data
transfer (see Figure 6.3a). Figures 6.3b and 6.3c show the effect on the throughput and latency during
the reconfiguration of the replica group.
When three replicas are added in a single reconfiguration (represented by +3R in Figure 6.3b), the
transfer of 4GB to the new replicas takes nearly 4 minutes, but the operation has huge negative effects
on the system performance. In particular, the system stops processing requests for more than 60
seconds. This happens because as the source group size suddenly increases to six replicas, the required
quorum (simple majority) for ordering requests increases to four replicas, of which one is necessarily
a new one. Given that, a newly added replica is only able to process requests after it recovers the
group state, the system will stop until the 4GB-state transfer is completed. These side effects of state
transfer in RSMs were also studied in previous works [67].
A natural idea to avoid such undesirable effect is to add replicas one at a time, allowing a newly added
replica to complete the reconfiguration procedure before adding another one. Figure 6.3c shows an

SUPERCLOUD D3.2 Page 59 of 182

D3.2 - Specification of security enablers for data management

 0

 20

 40

 60

 80

 100

 0 100 200 300 400
 0

 20

 40

 60

 80

 100

k
o
p
e
r/

s

9
9
%

-i
le

 (
m

s
)

Time (sec)

Split (342s)

Throughput
Latency

Figure 6.4: Throughput and operation latency observed by clients during a 8GB state redistribution in Cas-
sandra.

execution of this setup, with each replica addition represented by a +R. The figure shows that, instead
of having a long period in which the system stops, there are three short spikes/drops on the system
latency/throughput. However, the drawback of this approach is that the full reconfiguration takes 10
minutes to complete (more than three minutes per reconfiguration), 2.4× more than with the previous
strategy.
Overall, the key problem of the reconfiguration-based partition transfer is that the new replicas first
have to receive the whole state, and only then split the group in two (discarding the unnecessary
portion of the state).

6.1.2 Partition transfer in Non-SMR Databases

Given the impressive amount of work on elastic/cloud-enabled databases (see discussion in §6.5), an
interesting question would be if the techniques employed in these services could be a solution for trans-
ferring partitions in RSMs. Systems like Cassandra [207], PNUTS [115] and Dynamo [130] support
split and merge operations to handle changing workloads. However, even though the weakly-consistent
replication protocols employed in these systems favor a scalable and elastic design, some recent works
show that both their latency and throughput are significantly affected during reconfigurations of the
replica set [116, 136, 121, 301].
We investigated how Cassandra [207] behaves when a three-replicas group hosting an 8GB database
(in each replica) is scaled-out to six replicas (with 4GB each). The experiment considers the same
read-heavy workload used before, with 200 clients accessing the database. After an initial warm up
phase, we added three more servers, one at every 2 minutes, respecting the recommendations for the
system [6]. To ensure consistency guarantees close to an SMR system, we configured the system to
use a replication factor of 3 and quorums of 2 servers for both reads and writes.
Figure 6.4 shows the 99-percentile of the operation latency and the throughput during this experiment
using disks. The results show that the whole process took nearly 6 minutes to complete. This happens
because Cassandra employs a conservative design in which data transfers are judiciously done in
background to minimize performance disruptions, which nonetheless occur, as can be seen by the
latency spikes.
Other popular elastic databases implement such conservative design, and thus suffer from similar
problems [116, 136]. In fact, the idea of performing state transfers in background have been used in
other production systems for implementing replica recovery or reconfigurations (e.g., Zookeeper [181]),
with the same rationale. In conclusion, despite these elastic databases being able to adapt their size
to address changes in demand, such conservative design will always lead to a high setup cost for such
systems.

SUPERCLOUD D3.2 Page 60 of 182

D3.2 - Specification of security enablers for data management

6.2 Partition Transfer for RSMs

A key contribution of our work is the introduction of a partition transfer primitive and protocol in
the SMR programming model. This primitive allows a replicated state machine G to transfer part of
its state to another replicated state machine L, respecting the following requirements:

1. Protocol agnosticism: RSMs require protocols that order requests for implementing coordinated
state updates and ensuring strong consistency. These protocols are complex to understand and
far from trivial to implement [100]. A requirement of our solution is to not change the SMR
protocols and use them as black-boxes for supporting ordered request dissemination in RSMs.

2. Preserve linearizability: A fundamental property of a RSMs is that it implements strong con-
sistency. We want to maximize parallelism between operation execution and partition transfer
without sacrificing the consistency of the service (i.e., linearizability [175]).

3. Performance: In the same way, we want to minimize the performance perturbations on the system
during a partition transfer, while we minimize the time required for transferring a partition in
modern datacenter setups.

In the following we first describe our assumptions about the environment and the elastic service
(§6.2.1) and then present the partition transfer protocol (§6.2.2) and its correctness proof (§6.2.3). We
conclude the section with a discussion of how to integrate our protocol with two existing approaches
for executing multi-partition operations (§6.2.4).

6.2.1 System Model

Environment.

We consider a system with an unlimited number of processes, which can be either clients accessing a
service or servers implementing the service, that can be subject to Byzantine faults. Therefore, the
proposed protocol can tolerate state corruptions and thus be used in BFT systems [68, 96] as long as
the total order multicast primitive employed tolerate Byzantine faults. Alternatively, if applied to a
crash-tolerant replicated state machine, our protocol only tolerate crashes, but still preserving some
state corruption validation due to its BFT design.2

Additionally, we require the standard assumptions for ensuring liveness of RSM protocols [210, 96,
250]. Processes communicate through fair channels that can drop messages for arbitrary periods but,
as long as the message keeps being retransmitted, it will be received in the destination [225]. In
terms of synchrony, we assume a partially synchronous distributed system model [141] in which the
system can behave asynchronously for an unknown period of time, not respecting any time bound on
communication or processing, but eventually will become synchronous.

Service.

Figure 6.5 illustrates the elastic SMR service. Clients invoke operations on a service by sending
messages to the set of servers hosting it. Servers are organized in groups providing a stateful service
as a replicated state machine. Each group of servers has n replicas and tolerates up to f simultaneous
faults. We refer to group G as replicated state machine G. A RSM is accessed through a replica
coordination protocol that ensures a strongly consistent operation. In practice, this means a consensus
protocol will be used to ensure that requests are delivered to the replicas in total order (TO) [278]. We
use TO-multicast and TO-receive to denote the transmission and reception, respectively, of messages
in total order.

2In the evaluation of the protocol we considered its application to replicated systems tolerating only crash failures,
since this allows reaching higher levels of system throughput and hence creates more stressful scenarios for the purpose
of evaluating the reconfiguration performance. Therefore, in the evaluation we used BFT-SMaRt configured for crash
fault tolerance.

SUPERCLOUD D3.2 Page 61 of 182

D3.2 - Specification of security enablers for data management

invoke

SMR Client Side

Client App.

…

SMR Server Side

Service

Durability

Partition Transfer

execute

Stable
Storage

get/setState

execute get/setState

SMR Server Side

Service

Durability

Partition Transfer

execute

Stable
Storage

get/setState

execute get/setState

Clients

Group G Group L

Figure 6.5: A partitionable and durable replicated state machine.

We assume that the service state SG of group G can be partitioned in a number of closed partitions
s1, ..., sp, in the sense that operations (and in particular, updates) submitted to the service affect only
one of these partitions. For example, a key-value store can be partitioned in several key ranges such
that each put/get will be executed on only one of them.
In the following we describe the partition transfer protocol considering only operations performed
on a single partition. Later on we explain how the protocol can be integrated with multi-partition
operations.

6.2.2 Partition Transfer Protocol

The partition transfer protocol is encapsulated in a primitive ptransf (PS,L) that can be invoked in a
replicated state machine G to make its replicas transfer the partition specified in PS (e.g., a key-range)
to a replicated state machine L.
Figure 6.6 presents and illustrates the six-step protocol for implementing ptransf. The core idea of
the protocol is to leverage the fact that all correct replicas (of both groups involved in the partition
transfer) execute their operations in total order, mimicking a centralized server. In this way, it is
possible to ensure that all correct replicas of G execute operations in PS until a certain point in
the totally ordered history of executed operations, and then start redirecting further requests for this
partition to the new group L (Step 4). Since partitions can be arbitrarily big, we use copy-on-write
to make G store all executed updates in the partition specified in PS during its transfer to L (Step
2). Such updates are transferred after the state is received by a quorum of replicas in L (Step 5) and
ptransf concludes (Step 6). The objective is to minimize interruptions to request serving in PS – these
will occur only during the transfer of the updates ∆ that were executed during the state transfer.
Several considerations can be made about the partition transfer protocol. First, our solution is com-
pletely modular with respect to the SMR protocol [210, 96, 68] or even the durability strategy [67]
implemented in the system. This is quite important for reusing the already available protocols.
Second, we opted to perform full partition transfers between pairs of replicas, having one single replica
in the source group transmitting to one single replica in the destination group. This design option
makes our system bandwidth-efficient in multi-rack and virtualized environments. This pairwise trans-
fer is executed after replicas of G connect with their corresponding paired replica in L (Step 2), which
is done through a deterministic bijective function mapping between every replica from G to one replica
from L. We envision scenarios in which the replicas of a group will be deployed in different racks (or
physical machines) to avoid correlated faults and will have to transfer a partition to another set of
replicas deployed in the same racks (or physical machines), ensuring such transfer will be done within
the rack network boundaries, without using the (usually) oversubscribed network core.
Third, even if only crash faults are considered, we opted to provide a more general Byzantine-resilient
protocol in which data corruptions are detected and recovered (through hash comparisons and state
fetching, in Steps 3 and 5). This is important to ensure that even under the most uncommon failure

SUPERCLOUD D3.2 Page 62 of 182

D3.2 - Specification of security enablers for data management

RSM Partition Transfer Protocol

(1)  ptransf(PS,L) is TO-received by group G

(2)  Each replica Ri of G sends the state S corresponding to partition
spec. PS to its pair R’i in L, and H(S) to the other members of L

-  From now on, every update on state S will be logged in Δ

(3)  Replica R’i in L accepts S when it is fully received together with f
matching hashes from other replicas of G. R’i sets its state to S
and TO-multicast an ACK to group G

-  If f +1 matching hashes (different from H(S)) are received, R’i fetches a
matching state from some replica from G or L

(4)  When Ri of G TO-receives n-f ACKs from replicas in L, it sends
Δ to its pair replica R’i in L and H(Δ) to the other replicas of L

-  From now on, replicas of G stop serving requests related to PS and redirect
such requests to L

-  Requests related to PS received by replicas of L are put on hold

(5)  A replica R’i in L accepts Δ only if it receives f matching hashes
from other replicas of G. R’i then applies Δ to its state and sends
an ACK to the replicas of G

-  If f +1 matching hashes (different from H(Δ)) are received, R’i fetches a
matching update list from some replica from G or L

-  The replicas of L start processing the PS-related requests that were on hold

(6)  When a replica Ri of G receives n-f ACKs from L, it sends an
ACK to the invoker of ptransf(PS,L)

R1

Group G

R2

...

Rn

requests
replies

Group L

ptransf(PS,L)

Group G Group L

S

Group G Group L

ACK
R1

Group G

R2

...

Rn

R1

Group L

R2

...

Rn

R1

R2

...

Rn

R1

R2

...

Rn

ACK
R1

R2

...

Rn

R1

R2

...

Rn

ACK

Group G Group L Group G Group L

(1) (2)

(3) (4)

(5) (6)

R1

R2

...

Rn

R1

R2

...

Rn

R1

R2

...

Rn

R1

R2

...

Rn

R1

R2

...

Rn

R1

R2

...

Rn

requests replies

requests

requests
replies

requests requests
redirect to L replies

requests
replies

requests
replies

requests
redirect to L

Δ

TOM

H(S)

H(Δ)

Figure 6.6: The partition transfer (ptransf) protocol.

modes [171] the destination group will still start accepting operations for the transferred partition
with all its correct replicas in the same state. More specifically, at the end of the protocol at least
n− f replicas of L have the correct state for the partition. Note that the protocol does not preclude
the case in which some correct replica of group L finishes the protocol with an invalid state. However,
there will be a sufficient number of correct replicas in L with the correct state, and thus normal state
transfer protocols for durable state machine replication can be applied, both in the crash [210, 250]
and Byzantine fault models [96, 67]. This implies that all replicas in the group can start processing
requests in the same state [278].
Fourth, consensus is employed only in two phases of the protocol (but encapsulated in the total order
request delivery of the RSM): Step 1, when the ptransf primitive is invoked, and Step 3, when all
replicas of L invoke RSM G to inform about the hash of the received state. Regarding Step 3, when
the replicas of G receive n − f matching ACKs from different replicas in total order, they send the
same set of updates to the replicas in L. Notice that the (n−f)-th matching ACKs will be received in
the same point of the execution history of all correct replicas of G, ensuring they will stop executing
requests for PS in a coordinated way.

6.2.3 Correctness Argument

The ptransf operation must satisfy the following properties:

• Safety 1: When ptransf completes, the transferred partition will not be part of the source group
state and will be part of the destination group state;

• Safety 2: Linearizability of the service is preserved by the partition transfer;

• Liveness: ptransf eventually completes.

Safety 1 is satisfied due to the fact that both the state (Step 2) and the updates (Step 4) are transferred.
Moreover, after sending the updates (Step 4), the original group will not execute any other operation
for the partition.

SUPERCLOUD D3.2 Page 63 of 182

D3.2 - Specification of security enablers for data management

Safety 2 is a bit more tricky to show, since we need to take into consideration the definition of
linearizability [175]. A service execution is linearizable if every execution history (containing requests
and replies for client operations) is linearizable. We say that an operation is linearizable if the extension
of a linearizable history with its request and reply still makes the history linearizable.
Linearizability is ensured in RSMs due to the fact that all requests are executed in total order by
correct replicas. Consequently, every executed operation needs to produce a reply that considers all
previously executed operations.
Let G be an initial group of replicas with state Spart ∪ Srem and L a group of replicas that will receive
a partition Spart. Recall that the system is partitionable, i.e., every operation either accesses Spart
(the partition to be transferred) or Srem (the remaining partition), as defined in §6.2.1. This means
that the system is linearizable as long as the sub-histories containing operations for Spart and Srem
are linearizable [175].
Since the service provided by the RSM G ensures linearizability, the operations for Srem are linearizable.
Due to the same reason, the operations for Spart executed before ptransf(part, L) are linearizable.
When ptransf(part, L) is received, the state Spart resulting from all previously executed operation for
the partition is transferred to L (Step 2). Every operation for part executed between Steps 2 and 3
is executed in G, and linearizability is maintained. These operations are stored in ∆ and transferred
to L in Step 4. After this point, G stops executing operations for part. As specified in Step 5, these
operations are only executed by L after this step, when this group already received Spart and applied
the updates in ∆. Consequently, after this point, these operations will reflect all previously executed
operations for part, ensuring the linearizability of the partition.
Liveness is satisfied due to the fact that all six steps of the protocol terminate. This happens because
(1) the total order multicast primitive employed in the protocol terminates in our system model (Steps
1 and 3); (2) the fair link assumption implies that both the state (Step 2) and the update list (Step 4)
can be transferred in finite time; (3) if a replica does not receive the state or update list that matches
f hashes, there will be f + 1 hashes matching some other state and list, and this state can be fetched
(Steps 3 and 5); and (4) all correct replicas will send ACKs to the original replicas, and thus these
replicas will receive n− f messages to make progress (Steps 3 and 5).

6.2.4 Multi-partition Operations

In the following we describe how ptransf can be integrated with two existing approaches for sup-
porting multi-partition operations, namely, the S-SMR protocol [258] and Spanner multi-partition
transactions [117].

S-SMR.

S-SMR [258] considers a linearizable service with its state statically partitioned among several groups
(partitions). Each group is composed by a set of replicas that implement a replicated state machine.
Single-partition operations are executed only on individual groups, but the system also supports multi-
partition operations, which require coordination of multiple groups.
More specifically, a multi-partition operation works as follows. First, the client determines which
groups must participate in the operation and sends the operation to each of these groups using
TO-multicast. Second, after ordering the requests (individually, on each group) the groups exchange
all the necessary data to process the operation. Next, each group executes the operation and signals
its completion to the other groups. After all groups involved were signaled, the result is returned
to the client. The basic trick here is to block conflicting operations and execute them in sequence,
preserving linearizability [258].
To integrate ptransf with S-SMR, we need to make two modifications on the original protocol. First,
after a reconfiguration, the system needs to update the partition info to allow clients to find the
new partitions. Second, operations can not be processed while Steps 4 and 5 of ptransf are being
performed in the source group G. Operation execution can only be resumed after this group receives

SUPERCLOUD D3.2 Page 64 of 182

D3.2 - Specification of security enablers for data management

n − f totally-ordered ACKs from the destination group L. This guarantees that the partition state
and its differences were received by L, ensuring the consistency of the service.
When the partition transfer finishes, source group G may still hold multi-partition operations that can
not be executed since it is no longer responsible for the data required by them. In this case, G signals
the other groups involved in the operation, and the client receives a redirect message, restarting the
multi-partition operation in the updated groups.

Spanner.

Similarly to S-SMR, in Spanner [117] the application state is partitioned in tablets hosted on several
groups. Each group is composed by a set of replicas that implement Paxos state machines to maintain
shards of a database.
The steps to process a multi-partition transaction are the following. First, a client communicates with
a proxy location to determine which groups maintain the data touched by the transaction. Second,
the client retrieves this data from the groups, acquiring locks for them. Next, the client executes
its transaction locally, chooses one of the groups involved in the transaction as a coordinator group
C, and sends the result and the id of C to all groups involved in the transaction. Finally, group C
coordinates a two-phase commit with the other groups for committing the transaction.
To integrate Spanner transactions with ptransf we need to slightly modify Steps 4 and 5 of our
protocol to account for the way locks are managed in Spanner. More specifically, while the partition
is being transferred, its associated data must be locked. The source group only releases the locks after
receiving n− f totally-ordered ACKs from the destination group. This guarantees the consistency of
the service as the partition state and its differences are received by the other group. When a client
tries to access the data in the transferred partition, it receives a redirect message and aborts the multi-
partition transaction. Eventually, the proxy location server is updated and the client can re-execute
the transaction in the updated groups.

6.3 Implementation

We implemented our partition transfer protocol in an elastic storage infrastructure called CREST,
whose architecture is depicted in Figure 6.7.

Clients(Clients(

Front,end(

Manager(

Lookup(
server(

ptransf
updates

lookups

requests

R1
R2
…..
Rn

R1
R2
…..
Rn

Clients(Clients(

Front,end(

Clients(Clients(

Front,end(

Figure 6.7: CREST architecture.

In CREST, clients send requests to stateless Front-ends exposing a key-value interface including oper-
ations such as GET and PUT. The Front-ends use the Lookup server to discover which group serves a
certain key. All data is sharded across the groups. The Manager triggers reconfigurations by sending
ptransf commands to the groups.
We implemented the ptransf protocol on top of the BFT-SMaRt [68] replication library. Our imple-
mentation follows the model described in Figure 6.5, with the partition transfer layer implemented

SUPERCLOUD D3.2 Page 65 of 182

D3.2 - Specification of security enablers for data management

between the durability management [67] and the service (in this case, a key-value store). The pairwise
transfer of the partition state and update list (see Steps 2 and 4 in Figure 6.6) is implemented over
dedicated sockets, to minimize interference with the normal processing of client operations. To seri-
alize the key-value store partitions we used a serialization library called Kryo [13]. All updates and
partition transfers are written to the replicas log, in durable storage. We parallelize the writing of
state to the storage device (including buffer flushing) with other steps of the protocol, leveraging the
fact that (1) the original group will only delete the transferred state after Step 5 and (2) the receiving
group disk is idle during a state split since it only starts executing and logging requests after Step 5.
The Lookup server and the Front-ends were implemented as Java servers, and the Manager as a Java
client. As already mentioned, a Front-end is just a soft-state proxy. The Lookup server holds a map
between intervals of keys and groups. For each Front-end request, the Lookup server returns a key
interval and a group. In this way, the number of lookup operations can be minimized as the Front-end
caches key locations. The Manager is responsible to send ptransf commands to the groups in order
to perform reconfigurations. After every reconfiguration process, the Manager updates the Lookup
server map.

6.4 Evaluation

We evaluate our partition transfer algorithm within CREST by assessing the duration of a partition
transfer and how it affects the service throughput and operation latency observed by clients generating
different workloads on the system.

Setup.

All experiments were conducted in a cluster of 18 machines interconnected by a gigabit ethernet
switch. Each machine has two quad-core 2.27 GHz Intel Xeon E5520 with 32 GB of RAM memory,
a 146GB 15k-RPM SCSI disk and a 120GB SATA Flash SSD. The machines run Linux Ubuntu
Trusty with kernel version 3.13.0-32-generic for x86 64 architectures with Oracle Java 1.7.0 80-b15.
In these experiments we avoided using VMs and dynamic resource configuration managers to capture
the performance of the partition transfer protocol without the VM setup overhead.
Unless stated otherwise, the experiments were executed with BFT-SMaRt configured for crash fault
tolerance, with groups of three replicas (tolerating a single fault).

Methodology.

Our setup considers an 8GB database where small-string keys were associated with 4kB values. We
used two YCSB workloads in our experiments [116]: the read-heavy workload, with 95% of get and 5%
of put operations (95/5), since it is similar to what is reported in several production systems [79, 115,
117] and in some related works (e.g., [301]); and the write-heavy workload, with an equal distribution of
puts and gets (50/50) to exercise our protocol under a heavy update load. Clients access keys following
a Zipfian distribution. This setup and workload creates a reasonable but demanding scenario for an
SMR-based storage system [68, 67, 70].
Our experiments consider partition transfers of 4GB (half of the KV-store), either in a single ptransf
execution or in multiple executions of ptransf, for transferring smaller blocks of 16MB and 256MB
(approximately 256 and 16 protocol executions, respectively).

6.4.1 Partition Transfer on an Idle System

Our first experiment measures the time our protocol takes to transfer 4GB of state between two RSMs
without any client-imposed workload. The results are presented in Table 6.1, which also contains the
duration of the same transfer using the client- and reconfiguration-based solutions described in §6.1.1,
considering the state maintained in both SSDs and disks. We also present, as a reference, the duration

SUPERCLOUD D3.2 Page 66 of 182

D3.2 - Specification of security enablers for data management

of a 4GB-file transfer between two machines using rsync [23], a widely-used tool for synchronizing files
between two machines.

System Disks SSDs

ptransf 54± 1 64.40± 2.97
client (4MB) 802.3± 3 823.3± 1.1
client (16MB) 855± 3.78 873± 5.0
reconfig (+3R) 201± 8.1 209.6± 11.5
reconfig (+R+R+R) 294± 4 307.3± 2.3
rsync 44.80± 1.30 52.20± 0.84

Table 6.1: Duration of a 4GB partition transfer (in seconds) using ptransf and alternative solutions (see §6.1.1)
in an idle system.

The results show that ptransf is 18× and 4×-9× faster than the client and the reconfiguration-based
solutions, respectively. On the other hand, ptransf is 23% and 20% slower (for SSD and disk, respec-
tively) than a two-machine synchronization using rsync.
Notice that the reported performance using disks was better than using SSDs. This happens because
our disks have a better throughput than our SSDs for sequential writes (130 vs. 120 MB/s).

6.4.2 Partition Transfer on a Saturated System

The next set of experiments aims to shed light on the impact that a partition transfer can have on the
performance of a saturated system. The objective is to understand how triggering a partition transfer
(e.g., for scaling-out) under critical conditions affects the latency and throughput of the system.
In order to define the conditions for system saturation, we progressively launch a number of clients
until the system reaches its peak throughput for a single replica group. Adding more clients after
this point only increases the latency. We identified that the system achieves the peak throughput
for read-heavy and write-heavy workloads with 140 (≈40000 4kB-oper/s) and 70 (≈9000 4kB-oper/s)
clients, respectively. The observed peak throughputs are similar with disks and SSDs.
In all experiments, when the system reaches its peak throughput we start a partition transfer to split
the state of the system to another group. One hundred seconds after the split completes, we invoke
another partition transfer to merge the state of the second group back to the first.

Read-heavy workload.

Figure 6.8 shows the throughput and the 99-percentile operation latency (obtained from 2-second
intervals) observed by clients running the 95/5 workload using disks and SSDs.
Three aspects are worthy of consideration from these executions. First, the state split tends to be
faster than the state merge (the second transfer) using both disks and SSDs. This happens because
the split transfers the partition to an idle group (not yet receiving client operations), while the merge
transfers the state to a busy group. Second, as in idle setups, the partition transfers are faster with
disks. Third, there are less spikes in the throughput and in the operation latency when the partition
is transferred in small blocks. For instance, with a 16MB block size, the throughput starts to increase
few seconds after the split initiates, as clients start sending commands to the second group, decreasing
the load on the first. In contrast, with a 4GB block size (a single ptransf execution), the throughput
starts to increase only a few seconds after the split completes, while the operation latency increases
significantly during the partition transfer. This happens because the group is fully loaded with client
operations while transferring the whole partition and keeping track of the updates being executed.

Write-heavy workload.

Figure 6.9 shows similar executions but now considering the 50/50 workload.

SUPERCLOUD D3.2 Page 67 of 182

D3.2 - Specification of security enablers for data management

 0

 20

 40

 60

 80

 100

 0 100 200 300 400
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (118s) Merge (141s)

Throughput
Latency

(a) 16MB (disks).

 0

 20

 40

 60

 80

 100

 0 100 200 300 400
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (130s) Merge (141s)

(b) 16MB (SSDs).

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (98s) Merge (103s)

Throughput
Latency

(c) 256MB (disks).

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (101s) Merge (111s)

(d) 256MB (SSDs).

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100
k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (104s) Merge (100s)

Throughput
Latency

(e) 4GB (disks).

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (105s) Merge (106s)

(f) 4GB (SSDs).

Figure 6.8: CREST throughput and operation latency in saturated conditions with reconfigurations using disks
and SSDs. Read-heavy (95/5) workload.

The behavior observed in these experiments is similar to the discussed for the read-heavy workload,
with two noticeable differences. First, the latency is slightly higher and the throughput is substantially
lower than in a read-heavy workload. Second, there are more latency spikes during splits and merges,
both for disks and SSDs. This happens because now there are more updates, which imply more
operations being written to write-ahead log of the SMR [67] and increased I/O contention with the
partition write at the receiving group. These spikes tend to be more common during merges than
during splits. The explanation comes from the different nature of splits and merges. During a split,
the state is transferred to an initially empty RSM, which is progressively being loaded, as blocks of
the partition are transferred. During a merge, on the other hand, the state is transferred to a group
already loaded, which causes higher I/O contention. This should not be a problem in practice since
splits are executed under high loads, while merges are triggered for consolidating resources, when the
system is mostly idle.

Consolidated results.

We now show consolidated results for 10 executions of splits and merges using each configuration,
comprising almost 4 hours of partition transfers. As in previous experiments, these results (presented
in Figure 6.10) consider different workloads and block sizes. However, from here on we only show
results for setups using disks due to space constraints and because the results using SSDs lead to the
same insights.
Figure 6.10a reports the 90th and 99th latency percentiles for periods with and without partition
transfers (noted in figures as “Split” and “Merge” operations for different block sizes and “No PT”,
respectively) for 95/5 and 50/50 workloads. The 90%-iles latency represents the behavior that most
clients observe during a split or a merge, while 99%-iles capture the effect of spikes on the service level
metric.
The results confirm the trends observed in the previous section. In particular, splits and merges have
no significant effect (when compared to the “No PT” situation) on the 90%-iles latencies under the
95/5 workload. This is not true for write-heavy workloads, as the latency of merges are consistently
higher (due to I/O contention).
As expected, the 99%-iles latencies are affected during splits and merges for all block sizes and work-

SUPERCLOUD D3.2 Page 68 of 182

D3.2 - Specification of security enablers for data management

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (108s) Merge (107s)

Throughput
Latency

(a) 16MB (disks).

 0

 20

 40

 60

 80

 100

 0 100 200 300 400
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (120s) Merge (118s)

(b) 16MB (SSDs).

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (79s) Merge (85s)

Throughput
Latency

(c) 256MB (disks).

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (95s) Merge (96s)

(d) 256MB (SSDs).

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100
k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (76s) Merge (84s)

Throughput
Latency

(e) 4GB (disks).

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (81s) Merge (95s)

(f) 4GB (SSDs).

Figure 6.9: CREST throughput and operation latency in saturated conditions with reconfigurations using disks
and SSDs. Write-heavy (50/50) workload.

loads. However, the values during splits are still under 60 ms, which is way bellow real-world SLAs
defining the 99%-iles under 100 ms [115, 130]. The effect is much more dramatic for merges, for the
reasons discussed before. However, such effects have few practical implications as merges are usually
executed in idle systems (as also discussed before).
The only exception to the general trends discussed before is observed when using 4GB blocks. In this
case, the 99-%-ile latency increases 100× or even more, as clients block during the transference of the
update log in Step 4 of ptransf. This is illustrated in Figures 6.8e (gaps at seconds 150 and 350) and
6.9e (gaps at seconds 120 and 290).
Figure 6.10b presents the average duration of split and merge operations (together with standard
deviation) during the previous experiments. The results show that when considering a specific con-
figuration, the amount of time required for executing the partition transfer is stable across different
executions, as attested by the negligible standard deviation. Additionally, the results show that trans-
ferring 16MB-blocks lead to higher partition transfer durations than when using other block sizes in
all configurations. This happens mostly because the ptransf protocol runs more times, leading to more
protocol messages being exchanged and more synchronization points (Steps 4 and 6 in Figure 6.6).
However, the duration of splits and merges are similar for blocks of 256MB or 4GB (whole partition
in a single transfer). This indicates that increasing the block size after a certain value does not lead
to faster partition transfers, instead, it only makes the latency worse (as shown in Figure 6.10a).

Comparison with alternative solutions.

Table 6.2 compares the duration of a split using the best configuration of ptransf (256MB blocks)
and the alternative solutions discussed in §6.1.1 for a saturated system. By comparing this table with
the disks column in Table 6.1 it is possible to see that all protocols have a noticeable increase on the
duration of split, with slower protocols (client-based) being less affected than faster ones (ptransf).
The results show that a split using ptransf is 9.5× and 11.7× faster than the client-based solution
(Figure 6.2), and 2.3× and 5.4× faster than the reconfiguration-based solution (see Figure 6.3) for a
read-heavy workload. The difference is even bigger with a write-heavy workload.
Even more importantly than these results is the fact that our protocol causes less perturbations on the
latency and throughput observed by clients, as can be seen by comparing the executions of Figures 6.2

SUPERCLOUD D3.2 Page 69 of 182

D3.2 - Specification of security enablers for data management

 0

 100

 200

 300

 400

 500

No PT S M S M S M No PT S M S M S M

O
p
e
ra

ti
o
n
 l
a
te

n
c
y
 (

m
s
) S - Split M - Merge ~2.9s ~5s ~3.2s ~6s

16MB 256MB 4GB 16MB 256MB 4GB

95/5 workload 50/50 workload

90%-ile
99%-ile

(a) Operation latency during partition transfers (groups of three replicas).

 0

 40

 80

 120

 160

16MB 256MB 4GB 16MB 256MB 4GB

D
u

ra
ti
o

n
 (

s
)

95/5 workload 50/50 workload

Split Merge

(b) Duration of partition transfers (groups of three replicas).

Figure 6.10: Latency during 4GB-partition transfers and the duration of such transfers using disks and groups
of three replicas (f = 1) and considering different block sizes and workloads.

System read-heavy write-heavy

ptransf 104.8± 6.3 78.4± 0.9
client (4MB) 999± 15.9 871.3± 11.7
client (16MB) 1236± 16 1198± 9
reconfig (+3R) 243.5± 6.6 270.4± 2.3
reconfig (+R+R+R) 575± 21 623± 10.4

Table 6.2: Duration of a 4GB partition transfer (in seconds) using ptransf and alternative solutions (see §6.1.1)
in a saturated system using disks for read- and write-heavy workloads.

and 6.3 with splits presented in Figures 6.8 and 6.9. The only exception is in Figure 6.3c, for the three
single-replica reconfigurations, in which the effects are negligible, but the transfer latency is 5× higher
than with our protocol.

6.4.3 Partition Transfer in Bigger Groups

The results presented up to this point consider groups with three replicas, that tolerate a single server
failure (f = 1). Figure 6.11 presents results for similar experiments, but considering groups of five
replicas (f = 2), to observe the behavior of our protocol when considering bigger groups.
When compared to the results for groups of 3 replicas (Figure 6.10), the results in Figure 6.11 show
exactly the same trends, despite some small variations in the latency.
Regarding the duration of the partition transfers, the results are also similar to the three replica setups.

SUPERCLOUD D3.2 Page 70 of 182

D3.2 - Specification of security enablers for data management

 0

 100

 200

 300

 400

 500

No PT S M S M S M No PT S M S M S M

O
p
e
ra

ti
o
n
 l
a
te

n
c
y
 (

m
s
) S - Split M - Merge ~3s ~3s ~3s ~5.5s

16MB 256MB 4GB 16MB 256MB 4GB

95/5 workload 50/50 workload

90%-ile
99%-ile

(a) Operation latency during partition transfers (groups of five replicas).

 0

 40

 80

 120

 160

16MB 256MB 4GB 16MB 256MB 4GB

D
u

ra
ti
o

n
 (

s
)

95/5 workload 50/50 workload

Split Merge

(b) Duration of partition transfers (groups of five replicas).

Figure 6.11: Latency during 4GB-partition transfers and the duration of such transfers using disks and groups
of five replicas (f = 2) and considering different block sizes and workloads.

This happens because our protocol transfers state of replicas in parallel, pairing each replica on the
source group with another replica on the receiving group. This design makes the data transfer phases
of the protocol (Steps 2 and 4 in Figure 6.6) – which dominate the duration of a transfer – mostly
independent from the group size.

6.4.4 Faults during the Partition Transfer

In this section we discuss how replica failure scenarios affect the ptransf protocol. We consider four
failure scenarios: (a) a non-leader replica of the source group crashes, (b) a non-leader replica of the
destination group crashes, (c) the leader replica of the source group crashes, and (d) the leader replica
of the destination group crashes.
In this experiment, we considered a group of three replicas, a read-heavy (95/5) workload and blocks of
256MB. The experiment focuses on the split operation since it is normally executed when the system
is under stress and needs to scale-out as fast as possible. In all failure scenarios we crash the target
replica 10 seconds after the split begin and use a timeout of 2 seconds for suspecting a leader and
starting a view change. Figure 6.12 presents representative executions for the four scenarios.
When comparing the executions with a non-faulty execution (left half of Figure 6.8c), it is clear that
failures have a noticeable effect on the partition transfer.
Comparing the scenarios where a non-leader replica crashes (Figure 6.12a and 6.12b), the negative
effects on the system performance are more prominent when the replica belongs to the destination
group. This happens due to a combination of two factors. First, during a split the operations targeting
the partition being transferred are progressively being redirected to the destination group, with each

SUPERCLOUD D3.2 Page 71 of 182

D3.2 - Specification of security enablers for data management

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 20

 40

 60

 80

 100
k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (121s)

replica
crash

Throughput
Latency

(a) Crash, non-leader, source.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (141s)

replica
crash

(b) Crash, non-leader, destination.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (116s)

leader
crash

(c) Crash, leader, source.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 20

 40

 60

 80

 100

k
o

p
e

r/
s

9
9

%
-i
le

 (
m

s
)

Time (sec)

Split (135s)

leader
crash

(d) Crash, leader, destination.

Figure 6.12: Four failure scenarios during a split using a 256MB block size and disks.

block transferred. Second, a high percentage of the reads performed by clients on the two surviving
replicas of the destination group are not completed using the consensus-free optimized read, and need
to be retried using the total-order protocol [68, 96].
Crashing the leader replica of both source and destination groups (Figures 6.12c and 6.12d) leads to
the same effect in the system: the group with the faulty replica stops processing requests for 2 seconds
(the timeout value), until a new leader is elected and normal processing is resumed.
In summary, the results show that the performance of the partition transfer protocol is robust against
failures, and the most visible negative effects are due to performance degradation caused to the ordering
protocol of the RSMs.

6.4.5 Partition Transfer in a Hotspot

In previous experiments we performed splits and merges on saturated RSMs to evaluate how our
protocol works in a saturated system. In this final experiment we discuss the effects of doing a
partition transfer on a hotspot group, i.e., a group of replicas that experiences a sudden and large
increase in its workload. We create such hotspot by uniformly increasing the number of clients, from
20 to 200, over a hundred seconds interval, which also results in a tenfold latency increase (from 2.5
ms to 25 ms). This hotspot scenario is similar to the one used in [301], and was inspired on the
statistics of the “9/11 spike” experienced by CNN.com [215], where the workload increased by an
order of magnitude in 15 minutes. For this experiment, we consider groups of three replicas and a
read-heavy workload.
Figure 6.13 shows the throughput and the latency when a split is performed on the hotspot group
using two block sizes. As can be observed, the split causes a similar effect on the throughput and
the latency when the group is saturated (Figure 6.8c and Figure 6.8e) or heavily saturated (hotstop).
Using 16MB blocks to transfer the partition makes the split 20% slower than using 256MB blocks, but
the overall effect on latency and throughput is the same.
In conclusion, the results show that our ptransf implementation allows a 8GB storage system to double
its capacity when subject to unusual high demand without any significant performance disruption,
taking less than two minutes to scale-out.

SUPERCLOUD D3.2 Page 72 of 182

D3.2 - Specification of security enablers for data management

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300
 0

 20

 40

 60

 80

 100

k
o
p
e

r/
s

9
9
%

-i
le

 (
m

s
)

Time (sec)

Hotspot Split (131s)

Throughput
Latency

(a) 16MB block size.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300
 0

 20

 40

 60

 80

 100

k
o
p
e

r/
s

9
9
%

-i
le

 (
m

s
)

Time (sec)

Hotspot Split (108s)

(b) 256MB block size.

Figure 6.13: Scale-out in a hotspot group using disks.

6.5 Related work

SMR scalability

Several SMR protocols support the addition, removal and replacement of replicas at runtime [210, 250,
241, 68, 284, 219]. However, these reconfigurations only change the set of replicas in a single group,
and do not improve the performance of the system since the protocols used for ordering requests
are inherently non-scalable. To the best of our knowledge, we are the first to propose a well-defined
primitive and protocol for sharding RSMs at runtime.
Different techniques have been proposed to improve the scalability of SMR-based services. Some
works try to remove bottlenecks both from the ordering protocol [229, 241], its implementation [276,
58] and the execution of requests [198, 169, 192]. For example, protocols like Mencius [229] and
Egalitarian Paxos [241] try to spread the additional load of the primary replica among all the system
replicas. In a complementary way, Santos and Schiper [276] and Behl et al. [58] shows that it is
possible to substantially improve the performance of an SMR implementation by architecting these
systems using multi-threaded architectures. Similarly, several works try to parallelize the execution of
requests for taking advantage of multi-core servers and improve the RSM performance. The techniques
range from identifying independent RSM commands that can run in parallel without endangering
determinism [198], to executing the requests (using multiple threads) before ordering them [169, 192].
Ultimately, these approaches help addressing the request ordering and execution bottlenecks (and thus
can be combined with CREST to improve the performance of a single group), but the fundamental
limitation of every replica executing every operation still remains.
A third group of works aims to scale SMR-based services by dividing its state among several partitions,
implemented by (mostly) independent RSMs [258, 253, 163, 117]. Bezerra et al. [258] propose a
technique for executing atomic operations spanning multiple partitions still ensuring linearizability.
In [253] it is proposed a storage architecture that follows a partition approach and tolerates Byzantine
failures. This architecture enables transactions across partitions. Although both [258] and [253] use
partitioning to address the scalability of SMR-based services, there is no support for creating such
partitions dynamically.

Elasticity in SMR-based systems.

Scatter [163] is a consistent distributed key-value store where key ranges are served by groups of
replicas. Split and merge reconfigurations are available, but the paper does not mention how the
state transfer between partitions is realized, neither measures the impact of such data transfers (the
reported values suggest that only a trivially-small state is used in the experiments). Additionally, the
Scatter partitioning algorithm works only for adjacent groups in its Chord-like architecture, requiring
substantial modifications to the Paxos protocol to implement a multi-group 2PC commit. Our solution,
on the other hand, aims for fast and predictable elasticity with multi-gigabyte partitions, targeting

SUPERCLOUD D3.2 Page 73 of 182

D3.2 - Specification of security enablers for data management

thus a general limitation of SMR systems. Moreover, it can be implemented on top of any SMR
protocol.
Spanner [117] is a globally-distributed database that shards data across many sets of Paxos-based
state machines in Google datacenters. Although not detailed in the paper, Spanner allows shards
to be transferred in order to balance load or in response to failures. During these transfers, clients
can still execute transactions (including updates) on the database. Similarly to most elastic database
systems [207, 115, 130], Spanner transfers partition data slowly to minimize the impact of such re-
configurations on the system performance. When the remaining data to be transferred is sufficiently
small, the system uses a multi-partition transaction to move the metadata of the shard between the
two groups. Although the protocol appears to protect the safety of the database, the liveness is not
guaranteed since moving data in Spanner may take an unbounded amount of time if the update rate
is higher than the transfer rate. In this chapter we proposed a specialized abstraction and a (safe
and live) protocol for transferring partitions as efficiently as possible, and explained how it could be
integrated with the multi-partition transactions of Spanner.

Elastic databases.

There is a large stream of works from the database community for implementing elasticity in existing
systems [282, 123, 124, 296, 144]. These works propose solutions to split and merge state of sharded
databases without violating the ACID properties, and can be broadly divided in terms of the database
architecture they consider. Some systems employ shared storage architectures [124, 123], where the
database nodes persist data on some shared “always available” infrastructure. In such architectures,
when a server is added there is no need to perform a partition transfer, being sufficient to copy only the
database cache and active transactions. Other works focus on shared nothing architectures [144, 282,
296], where each partition is kept on different nodes. In this case, reconfigurations require a partition
transfer. However, existing works only consider transferences between two servers, not between two
groups of servers, as is required for RSMs.

6.6 Conclusion

This chapter described a partition transfer protocol for implementing elasticity in replicated state
machines. Our protocol minimizes (1) the time required to transfer the partition between two replica
groups and (2) the negative effects of this data transfer on the operation latency observed by clients.
The proposed protocol can be integrated in any SMR consensus algorithm (e.g., Paxos [210], PBFT [96]
or RAFT [250]), since it operates on top of the ordering protocols. Furthermore, it allows the dynamic
creation of partitions in different replica groups, complementing some recent works on scalable state
machine replication [258, 163, 253].
The proposed protocol was implemented and evaluated in a key-value store. In our experiments,
a prototype system using our protocol was able to double its capacity with minimal performance
degradation, showing that it is possible to have elastic reconfigurations even for non-trivial partition
sizes (e.g., 4GB).

SUPERCLOUD D3.2 Page 74 of 182

D3.2 - Specification of security enablers for data management

Part II

Resilient distributed storage

SUPERCLOUD D3.2 Page 75 of 182

D3.2 - Specification of security enablers for data management

Chapter 7 Janus – A User-Defined Cloud Storage Plat-

form

7.1 Introduction

The high volume of data that has been generated in the last years has increased the demand for
the use of cloud storage services. This happens because such services allow users and organizations
to store their data following a pay-as-you-go cost model at the same time that it frees them from
infrastructure-related concerns. However, one has to deal not only with the amount of data to store,
but also with the diversity of it, especially companies.
Different kinds of data have different storage requirements, for which companies are willing to spend
different quantities of resources (e.g., money, bandwidth). The data of the company’s clients, such as
their address, account password or credit card number, is clearly more critical than the photos of the
company’s Christmas dinner.
Despite the interest of the company in storing both of these kinds of data, we advocate that it would
be willing to pay more to ensure the privacy, security and durability of the clients’ data than of
the photos. In this example, the company has only two types of data, and the only differentiating
requirement used is their storage reliability. Nonetheless, there are types of data that have other
requirements, such as latency-related SLAs, the data locality restrictions or even the need to support
multiple concurrent writers.
Janus is a platform that finds the best way to store data in the clouds according to given user-defined
requirements. It maintains informations of several storage services from the commercial cloud storage
providers (e.g. read/write/storage prices, latency, etc.), and it is uses diverse storage techniques to
provide different guarantees. To be able to find the best storage solution, Janus permits users to
specify their workload and/or requirements, and according with them, finds the most appropriate
storage techniques and cloud services to use.
The system can store data in two back-ends (single-cloud and multi-cloud), and it is able to tolerate
both Byzantine and crash faults in the clouds. It is also storage-efficient, through the use of erasure-
codes, and ensures the privacy of the data by encrypting it at client-side. We designed the platform to
allow the storage of the data in the clouds without requiring the intervention of no dedicated server
(i.e., the system is serverless), meaning that all data manipulation is executed at the client site,
not depending on the Janus server. This design also permits the client identity to be unknown by
the clouds, since the cloud provider accounts are created and managed by our system, without any
client-specific information.
There are some solutions that store data in the clouds using different storage techniques. Synchroniza-
tion services like DropBox [139] use a single cloud to store the data and do not allow clients to choose
what that cloud is. There are some works that allow users to statically define the clouds that will be
used [30, 54, 65, 66, 134, 172, 297], and some that also allow the definition of some system parameters
(e.g., number of faulty cloud tolerated, cache size) that influence the behavior of the system to meet
some goal [111, 233, 264]. Nonetheless, Janus takes the user-defined storage concept [94] further by
permitting clients to specify their high-level requirements, and making the storage techniques and
cloud services configuration transparent to the client.
Given this, the main distinguishing features of Janus are:

SUPERCLOUD D3.2 Page 76 of 182

D3.2 - Specification of security enablers for data management

• a solver capable of finding the most appropriate cloud storage solutions by using the cloud
services information it maintains and the given storage requirements.

• a serverless platform architecture design that permits the client to be anonymous to the clouds.

7.2 Janus Overview

Janus is a platform that permits the creation of virtual disks (called volumes) to store data in
cloud storage services that are compliant with a set of specifications defined by the users, i.e., a
set of requirements and constraints. The architecture of the platform is designed to make all the
process efficient in terms of management effort, storage costs, and performance, while ensuring also
the compliance with the user requirements. Figure 7.1 presents the architecture of the platform.

Janus
Volume
specs.

driver

… 68

❶

❷

❸

❹

Figure 7.1: Janus architecture.

The Janus platform is essentially composed of two components:

• janus server is responsible for finding the most adequate storage configurations given the volume
specifications. This server is also responsible for the creation and management of the cloud
accounts, and for maintaining informations about possible clouds in use (i.e., available locations,
latency, prices, etc.).

• virtual disk driver accommodates all the different storage profiles of the client and is responsible
for managing the system’s data-plane. It is installed in the client’s local machine and directly
interacts with the clouds used for each profile.

As shown in Figure 7.1, to create a virtual disk with certain storage requirements, a user contacts
the Janus server for giving its requirements and constraints (1). The server finds the best possible
storage profiles for that request and returns them to the user (2), which picks one of them. A driver
with the chosen profile is then downloaded and installed in the client’s local machine (3). After that,
all the data present in the Janus virtual disk is stored in the clouds according to the user-defined
requirements (4).
This platform design allows the system to have some interesting capabilities in terms of privacy, per-
formance and fault tolerance. The fact the virtual disk driver is serverless, i.e., it interacts directly
with the clouds without contacting the Janus server for any operation, allows the system data-plane
to operate directly with the cloud services interface without requiring any mediation or coordina-
tion/security anchor. This enables the virtual disk, in one hand, to operate independently of any
Janus server, and in the other, to achieve better performance (as there is no server bottleneck).
Moreover, since the cloud accounts are created and managed by the Janus server, the clouds will
never know the identity of the client. Note that, although Janus have access to the data client stores

SUPERCLOUD D3.2 Page 77 of 182

D3.2 - Specification of security enablers for data management

in the clouds, all the data is encrypted at the client-side with a key only it knows, ensuring that only
the client has access to the original (unencrypted) data.
In the following, we detail the Janus’s main components.

7.2.1 Janus Server

This component acts as the front-end of the Janus platform. It provides a user-interface in which
clients describe their desired volume specifications, such as workload, requirements, constraints. Based
on this information, Janus finds the best possible storage profiles by defining the set of cloud services
and storage techniques the virtual disk driver will use to store data in the clouds.
In this user-interface, the user can specify, namely, the read/write proportion of its workload, the
maximum latency for accessing the data, the amount of data it intends to store, the maximum
amount of money it wants to spend per month, the number of cloud services faults the system
must tolerate, and restrictions regarding the locality of the data. The data locality restrictions
are not only geographical (e.g., only-in-europe or not-in-us) but also in terms of cloud services
to use (e.g., not-in-amazon) and diversity of locations and services (e.g., not-same-continent or
not-same-provider). Moreover, clients are able to specify more than one locality restriction using
logical operators (e.g., only-in-europe AND not-in-belgium).
Janus server is composed of three modules as depicted in Figure 7.2.

… 68

Requirements
Solver

Cloud info
Collector

Billing
Manager

Janus

Figure 7.2: Janus server modules.

These modules permit the server to find the best possible configuration to store data according to
user-defined constraints.

7.2.1.1 Requirements Solver.

A module that, given the user volume specifications and the cloud informations (obtained by the cloud
info collector module) finds the best storage profiles for that specifications. We give more details about
this module in §7.2.3.

7.2.1.2 Cloud info collector.

This module is responsible for obtaining specific informations about all cloud services at all geograph-
ical locations the services support. Currently, the system aims to support 24 different cloud services,
in 13 distinct providers, and in more than 68 geographical locations. The informations this module
collects are the read, write and storage costs, the durability and availability SLAs, the consistency
guarantees, and the security standards compliance of each cloud service location. They are collected
periodically in order be kept up-to-date. The cloud services latency experienced by the client is not
obtained by this module since it depends on the environment where the client’s local machine is de-
ployed. Besides, a latency test for each cloud service location is executed from its machine when the
user executes the user-interface. Then, this information is attached to the volume specifications and

SUPERCLOUD D3.2 Page 78 of 182

D3.2 - Specification of security enablers for data management

then sent to the server. The clouds information this module collects is used to feed the solver. Due,
this module is also responsible for converting it to the format the solver is able to interpret after
obtaining it.
This automatic collecting approach of such amount of clouds informations significantly reduces the
management effort the system needs. This module is very important because gathering this information
manually is time-consuming, non-scalable and error-prone.

7.2.1.3 Billing Manager.

A module that automatizes the creation and management of accounts in the different cloud storage
providers used by the virtual disk to store the clients data. It is also used to maintain the billing
information of each client, such as the amount of money spent in each cloud service for both reading
and storing the data.
The cloud accounts’ credentials are maintained secure in the server and are created only when needed.
When a client chooses a storage profile generated by the solver, the server verifies each cloud service
that will be used in that profile and creates accounts for the ones the client has no account already. The
credentials of the services are sent to the client together with the virtual disk installer it downloads.
To ensure the confidentiality of these credentials, they are encrypted before they are sent using a key
shared between the client and the Janus server.
Given this, when a client wants to obtain a storage profile adequate to some kind of data, it accesses
the user-interface, defines its volume specifications and submits them to the server. When the Janus
server receives this request, it converts the high-level volume specifications to the format the solver
interprets. Then, it provides this information to the solver, which uses it together with the information
about the clouds (updated periodically by the cloud info collector module) to generate the optimal
storage profiles for a volume. After letting the client choose the storage profile it wants, the server
obtains the clouds credentials for the services used by that profile from the billing manager module.
Finally, it creates the virtual disk installer, which includes a configuration file specifying the storage
profile (cloud services and techniques) and the (encrypted) credentials for accessing the clouds.

7.2.2 Virtual Disk Driver

Janus driver is installed at a client machine and it is responsible for interacting with the clouds to store
and retrieve the systems’ data. The cloud services and storage techniques it uses depend on the profile
obtained from the Janus server, which is generated according with the clients requirements. This
driver exports various interfaces, being the client able to choose what is the best for its deployment.
The envisioned interfaces are: local filesystem (based on FUSE and inotify), network filesystem (NFS
and CIFS) and OpenStack’s SWIFT.
In terms of data management, used techniques and data processing approach, our strategy is very
similar to what is done in Charon [233]. The Janus driver is able to use several techniques to ensure
(1) the efficient use of cloud storage services both in terms of storage and latency, (2) the reliability
of the data stored and (3) the performance of the local driver. Figure 7.3 depicts the operations the
driver performs on the data to achieve the first two enumerated features.
The process starts by compressing the original file using the Huffman coding. After that, the com-
pressed file is encrypted with a key maintained by the client. Since this step is done at the client-side
and using a key only the client knows, the privacy of the data is ensured. When using multiple clouds,
Janus does not fully replicates data over them. Instead, it uses erasure codes techniques [266] to
generate q > f blocks, one for each cloud used, where q is the total number of clouds (a quorum)
used for storing the file and f is the number of tolerated faults.1 This technique significantly reduces
the overhead associated with the storage of the data, decreasing the storage costs and the transferring
latency at the same time. Finally, for performance reasons, the system sends one block for each cloud
in parallel waiting only for the n− f fastest responses.

1The exact value of q depends on the fault model considered, see Chapter 8.

SUPERCLOUD D3.2 Page 79 of 182

D3.2 - Specification of security enablers for data management

Original file Compressed file Encrypted file

Coded blocks – all the blocks are different

Figure 7.3: Janus virtual disk driver data processing.

Notice that, for simplicity, in the figure we represent this process being performed over an entire file.
However, in practice the file is first split into chunks of up to a specific size (16MB in our case) and
the process is done over each of these chunks.
To improve the performance of the local driver, we update data in the clouds in background, use caching,
and also use prefetching when reading big files from the clouds, just as in Mendes et al. [233].
As is the case with other systems [66, 161, 233, 314], the Janus driver separates data from metadata
by storing them in distinct objects in the clouds. Besides the modularity this strategy offers to the
system, it allows us to easily change the guarantees provided by the system simply by switching the
metadata service in use. A storage profile can tolerate both crash (CFT) or Byzantine (BFT) faults
by the clouds, depending only on the storage protocol used to store the metadata object in the clouds
(e.g., DepSky [65] for BFT and ICStore [54] for CFT). In Janus, we use the new multi-writer protocols
described in Chapter 8 to store metadata objects in the clouds in a consistent way, both for CFT and
BFT operation modes.
Virtual disk driver can also be configured to optimize its behavior for application-specific workloads.
Currently, we support the workload optimization for bioinformatics’ applications [233] and disaster
recover for two transactional database management systems, described in Chapter 9.

7.2.3 Solver

The Solver finds the best storage configuration for a given user-defined volume specification taking
into account the information availbale about existing clouds. It is built using Prolog because this
language makes the implementation of this kind of programs simpler than other solutions (such as
SAT [230] or SMT [128] solvers), offering a good performance at the same time.
The cloud information is maintained in the Janus solver knowledge base in the form of a set of
Prolog facts and relations. The already mentioned clouds info collector module is the responsible for
adding and updating this information in the knowledge base. Examples of a fact and a relation are
service(s3). and provider(s3, aws)., respectively. The first example means that s3 is a cloud
service, and the second indicates that the provider of s3 is aws (Amazon).
Besides these, the solver also maintains a set of static rules such as same provider(X, Y) :- provider(X,

P), provider(Y, P). This example permits to infer if two cloud services (X and Y) have the same
provider P. These rules permit the solver to infer, for instance, how many clouds should be used (e.g.,
3f + 1 for BFT or 2f + 1 for CFT volumes) or what are the best cloud services to meet the clients
goals (e.g., cheaper or faster ones).
When the Janus server receives a request to find the solutions for some give volume specifications, it
first populates the solver knowledge base with the relations associating each cloud service location to

SUPERCLOUD D3.2 Page 80 of 182

D3.2 - Specification of security enablers for data management

the latency experienced to each of them by the user’s local machine. After that, it executes a query in
the solver, by converting the specifications into Prolog terms. The query response contains the best
storage configurations for the given volume specifications. The main informations each configuration
indicates are: the cloud services to use (and their locations), the erasure codes parameters (which
indicate the number of the blocks to be generated), the fault tolerant approach to use (single-cloud,
CFT or BFT), and the storage/read cost per GB/month.

7.2.4 Query solving strategy.

The major challenge when solving the query to obtain the best storage configurations is finding the
most adequate cloud services to use. This happens because the search space for the best combinations
of cloud services could be very big. For instance, since we have 68 distinct service locations, the
solver would need to compare the storage cost of C(68, 10) > 2.9× 1011 combinations to find the most
economic cloud service tolerating up to three Byzantine faults (requiring n = 3f + 1, with f = 3).
We minimize the computational requirements of this problem by dividing this process in two steps.
First, we filter the cloud services according to the restrictions provided by the client. For example,
if the client wants the data to be located only in Europe, we remove the services located in other
locations. Note that this could be done with other restrictions (e.g., budget, latency).
The second step consists in obtaining only the m best solutions (m can also be specified by the client).
This helps because in this way we do not need to search for all the possible solutions, only for the
best ones. What we do is sort the possible cloud services according to a function, which allows us
to generate the combinations in an ordered way. With this approach, when we find m solutions that
satisfy all the combination restrictions (e.g., services in different providers), we are sure that these
are the best ones. The function used to order the cloud storage services is generated by the solver
after analyzing the volume specifications and it basically scores each service according to its interest
regarding the client’s goal. One example of a simple score function is the storage cost of the service,
which give better scores to cheaper services.

7.3 Related Work

7.3.1 Distributed file systems.

The Janus driver adopts some ideas from existent file systems. It separates data and metadata like
NASD [161], and performs updates in background like several peer-to-peer file systems [31, 204, 291].
With a serverless design, another related system is xFS [39], a network file system that stores all data
and metadata at the client side.
A fundamental difference between these systems and Janus is that these systems do not explore the
scalability and competitive prices of cloud storage, using instead the storage available on clients and
servers.

7.3.2 Cloud-backed storage.

Commercial file synchronization services are popular solutions to backup personal data in the cloud [139,
166, 235]. However, these systems only use a single cloud and they are responsible for interacting with
it, thus they have the control over the clients’ data. Other interesting solutions are storage proxies,
which transparently integrate local systems with cloud storage (e.g., [245, 254, 307]). The fundamental
limitation of these systems is the fact that if the proxy fails, all the local systems connected to it will
loose the access to the data.

7.3.3 Multi-cloud storage.

In the last years, many works have been proposing the use of multiple cloud providers to improve the
integrity and availability of stored data. The idea was introduced in archival systems like RACS [30],

SUPERCLOUD D3.2 Page 81 of 182

D3.2 - Specification of security enablers for data management

ICStore [54] and DepSky [65], which provide object storage (i.e., variable-size read/write registers)
considering different fault models and unmodified storage clouds. However, the fact they provide only
object storage hardens their integration with commonly used applications.
A hybrid approach is used by systems like Hybris [134] and SCFS [66], which employ unmodified
cloud storage services used together with few computing nodes to store metadata and coordinate data
access. In Janus, the used server is totally independent of the data-plane of the system, meaning that
it is used only to generate storage profiles. Due to this, the Janus server does not affect the storage
performance of the system, and thus can be deployed in a cheaper VM (with lower specifications).
A slightly different kind of works aggregate multiple file synchronization services in a single dependable
service [172, 297], however they do not allow clients to define any storage requirement.
There are some works that permit clients to store their data according to some constraints [111, 233]
or adapt their behavior in order to achieve some goal [264]. Charon [233] offers support to more than
one storage repository (private, single cloud and cloud-of-clouds), which offer different guarantees in
terms of reliability. In CYRUS [111] clients are able to specify the number of clouds in which data is
stored (for privacy and fault tolerance) and from which the data is obtained when reading. FCFS [264]
uses several cloud services and transparently moves the system’s data across them in order to minimize
costs. Janus goes further since it does not obligate users to know what are the best clouds to use for
their purposes (e.g., cost, latency). Instead, it creates the most appropriate storage profile for volumes
matching each client goal.

7.4 Final Remarks

Users and companies have different types of data to store in the clouds, for which they have distinct
storage constraints and are willing to spend different amounts of resources. Janus is a platform to
store data in the cloud according to user-defined requirements and constraints. This platform allows
the clients to accommodate these diverse types of data in one service. Janus offers storage solutions
that can be compliant with distinct user-defined constraints such as reliability, data locality, budget,
location/provider diversity, latency of accessing the data, security standards, etc. The system is able
to store data both in a single and in multiple clouds, and in both cases the system ensures the privacy
of the data. In the multi-clouds scenario, Janus supports both CFT and BFT fault models.
We are currently implementing the platform and expect to have a first running version by the end of
next semester (April, 2017).

SUPERCLOUD D3.2 Page 82 of 182

D3.2 - Specification of security enablers for data management

Chapter 8 Exploring Key-Value Stores in Multi-Writer

Byzantine-Resilient Cloud-of-Clouds Storage

Resilient register emulations on top of message passing systems are a cornerstone of fault-tolerant
storage services. These emulations consider the provision of shared objects supporting read and write
operations executed by a set of clients. In the traditional approach, these objects are implemented in
a set of fail-prone servers (or replicas) that run some specific code for the emulation [43, 228, 173, 318,
133, 231, 86, 165, 227].
A less explored approach, dubbed data-centric, does not rely on servers that can run arbitrary code,
but on passive replicas modeled as base objects that provide a constrained interface. These base
objects can be as simple as a network-attached disk, a remote addressable memory, or a queue, or
as complex as a transactional database, or a fully fledge cloud storage service. By combining these
fail-prone base objects, one can build fault-tolerant services for storage, consensus, mutual exclusion,
etc, using only client-side code, leading to arguably simpler and more manageable solutions.
The data-centric model has been discussed since the 90s [185], but the area gained visibility and
practical appeal only with the emergence of network-attached disks technology [161]. In particular,
several theoretical papers tried to establish lower bounds and impossibility results for implementing re-
silient read/write registers and consensus objects considering different types of fail-prone base objects
(read/write registers [32, 152] vs. read-modify-write registers [106, 107]) under both crash and Byzan-
tine fault models [29]. More recently, there has been a renascence of interest in data-centric algorithms
for the cloud-of-clouds model. In this model, the base objects are cloud services (e.g., Amazon S3,
Windows Azure Blob Storage) that offer interfaces similar to read/write registers or key-value stores
(KVSs). These solutions ensure that the stored data is available even if a subset of cloud providers is
unavailable or corrupts their copy of the data (events that do happen in practice [220]).
To the best of our knowledge, there are only two existing works for register emulation in the cloud-of-
clouds model: DepSky [65], that tolerates Byzantine faults (e.g., data corruption or cloud misbehavior)
on the providers but supports only a single-writer per data object, and Basescu et al. [54], that
genuinely supports multiple writers, but tolerates only crash faults and does not support erasure
codes.
In this chapter we present new register emulations on top of cloud storage services that support
multiple concurrent writers (avoiding the need for expensive mutual exclusion algorithms [65]), tolerate
Byzantine failures in base objects (minimizing the trust assumptions on cloud providers), and support
erasure codes (decreasing the storage requirements significantly). In particular, we present three new
multi-writer multi-reader (MWMR) regular register constructions:

1. an optimally-resilient register using full replication;

2. a register construction requiring more base objects, but achieving better storage-efficiency through
the use of erasure codes;

3. another optimally-resilient register emulation that also supports erasure codes, but requires
additional communication steps for writing.

These constructions are wait-free (operations terminate independently of other clients), uniform (they
work with any number of clients), and can be adapted to provide atomic (instead of regular) semantics.

SUPERCLOUD D3.2 Page 83 of 182

D3.2 - Specification of security enablers for data management

We achieve these results by exploring an often overlooked operation offered by KVSs – list – which
returns the set of stored keys. The basic idea is that by embedding data integrity and authenticity
proofs in the key associated with a written value, it is possible to use the list operation in multiple
KVSs to detect concurrent writers and establish the current value of a register. Although KVSs are
equivalent to registers in terms of synchronization power [82], the existence of the list operation in the
interface of the former is crucial for our algorithms.
An additional benefit of supporting erasure codes when untrusted cloud providers are considered is
that they can be substituted by a secret sharing primitive (e.g., [201]) or any privacy-aware encoding
(e.g., [86, 266]), ensuring confidentiality of the stored data.
The three constructions we propose are described, proved correct, implemented and evaluated us-
ing real clouds (Amazon S3 [2], Microsoft Azure Storage [14], Rackspace Cloud Files [21], Google
Storage [10] and Softlayer Cloud Storage [22]). Our experimental results show that these novel con-
structions provide interesting advantages both in terms of latency and storage costs.

8.1 Related Work

Existing fault-tolerant register emulations can be divided in two main groups depending on the nature
of the fail-prone “storage blocks” that keep the stored data. The first group comprises the works that
rely on servers capable of running part of the protocols [43, 228, 173, 318, 133], i.e., constructions
that have both a client-side and a server-side of the protocol. Typically, in this kind of environment
it is easier to provide robust solutions as servers can execute specific steps of the protocol atomically,
independently of the number of clients accessing it.
In the second group we have the data-centric protocols [185, 32, 152, 106, 29]. This kind of solution
considers a set of clients interacting with a set of passive servers with a constrained interface, modeled
as shared memory objects (called base objects). The first work in this area was due to Jayanti, Chandra
and Toueg [185], where the model was defined in terms of fail-prone shared memory objects. This
work presented, among other wait-free emulations [174], a Byzantine fault-tolerant single-writer single-
reader (SWSR) safe-register construction using 5f + 1 base objects to tolerate f faults. Further works
tried to establish lower bounds and impossibility results for emulating registers tolerating different
kinds of faults considering different types of base objects. For example, [32] and [152] used regular
and/or atomic registers to implement crash-fault-tolerant MW and SW registers,1 respectively, while
[106] used read-modify-write objects to transform the SW register of [152] in a ranked register, a
fundamental abstraction for implementing consensus. Abraham et al. [29] provided a Byzantine fault-
tolerant SW register, which was latter used as a basis to implement consensus. The main limitation of
these algorithms is that, although they are asymptotically efficient [32], the number of communication
steps is still very large, and the required base objects are sometimes stronger than KVSs [106] or
implement weak termination conditions [29].
More recently, there has been a renewed interest in data-centric algorithms for the cloud-of-clouds
model [65, 54]. Here the base objects are cloud services offering interfaces similar to key-value stores.
These solutions ensure that the stored data is available even if a subset of cloud providers is unavailable
or corrupts their copy of the data. DepSky [65] provided a regular SW register construction that
tolerates Byzantine faults by less than a third of the base objects, ensuring also the confidentiality
of the stored data by using a secret sharing scheme [201]. However, to support multiple writers an
expensive lock protocol must be executed to coordinate concurrent accesses. Another work in this
line [54] provided a regular MW register that replicates the data by a majority of KVSs. Its main
purpose was to reduce the required storage requirements. In this protocol, writers remove obsolete
data synchronously, creating the need to store each version in two keys: a temporary key, that could
be removed, and an eternal key, common for all writers and versions, that is never erased. In the best

1From now on we avoid characterizing the constructions about the number of readers, as all constructions discussed
in the rest of the chapter support multiple readers (MR).

SUPERCLOUD D3.2 Page 84 of 182

D3.2 - Specification of security enablers for data management

Table 8.1: Data-centric resilient register emulations. * can be extended to achieve atomic semantics.

Work Fault model Technique Base Objects Resilience Semantics

Jayanti et al. [185] Byzantine replication atomic registers 5f + 1 SW safe

Gafni and Lamport [152] crash replication atomic registers 2f + 1 SW regular

Chockler and Malkhi [106] crash replication rmw registers 2f + 1 MW ranked

Abraham et al. [29]
Byzantine replication regular registers 3f + 1 SW regular
Byzantine replication regular registers 3f + 1 SW safe

Aguilera and Gafni [32] crash replication atomic registers 2f + 1 MW atomic

Bessani et al. [65] Byzantine erasure code regular registers 3f + 1 SW regular

Basescu et al. [54] crash replication atomic KVSs 2f + 1 MW regular*

This work
Byzantine replication atomic KVSs 3f + 1 MW regular*
Byzantine erasure code atomic KVSs 4f + 1 MW regular*
Byzantine erasure code atomic KVSs 3f + 1 MW regular*

case, the algorithm requires a storage space of 2× S × n, where S is the size of the data and n is the
number of KVSs.
Using registers or KVSs as base objects in the data-centric model makes it more challenging to imple-
ment dependable register emulations, as general replicas have more synchronization power than such
objects [82]. The three new algorithms presented in this chapter advance the state of the art by sup-
porting multiple writers and erasure-coded data in the data-centric Byzantine model, using a rather
weak base object – a KVS. Two of these constructions have optimal resilience, as they require 3f + 1
base objects to tolerate f Byzantine faults in an asynchronous system (with confirmable writes) [231].
Table 8.1 summarizes the discussed data-centric constructions.

8.2 System Model

8.2.1 Register Emulation

We consider an asynchronous system comprised by a finite set of clients and n cloud storage providers,
which provide a KVS interface. We refer to clients as processes and to cloud storage providers as base
objects. Each process has a unique identifier from an infinite set named IDs, while the base objects
are numbered from 0 to n− 1.
We aim to provide MW-register abstractions on top of n base objects. This kind of abstraction
offers an interface specification composed by two operations: write(v) and read(). The sequential
specification of a register requires that a read operation returns the last value written, or ⊥ if no write
has ever been executed. Processes interacting with registers can be either writers or readers.
A process operation starts by an invoke action on the register, and ends with a response. An operation
completes when the process receives the response. An operation o1 precedes another operation o2 (and
o2 follows o1) if it completes before the invocation of o2. Operations with no precedence relation, are
called concurrent.
Unless stated otherwise, the register implementations should be wait-free [174], i.e., the operation
invocations should complete in a finite number of internal steps. Moreover, we want to provide
uniform implementations, i.e., implementations that do not rely on the number of processes, allowing
processes to not know each other initially.
We provide two register abstraction semantics, regular and atomic, which differ mainly in the way
they deal with concurrent accesses [209]. In a regular register it is only guaranteed that different read
operations agree on the order of preceding write operations. Any read operation overlapping a write
operation may return the value being written or the preceding value. An atomic register employs a
stronger consistency notion than regular semantics. It stipulates that it should be possible to place
each operation at a singular point (linearization point) between its invocation and response. Basically,

SUPERCLOUD D3.2 Page 85 of 182

D3.2 - Specification of security enablers for data management

after a read operation completes, a following read must return at least the version returned in the
preceding read, even in the presence of concurrent writes.

8.2.2 Threat Model

Up to f out-of n base objects can be subject to NR-arbitrary failures [185], which are also known as
Byzantine failures. The behavior of such objects can be unrestricted: they may not respond to an
invocation, and if they do, the content of the response may be arbitrary. Unless stated otherwise,
readers may also be subject to Byzantine failures. Writers can only fail by crashing, because even if
the protocol tolerates Byzantine writers, they may always store arbitrary values or overwrite data on
the register. Processes and base objects are said to be correct if they do not fail.
For cryptography, we assume that each writer has a private key Kr to sign some of the information
stored on the base objects. These signatures can be verified by any process in the system through
the corresponding public key Ku. Moreover, we also assume the existence of a collision-resistant
cryptographic hash function to ensure integrity. There might be multiple writer keys as long as
readers can access their public counterparts.

8.2.3 Key-Value Store Specification

Current cloud storage service providers offer a key-value store (KVS) interface for customers to store
and retrieve their data. In this context, KVSs act as passive servers where it is impossible to run
any client code, forcing the implementations to be data-centric. Being associative arrays, they export
four well defined operations to interact with a collection of 〈key, value〉 pairs, where any key can
have only one value associated. The size of stored values are expected to be much larger than the
size of the associated keys. The four operations are: (1) put(k, v), (2) get(k), (3) list(), and (4)
remove(k). The first operation associates a key k with the value v, returning ack if successful and
ERROR otherwise; the second retrieves the value associated with a key k, or ERROR if the key does
not exist; the third returns an array with all the keys in the collection, or [] if there are no keys in the
collection; and the last operation disassociates a key k from its value, releasing storage space and the
key itself, returning an ack if successful and ERROR otherwise. Finally, we assume that individual
KVS’s operations are atomic and wait-free.

8.3 Multi-Writer Constructions

In this section we describe the three MW-regular register implementations. Before discussing the
algorithms in detail (§8.3.3 to §8.3.6), we present an overview of the general structure of the protocols
(§8.3.1) and describe the main techniques employed in their construction (§8.3.2). The correctness
proofs of the protocols are presented in §8.4.

8.3.1 Overview

Our three MW-regular protocols differ in the storage technique employed (replication or erasure code),
the number of base objects required (3f + 1 or 4f + 1), and the number of sequential base object
accesses (two or three steps). Despite of that, the general structure of all protocols is similar to the
one illustrated in Figure 11.1.
In the write operation, the client first lists a quorum of base objects (KVSs) in order to find the
key encoding the most recent version written in the system, and then puts the value been written
associated with a unique key encoding a new (incremented) version in a quorum. The read operation
requires finding the most recent version of the object (as in the first phase of the write operation),
and then retrieving the value associated with that key.
Notice that our approach considers that each written value requires a new key-value pair in the KVSs.
However, it is impossible to implement wait-free data-centric MR-regular register emulations without

SUPERCLOUD D3.2 Page 86 of 182

D3.2 - Specification of security enablers for data management

c
bo1
bo2
bo3
bo4

list k =	id-ts put	(id-ts+1,	val)
WRITE

(a) WRITE.

c
bo1
bo2
bo3
bo4

list k =	id-ts val =	get	(id-ts)
READ

(b) READ.

Figure 8.1: MW-regular register protocols general structure.

using at least one “data element” per written version if the base objects do not provide conditional
update primitives (similar to Compare-and-Swap) [54, 107]. Therefore, any practical implementation
of these algorithms must consider some form of garbage collection, as discussed in §8.5.2.

8.3.2 Protocols Mechanisms

Our algorithms use a set of mechanisms that are crucial for achieving Byzantine fault tolerance, MW
semantics and storage efficiency. These mechanisms are discussed bellow.

8.3.2.1 Byzantine Quorum Systems

Our protocols employ dissemination and masking Byzantine quorum systems to tolerate up to f
Byzantine faults [228]. Dissemination quorum systems consider quorums of q = dn+f+1

2 e base objects,
requiring thus a total of n > 3f base objects in the system. This ensures each two quorums intersect
in at least f + 1 objects (one correct). Masking quorum systems require quorums of size q = dn+2f+1

2 e
and a total of n > 4f base objects, ensuring thus quorum intersections with at least 2f+1 base objects
(a majority of correct ones).

8.3.2.2 Multi-Writer Semantics

We use the list operation offered by KVSs to design MW uniform implementations. This operation
is very important as it allows us to discover new versions written by unknown clients. With this,
the key idea of our protocols is making each writer to write in its own abstract register in a similar
way to what is done in traditional transformation of SW to MW registers [209]. We achieve this by
putting the client unique id on each key alongside with a timestamp ts, resulting in the pair 〈ts, id〉,
which represents a version. This approach ensures that clients writing new versions of the data never
overwrite versions of each other.

8.3.2.3 Object integrity and authenticity

We call the pair 〈data key, data value〉 an object. In our algorithms, the data key2 is represented by
a tuple 〈ts, id,h〉s, where 〈ts, id〉 is the version, h is a cryptographic hash of the data value associated
with this key, and s is a signature of 〈ts, id,h〉 (there is a slight difference in the protocol of §8.3.6,
as will be discussed later). Having all this information on the data key allows us to validate the
integrity and authenticity of the version (obtained through the list operation) before reading the data
associated with it. Furthermore, if some version has a valid signature we call it valid. A data value
is said to be valid if its hash matches the hash present in a valid key (this can only be proved after
reading the value associated with the key). Consequently, an object is valid if both the version and
the value are valid.

2For the rest of this chapter we may refer to this only as key.

SUPERCLOUD D3.2 Page 87 of 182

D3.2 - Specification of security enablers for data management

Algorithm 1: Auxiliary functions.

1 Function listQuorum() begin
2 L[0..n− 1]←⊥;
3 concurrently for 0 ≤ i ≤ n− 1 do
4 L[i]← listi;

5 wait until |{i : L[i] 6=⊥}| ≥ q;
6 return L;

7 Function writeQuorum(data key , value) begin
8 ACK [0..n− 1]←⊥;
9 concurrently for 0 ≤ i ≤ n− 1 do

10 ACK [i]← put(data key, value[i])i;

11 wait until |{i : ACK [i] = true}| ≥ q;

12 Function maxValidVersion(L) begin

13 return 〈vr ,h〉s ∈
n−1
∪
i=0

L[i] : verify(s,Ku)∧ 6 ∃ 〈vr ′,h′〉s′ ∈
n−1
∪
i=0

L[i] : vr ′ > vr ∧ verify(s′,Ku)) ;

8.3.2.4 Erasure codes

Two of our protocols employ erasure codes [266] to decrease the storage overhead associated with full
replication. This technique generates n coded blocks, one for each base object, from which any m < q
base objects blocks can reconstruct the data. Concretely, in our protocols we use m = f + 1.
Notice that this formulation of coded storage can also be used to ensure confidentiality of the stored
data, by combining the erasure code with a secret sharing scheme [201], in the same way it was done
in DepSky [65].

8.3.3 Pseudo Code Notation and Auxiliary Functions

We use the ‘+’ operator to represent the concatenation of strings and the ‘.’ operator to access
data key fields. We represent the parallelization of base object calls with the tag concurrently.
Moreover, we assume the existence of a set of functions: (1) H(v) generates the cryptographic hash
of v; (2) encode(v,n,m) encodes v in n blocks from which any m are sufficient to recover it; (3)
decode(bks,n,m,h) recovers a value v by decoding any subset of m out-of n blocks from the array bks
if H(v) = h, returning ⊥ otherwise; (4) sign(info,Kr) signs info with the private key Kr, returning
the resulting signature s; (5) verify(s,Ku) verifies the authenticity of signature s using a public key
Ku.
Besides these cryptographic and coding functions, our algorithms employ three auxiliary functions,
described in Algorithm 1. The first function, listQuorum (Lines 1-6), is used to (concurrently) list the
keys present in a quorum of KVSs. It returns an array L with the result of the list operation in at
least q KVSs.
The writeQuorum(data key , value) function (Lines 7-11) is used for clients to write data in a quorum
of KVSs. The key data key is equal in all base objects, but the value value[i] may be different in each
base object, to accommodate erasure-coded storage. When at least q successful put operations are
performed, the loop is interrupted.
The last function, maxValidVersion(L) finds the maximum version number correctly signed on an
array L containing up to n KVS’ list results (possibly returned from listQuorum function), returning
0 (zero) if no valid version is found.

8.3.4 Two-Step Full Replication Construction

Our first Byzantine fault-tolerant MW-regular register construction employs full replication, storing
thus the whole value in each base object. The algorithm is optimally resilient as it employs a dissemi-
nation quorum system [228]. Algorithm 2 presents the write and read procedures for the construction.

SUPERCLOUD D3.2 Page 88 of 182

D3.2 - Specification of security enablers for data management

Algorithm 2: Regular Byzantine Full Replication (FR) MW register (n > 3f) for client c.

1 Procedure FR-write(value) begin
2 L← listQuorum();
3 max ← maxValidVersion(L);
4 new key ← 〈max .ts + 1, c,H (value)〉;
5 data key ← new key + sign(new key,Kr);
6 v[0..n− 1]← value;
7 writeQuorum(data key, v);

8 Procedure FR-read() begin
9 L← listQuorum();

10 repeat
11 data key ← maxValidVersion(L);
12 d[0..n− 1]←⊥;
13 concurrently for 0 ≤ i ≤ n− 1 do
14 valuei ← get(data key)i;
15 if H (valuei) = data key .hash then
16 d[i]← valuei ;
17 else
18 d[i]← ERROR;

19 wait until (∃i : d[i] 6=⊥ ∧d[i] 6= ERROR) ∨ (|{i : d[i] 6=⊥}| ≥ q);
20 ∀i ∈ {0,n− 1} : L[i]← L[i] \ {data key};
21 until ∃i : d[i] 6=⊥ ∧d[i] 6= ERROR;
22 return d[i];

Processes perform write operations using the procedure FR-write (Lines 1–7). The protocol starts
by listing a quorum of base objects (Line 2). Then, it finds the maximum version available with a
valid signature in the result using the function maxValidVersion(L) (Line 3), and creates the new data
key by concatenating a new unique version, and the hash of the value together with the signature of
these fields (Lines 4–5). Lastly, it uses the writeQuorum function to write the data to the base objects
(Lines 7).
The read operation is represented in the FR-read procedure (Lines 8–22). As in the write operation,
it starts by listing a quorum of base objects. Then the reader enters in a loop until it reads a valid
value (Line 10–21). First, it gets the maximum valid version listed (Line 11), and then it triggers n
parallel threads to read that version from different KVSs. Next, it waits either for a valid value, which
is immediately returned, or for a quorum of q responses (Line 19). The only way the loop terminates
due to the second condition is if it is trying to read a version being written concurrently with the
current operation, i.e., a version that is not yet available in a quorum. This is possible if the first
q base objects to respond do not have the maximum version available yet. When this happens, the
version is removed from the result of the list operation (Line 20), and another iteration of the outer
loop is executed to fetch a smaller version. Notice that a version that belongs to a complete write can
always be retrieved from the inner loop due to the existence of at least one correct base object in the
intersection between Byzantine quorums.
Without concurrency, the protocol requires one round of list and one of put for writing, and one
round of list and one of get for reading. In fact, it is impossible to implement a MW register with
less base object calls since for writing and reading we always need to use at least one round of put
and get operations, respectively, and to find the maximum version available we can only use list or
get to retrieve that information from the base objects.

8.3.5 Two-Step Erasure Code Construction

Differently from the protocol described in the previous section, which employs full replication with
a storage requirement of q × S wherein S is the size of the object, in our second Byzantine fault-
tolerant MW-regular register emulation we use storage-optimal erasure codes. Since the erasure code

SUPERCLOUD D3.2 Page 89 of 182

D3.2 - Specification of security enablers for data management

Algorithm 3: Regular Byzantine Erasure-Coded (EC) MW register (n > 4f) for client c.

1 Procedure EC-write(value) begin
2 L← listQuorum();
3 max ← maxValidVersion(L);
4 new key ← 〈max .ts + 1, c,H (value)〉;
5 data key ← new key + sign(new key,Kr);
6 v[0..n− 1]← encode(value,n, f + 1);
7 writeQuorum(data key, v);

8 Procedure EC-read() begin
9 L← listQuorum();

10 foreach ver ∈ L : #L(ver) < f + 1 do
11 ∀i ∈ {0,n− 1} : L[i]← L[i] \ {ver};
12 repeat
13 data key ← maxValidVersion(L);
14 data ←⊥;
15 concurrently for 0 ≤ i ≤ n− 1 do
16 d[i]← get(data key)i;
17 if data =⊥ then
18 data ← decode(d,n, f + 1, data key .hash);

19 wait until data 6=⊥ ∨ |{i : d[i] 6=⊥}| ≥ q;
20 ∀i ∈ {0,n− 1} : L[i]← L[i] \ {data key};
21 until data 6=⊥ ∧ data 6= ERROR;
22 return data;

we use [266] generates n coded blocks, each with 1
f+1 of the size of the data, the storage requirement

is reduced to q × S
f+1 .

The main consequence of storing different blocks in different base objects for the same version, is the
number of base objects accessed in a dissemination quorum systems is not enough to construct a wait-
free Byzantine fault-tolerant MW-regular register. This happens because the intersection between
dissemination quorums contains only f + 1 base objects, meaning that when reading the version
associated with the last complete write operation, the quorum accessed may contain only 1 valid
response (f can be faulty). This is fine for full replication as a single updated and correct value is
enough to complete a read operation. However, it may lead to a violation of the regular semantics
when erasure codes are employed since we now need at least f + 1 encoded blocks to reconstruct the
last written value.
To overcome this issue we use Byzantine masking quorum systems [228], where the quorums intersect
in at least 2f + 1 base objects. Despite the increase in the number of base objects (n > 4f), the
storage requirement is still significantly reduced when compared with the previous protocol. As an
example, for f = 1, this protocol has a storage overhead of 100% (a quorum of four objects with coded
blocks of half of the original data size) while in the previous protocol the overhead is 200% (a quorum
of three objects with a full copy of the data on each of them).
Algorithm 3 presents the details about this protocol. The EC-write procedure is similar to the write
procedure of Algorithm 2. The only difference is the use of erasure codes to store the data. Instead
of full replicating the data, it uses the writeQuorum function to spread the generated erasure-coded
blocks through the base objects in such a way that each one of them will store a different block
(Lines 6–7). Notice that the hash on the data key is generated over the full copy of data and not over
each of the coded blocks.
The read procedure EC-read is also similar to the read protocol described in §8.3.4, but with two
important differences. First we remove from L the versions we consider impossible to read (Lines 10–
11), i.e., versions that appear in less than f + 1 responses obtained from different KVSs. Second,
instead of waiting for one valid response in the inner loop, we wait until we can reconstruct the data
or for a quorum of responses. Again, the only way the loop terminates through the second condition

SUPERCLOUD D3.2 Page 90 of 182

D3.2 - Specification of security enablers for data management

Algorithm 4: Regular Byzantine Erasure-Coded (EC) MW register (n > 4f) for client c.

1 Procedure 3S-write(value) begin
2 L← listQuorum();
3 max ← maxValidVersion(L);
4 data key ← 〈max .ts + 1, c〉;
5 proof info ←“PoW”+〈max .ts + 1, c,H (value)〉;
6 proof key ← proof info + sign(proof info,Kr) ;
7 v[0..n− 1]← encode(value,n, f + 1);
8 writeQuorum(data key , v);
9 v[0..n− 1]← ∅;

10 writeQuorum(proof key , v);

11 Procedure 3S-read() begin
12 L← listQuorum();
13 proof key ← maxValidVersion(L);
14 data key ← 〈proof key .ts, proof key .id〉;
15 data ←⊥;
16 concurrently for 0 ≤ i ≤ n− 1 do
17 d[i]← get(data key)i;
18 if data =⊥ then
19 data ← decode(d,n, f + 1, data key .hash);

20 wait until data 6=⊥;
21 return data;

is if we are trying to read a concurrent version. For reconstructing the original data, every time a new
response arrives we try to decode the blocks and verify the integrity of the obtained data (Line 18).
Notice that the integrity is verified inside the decode function. A version associated with a complete
write can always be successfully decoded because any accessed quorum will provide at least f +1 valid
blocks for decoding this version’s value. As soon as the integrity is verified, the outer loop stops and
the value is returned (Lines 21–22).

8.3.6 Three-Step Erasure Code Construction

Our last construction implements a Byzantine-resilient MW-regular register using erasure codes and
dissemination quorums, being thus both storage-efficient and optimally-resilient. We achieve this by
storing in each base object two objects per version instead of one.
The first object we call data object and is used to store the encoded data blocks. The second one,
named proof object, is a zero-byte object used to prove that a given data object is already available in
a quorum of base objects (similar to what is done in previous works [133, 65]). The key of the data
object is composed only by the version, i.e., the tuple 〈ts, id〉. In turn, the key of the proof object is
composed by the string 〈“PoW”, ts, id,h〉s, in which h is the hash of the full copy of data and s is a
signature of 〈“PoW”, ts, id,h〉.
Algorithm 4 presents the protocol. The write procedure, called 3S-write, starts by listing the proof
objects from a quorum of base objects (Line 2). Then it finds the maximum valid version between
the proof objects. For simplicity, this algorithm is using the same function maxValidVersion(L) as the
previous protocols, but here we are only focusing in proof objects. Next it creates the new data key
and the new proof key to be written (Lines 4–6). Then it writes the data object in a quorum (ensuring
that different base objects will store different coded blocks) and, after that, it writes the proof object
(Lines 7-10). This sequence of actions ensures that when a valid proof object is found in at least one
base object, the corresponding data object is already available in a quorum of base objects.
The 3S-read procedure is used for reading. The idea is to list proof objects from a quorum, find
the maximum valid version among them, and read the data object associated with that proof object.
Notice that to read the data we do not need to wait for a quorum of responses as it is enough to have
m = f + 1 valid blocks to decode the value (Lines 18–19). This holds because, differently from the

SUPERCLOUD D3.2 Page 91 of 182

D3.2 - Specification of security enablers for data management

two previous algorithms, here we are sure that the data values with a version matching the maximum
version found in valid proof objects is already stored in a quorum of base objects.
As explained before, this protocol works with only 3f + 1 base objects. This is done without adding
any extra call to the base objects in the read operation, which still needs only two rounds of accesses,
one for list and one for get. However, for writing, one more round of put is needed (to replicate the
proof object). This trade-off is actually profitable in a cloud-of-clouds environment since the monetary
costs of storing erasure-coded blocks in extra clouds is much larger than sending zero-byte objects to
the clouds we use.

8.4 Correctness

This section presents the correctness proofs of the protocols of Algs. 2, 3 and 4. We start by proving
that the auxiliary functions used by the protocols (presented in Alg. 1) are wait-free.

Lemma 2. Every correct process completes the execution of listQuorum and writeQuorum in finite
time.

Proof. Both algorithms are used by all protocols. This means that they use both dissemination and
masking quorums. Since they send n requests, one for each base object, and at most f base objects
are allowed to be faulty, a quorum of responses will always be received as q ≤ n − f . Consequently,
both algorithms return in finite time. �

8.4.1 Two-Step Algorithms Proof

In the following we prove the correctness of Algs. 2 and 3, as they follow the same rationale, although
employing different Byzantine quorum systems. For these proofs, we denote by L the output of the
listQuorum executed in the beginning of FR-read and EC-read procedures. Moreover we define
m as the number of required responses to obtain the requested value. Notice that m = 1 for full
replication and m = f + 1 for erasure-coded data. The next lemmas state that L contains a version
that respects MW-regular semantics.

Lemma 3. A value associated with a complete write operation is always found in L, and can be
retrieved from the base objects.

Proof. Since we do not consider malicious writers, we know that they only write valid objects in
a quorum q. Furthermore, we know that when listing or reading a dissemination (resp. masking)
Byzantine quorum of base objects we will also access f + 1 (resp. 2f + 1) objects where the last
complete write was executed, as by definition quorums intersect by this amount of objects. Using
this fact, the lemma can then be reduced to prove that such intersection will contain m correct base
objects, which will provide the last version written. This is indeed the case as m = 1 in full replication
(intersection of f + 1 – at least one correct) and m = f + 1 with erasure coded data (intersection of
2f + 1 – at least f + 1 correct). �

Lemma 4. The maximum version found on L corresponds to the last complete write operation, or to
a concurrent one.

Proof. L only contains valid versions that were already stored by a writer, otherwise it would be
impossible to find them. Since we do not consider malicious writers, we know they will follow the
protocol, for example, by incrementing the maximum ts found and has not lied about his id when
creating the pair 〈ts+ 1, c〉. Therefore, each writer always writes a version larger than the maximum
version found, respecting thus partial order.
According to Lemma 3, a version whose write is complete is always found in L. Consequently, we
can claim that, without concurrency, the maximum version in L belongs to the last complete write
operation. Furthermore, if there are any concurrent write operation being executed, it may appear as

SUPERCLOUD D3.2 Page 92 of 182

D3.2 - Specification of security enablers for data management

the maximum version found in L, as its version is surely greater then the version of the last complete
write. �
These lemmas allow us to prove that both protocols (Algs. 2 and 3) respect the specification of a
multi-writer multi-reader regular register and are wait-free.

Theorem 2. A FR-read (resp. EC-read) operation running concurrently with zero or more FR-write
(resp. EC-write) operations will return the value associated with the last complete write or one of the
values being written.

Proof. Both read procedures start by calling listQuorum. By Lemma 4 we know that the maximum
version found in L belongs to the last complete write operation or to a concurrent one. Independently
of the case, the procedures try to read it. If the version belongs to a concurrent write it may not be
retrieved. In this case the algorithms exclude it and fetch the new maximum valid version listed (see
loop in Lines 10–21 and 12–21, in Algorithms 2 and 3, respectively). However, according to Lemma 3,
if no concurrent version can be read, we know that the value associated with the last complete version
is always retrieved. This proves that both protocols respect regular semantics. �

Theorem 3. The FR-write, EC-write, FR-read and EC-read procedures satisfy wait-freedom.

Proof. The FR-write and EC-write procedures, besides executing local computation steps, call the
functions of Algorithm 1. Since these algorithms are wait-free (Lemma 2), the write protocols are also
wait-free.
Both read operations start by calling the listQuorum, which is wait-free (Lemma 2). After that, the
algorithms enter in a loop that only terminates after finding a valid value to return. By Lemma 3 we
know that a value associated with a complete version is always found in L, and that this version can
be retrieved. Then the number of iterations of this loop is bounded by the number of writes being
executed concurrently that can be seen in L, but whose the value cannot be retrieved. Since after
failing a read we try a smaller version, the algorithms will eventually try to fetch the value written in
the last complete write. Consequently, the read procedures terminate in finite time. �

8.4.2 Three-Step Algorithm Proof

We now sketch the correctness proof of Algorithm 4. The complete proofs are very similar to the ones
presented before for the Algs. 2 and 3. The main difference here is the existence of the proof object
used to prove that the data object associated with it is already stored in a dissemination quorum. The
following lemmas state the properties of this object.

Lemma 5. The value associated with every valid proof object in L can be retrieved from at least f + 1
base objects.

Proof. Each valid proof object found in L was previously written by a correct writer. In turn, since
we do not consider malicious writers, each writer only replicates the proof object after storing its
associated data object in at least q = dn+f+1

2 e base objects. Therefore, we know that the data object
associated with a valid proof object in L is available in at least q−f ≥ f +1 base objects. This means
that there will be enough data objects to reconstruct the original value. �

Lemma 6. The maximum valid version found among the proof objects observed in L corresponds to
the last complete write, or to a concurrent one.

Proof. This can be proved following the same rationale of Lemma 4. Writers are considered correct
and therefore they calculate new versions correctly, i.e., they find the maximum valid version on a
quorum of proof objects and increment it ensuring that each new version has a greater version number.
Furthermore, an 3S-write operation is considered complete only after it writes the proof object to a
dissemination quorum. Since we know that the intersection of any two dissemination quorums contains
at least f + 1 base objects, the proof object associated with the last complete write can always be

SUPERCLOUD D3.2 Page 93 of 182

D3.2 - Specification of security enablers for data management

found. This proves that, without concurrency, the maximum version found corresponds to the last
complete write operation. If some concurrent writes are being executed (Line 10), they may be seen
as the maximum version because they surely have a greater version than the last complete write. �
Using these lemmas we are now able to prove that Algorithm 4 respects multi-writer multi-reader
regular register semantics and wait-freedom.

Theorem 4. A 3S-read operation running concurrently with zero or more 3S-write operations will
return the value associated with the last complete write or one of the values being written.

Proof. According to Lemma 5, the value associated with each valid proof object in L can always be
read from the base objects. The protocol reads the value associated with the maximum valid version
found in L, and we know by Lemma 6 that this version is associated either with the last complete
write or to one of the values being written. Therefore, the value returned by 3S-read belongs to the
last complete write or to a concurrent one. �

Theorem 5. The 3S-read and 3S-write procedures satisfy wait freedom.

Proof. The write procedure invokes listQuorum once, to obtain L, and writeQuorum twice, one
to write the data blocks and another to write the proof objects. According to Lemma 2, these two
operations terminate in finite time, and thus 3S-write always terminates as well.
The read procedure also satisfies wait freedom due to Lemma 5: a value associated with a valid proof
object is always available for read. �

8.5 Protocols Extensions

This section presents a discussion of how the protocols presented in this chapter can be modified
to offer atomic semantics [209], and what are the possible solutions to garbage collect obsolete data
versions.

8.5.1 Atomicity

There are many known techniques to transform regular registers in atomic ones. Most of them require
servers running part of the protocol [86, 231], which is impossible to implement with our base objects.
Fortunately, the simplest transformation can be used in data-centric algorithms. This technique
consists in forcing readers to write-back the data they read to ensure this data will be available in a
quorum when the read completes [165, 227, 54].
Our three constructions could implement this technique by invoking writeQuorum to write the read
value before returning it. However, writing back read values in our first two protocols may carry
out performance issues as the stored data size might be non-negligible. In turn, employing the same
write-back technique in our last protocol (Algorithm 4) does not have this limitation, as a reader
would only need to write-back the zero-byte proof object (see §8.3.6). Hence, the performance effect
of using this technique in the read procedure is independent of the size of the data being read. A
final concern about using write-backs to achieve atomicity is the that we would have to assume that
readers may only fail by crash, otherwise they may write bogus values in the base objects. In the
regular constructions this is not required as we do not need to give write permissions to readers.

8.5.2 Garbage Collection

Existing solutions. Register emulations that employ versioning must use a garbage collection pro-
tocol to remove obsolete versions, otherwise an unbounded amount of storage is required. DepSky [65]
provides a garbage collection protocol that is triggered periodically to remove older versions from the
system. Although practical in many scenarios, this solution is vulnerable to the garbage collection
racing problem [54, 318]. This problem happens when a client is reading a version that had became

SUPERCLOUD D3.2 Page 94 of 182

D3.2 - Specification of security enablers for data management

obsolete due to a concurrent write, and removed by a concurrent execution of the garbage collection
protocol, making it impossible for a reader to obtain the value associated with it.
To the best of our knowledge, there are only two works that solve this problem. The solution of [318]
makes readers announce the version they are going to read, preventing the garbage collector from
deleting it. Unfortunately, this solution cannot be directly applied in the data-centric model since it
requires servers capable of running parts of the algorithm. Another solution was proposed in [54]. In
this protocol each writer stores the value in a temporary key, which can be garbage collected by other
writers, and also in an eternal key, that is never deleted. This approach allows readers to obtain the
value from the eternal key when the temporary key is erased by concurrent writers. A solution like
this can be applied to our first protocol (see §8.3.4), which employs full replication. Yet, it does not
work with erasure-coded data. The reason is the eternal key is overwritten whenever a write operation
occurs, and since several writers can operate simultaneously, the eternal key in different base objects
may end up with blocks belonging to different versions. Therefore, it might lead to the impossibility
of getting f + 1 blocks of the same version to reconstruct the original value.
Adapting the solutions to our protocols. All existing solutions for garbage collection can be
adapted to the protocols discussed in §8.3. The approach of deleting obsolete versions asynchronously
by a thread running in background can be naturally integrated to our protocols. This thread can be
triggered by the clients at the end of the write operations, making each client responsible for removing
its obsolete data.
Since we do not rely on server-side code for our protocols, devising a solution where readers announce
the version they are about to read (by writing an object with that information to a quorum of base
objects) would require substantial changes in our system model. More specifically, to ensure wait-
freedom for read operations, only objects with versions lower than the ones announced can be garbage
collected. This solution may not tolerate the crash of the readers – if a reader crashes without removing
its announcement, larger versions than the one it announced will never be removed. It is possible to
add an expiration time to the announcement to avoid this. Yet, this would still require changes in
the system model to add synchrony assumptions for the expiration time to (eventually) hold, and not
consider Byzantine readers (that could block garbage collection by announcing the intention to read
all versions).
Using the eternal key approach together with erasure codes significantly increase the storage require-
ments of our algorithms. The idea is to make each writer not only store the coded blocks into temporary
keys, but also replicate full copies of the original data in eternal keys. This approach may lead to
a decrease in the write performance (related with an extra write of a full copy of the data per base
object) and an increase of n× S in each protocol storage requirements.
Discussion. The three proposed solutions explore different points in the design space of data-centric
storage protocols. In the first approach, we do not really solve the garbage collection racing problem.
The second solution requires a stronger system model and additional base object accesses in the read
operation. The third solution increases the storage requirements and reduces the write performance
as writers have to write not only the coded blocks, but also full copies of the data.
We argue that most applications would prefer to have better performance and low storage requirements,
at the cost of eventually repeating failed reads. Therefore, we chose to support the asynchronous
garbage collection triggered periodically (for example hourly, daily or even when a given number of
versions has been written), as done in DepSky [65].

8.6 Evaluation

This section presents an evaluation of our three new protocols, comparing them with two previous
constructions targeting the cloud-of-clouds model [54, 65].

SUPERCLOUD D3.2 Page 95 of 182

D3.2 - Specification of security enablers for data management

 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 10 100 500 1000
L

a
te

n
cy

 (
se

co
n

d
s)

Number of writes

2S-FR
2S-EC
3S-EC

Figure 8.2: Average latency and std. deviation of listQuorum for different number of stored keys.

8.6.1 Setup and Methodology

The evaluation was done using a Dell Power Edge R410 machine equipped with two Intel Xeon E5520
(quad-core, HT, 2.27Ghz), and 32GB of RAM. This machine was running an Ubuntu Server Precise
Pangolin operative system (12.04 LTS, 64-bits, kernel 3.5.0-23-generic), and Java 1.8.0 67 (64-bits).
Furthermore, we compare our protocols with the MW-regular register of [54], which we call ICS, and
the SW-regular register of DepSky [65]. The protocols proposed in this chapter were implemented in
Java using the APIs provided by real storage clouds. We used the DepSky implementation available
online [8]. However, since there is no available implementation of ICS, we implemented it using the
same framework we used for our protocols. All the code used in our experiments is available on the
web [15].
All experiments consider f = 1 and the presented results are an average of 1000 executions of the
same operation, employing garbage collection after every 100 measurements. The storage clouds used
were Amazon S3 [2], Google Storage [10], Microsoft Azure Storage [14], Rackspace Cloud Files [21],
and Softlayer Cloud Storage [22]. ICS was configured to use the first three of them (n = 3); the
Two-Step Full Replication (2S-FR), Three-Step Erasure Codes (3S-EC) and DepSky protocols used
the first four clouds mentioned (n = 4); and the Two-Step Erasure Codes (2S-EC) protocol used all
of them (n = 5).

8.6.2 List Quorum Performance

One of the main differences between our protocols and the other MW-regular register of the literature,
namely ICS [54], is the fact that garbage collection is decoupled from write operations. This means
that list operations invoked in ICS’ base objects always return a small number of keys. Since in
our protocols the garbage collection is executed in background, it is important to understand how
the presence of obsolete keys (not garbage collected) in the KVSs affects the performance of list the
available keys.Notice this issue does not affect DepSky as it does not use the list operation [65].
Figure 8.2 shows the latency of executing the listQuorum function with different numbers of keys
stored in the KVSs, for our three protocols (which consider different quorum sizes). As can be seen,
2S-EC presents the worst performance, indicating that listing bigger quorums is more costly. We
can also observe that the performance degradation of the list operation when there are less than 100
obsolete versions is very small (specially for 2S-FR and 3S-EC). However, the latency is roughly 2×
and 4× worst for 500 and 1000 versions, respectively. This is an indication that triggering the garbage
collection once on every 100 write operations will avoid any significant performance degradation.

8.6.3 Read and Write Latency

Figure 8.3 shows the write and read latency of our three protocols, ICS [54] and DepSky [65], consid-
ering different sizes of the stored data.
The results show that, when reading 64kB and 1MB, 2S-FR and 3S-EC presents almost the same
performance, while 2S-EC is slightly slower, due to the use of larger quorums. This means that
reading only one data value with a full copy of the data is as fast as reading f + 1 blocks with half of

SUPERCLOUD D3.2 Page 96 of 182

D3.2 - Specification of security enablers for data management

 0

 1

 2

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

pL
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

50th
90th

WriteRead

(a) 64kB.

 0

 1

 2

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

50th
90th

WriteRead

(b) 1MB.

 0

 5

 10

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

50th
90th

WriteRead

(c) 16MB.

Figure 8.3: Median and 90-percentile latencies for read and write operations of register emulations.

the size of the original data. This is not the case for 16MB data. The results show it is faster to read
f + 1 data blocks of 8MB in parallel from different clouds (2S-EC and 3S-EC) than reading a 16MB
object from one cloud (2S-FR).
For writing 64kB objects 3S-EC is slower than 2S-FR and 2S-EC. This happens due to the latency
of the third step of the protocol (write of the proof object). When writing 1MB objects, our three
protocols present roughly the same latency, being the 3S-EC protocol a little bit slower for the median-
percentile (also due to the write of the proof object). However, when clients write 16MB data objects,
the additional latency associated with this third step is negligible. Overall, these results can be
explained by the fact that the proof object has zero bytes. Thus, 3S-EC protocol presents the best
performance due to its use of dissemination quorums and erasure codes. For this data size, the 2S-FR
protocol presents the worst performance of our protocols as it stores a full copy of the data in all
clouds.
The key takeaway here is that our protocols present a performance comparable with DepSky [65]
(Dep), which does not support multiple writers, and a performance up to 2× better than the crash
fault-tolerant MW register presented in [54] (ICS). On the other hand, ICS presents the worst latency
among the evaluated protocols. One of the main reasons for this to happen is the fact that it does
not use erasure codes. Furthermore, for reading, this protocol always waits for a majority of data
responses, which makes it slower than, for example, the 2S-FR that only waits for one valid get
response. In turn, for writing, ICS writes the full copy of the data twice on each KVS to deal with
the garbage collection racing problem, removing also obsolete versions.

8.6.4 Read Under Write Contention

Figure 8.4 depicts the read latency of 1 MB objects in presence of multiple contending writers. This
experiment does not consider DepSky as it only offers SW semantics.
The results show that both 2S-FR and 2S-EC read latencies are affected by the number of contending
writers. This happens for two reasons: (1) under concurrent writes, these read protocols commonly try
to first read incomplete versions from the KVSs before finding a complete one (i.e., the loop on read
protocols is executed more than once); (2) since we are not garbage collecting obsolete versions, more
writers send more versions to the clouds, negatively influencing the listQuorum function latency. Since
3S-EC is not affected by the first factor, its read operation performs slightly better with contending
writers.
ICS’s read presents a constant performance with the increase of contending writers, however, 2S-FR
and 2S-EC present competitive results and 3S-EC presents results always better than it, even without
garbage collecting obsolete versions.

SUPERCLOUD D3.2 Page 97 of 182

D3.2 - Specification of security enablers for data management

 0

 0.5

 1

 1.5

1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10L
a

te
n

cy
 (

se
co

n
d

s)

50th
90th

ICS3S-EC2S-EC2S-FR

Figure 8.4: Median and 90-percentile read latencies in presence of contending writers.

8.7 Conclusion

This chapter presented a study of fundamental storage abstractions resilient to Byzantine faults in the
data-centric model, with applications to cloud-of-clouds storage. In this context, we presented three
new register emulations: (1) one that uses dissemination quorums and replicates full copies of the data
across the clouds, (2) another that uses masking quorums and reduces the space complexity through
the use of erasure codes, and (3) a third one that increases the number of accesses made to the clouds
to use dissemination quorums together with erasure codes.
Our evaluation shows that the new protocols have similar (or even better) performance and stor-
age requirements than existing emulations that either support a single writer [54] or tolerate only
crashes [65].

SUPERCLOUD D3.2 Page 98 of 182

D3.2 - Specification of security enablers for data management

Chapter 9 Low-cost Cloud-based Disaster Recovery for

Databases

9.1 Introduction

The occurrence of disasters introduces some serious challenges to the design of IT systems. In opposi-
tion to other sources of failures, disasters affect the whole (or at least a big part of the) infrastructure
where the system is hosted, resulting in greater damage to the service provided. Consequently, the
ability to tolerate disasters requires specific data protection mechanisms and careful planning [194].
More specifically, tolerating disasters requires placing (backup) resources in a geographically separated
location so that the same disaster does not affect the primary and the backup infrastructures. Such
approach results in significant additional costs, and thus it is not used by budget-constrained services.
The emergence of cloud computing made it possible to implement disaster recovery (DR) with a small
fraction of the costs of a dedicated infrastructure [316]. System operators can thus rely on cloud
providers to host a portion (or even full copies) of their system and, if the primary site goes offline,
they can quickly assume the service provision.
Cloud-based disaster recovery mechanisms require different approaches to deal with stateless and
stateful services. For the former, administrators only have to store server VM images to enable the
services to be started when required. For stateful services, there are basically two options: periodically
storing state snapshots, or maintaining a warm backup on the cloud. The first approach is know as
backup and restore while the later is sometimes called Pilot light, in the sense that this backup can
spark a whole backup infrastructure if needed [271]. The replication protocol for maintaining such
replica in the cloud can be implemented at different layers, such as within the service itself [20, 18, 195],
in the virtualization platforms [267, 317] or in the storage level [256, 186].
Despite all these options, data loss is still a common event that may lead to severe consequences.
Although statistics about data losses and its effects are sometimes misleading [149], recent surveys
showed that data loss costs $1.7 Trillion per year for medium and big companies [199]. A few years
ago a survey by Symantec showed that 40% of Small and Medium Enterprises (SMEs) do not do
regular backups [294]. We believe the situation improved in the last years, but it is unlikely that
this protection gap disappeared. A more recent survey revealed that 58% of the SMEs could not
sustain any amount of data loss [176], and that 62% of these companies do not backup their data on a
daily basis. These numbers clearly indicate that even simple backup routines are still a challenge for
SMEs, and reveal that fully automated disaster recovery solutions are not yet widely deployed. This
landscape is even worse if one considers new data loss threats, such as ransomware, which is becoming
a plague for SMEs [295]. Lack of budget and automation are usually pointed as key challenges for
implementing effective business continuity plans [28].
Within the work described in this chapter we try to improve this situation, specially for SMEs and
other organizations that cannot afford the cost and complexity of geo-replication and existing DR
solutions, through the exploitation of two facts. First, non-VM-based cloud services have the potential
of reducing drastically the costs of a disaster recovery solution. Second, most business critical data
are stored in database management systems (DBMS), therefore, it is paramount for any serious DR
solution to protect these systems.
In this context, we present Ginja, a disaster recovery system for transactional DBMSs based on

SUPERCLOUD D3.2 Page 99 of 182

D3.2 - Specification of security enablers for data management

popular cloud object storage services such as Amazon S3, Azure Blob Storage or Google Storage.
Ginja was designed with four objectives in mind: low operational costs, fine-grained control over
the data that can be lost due to a disaster, low performance overhead, and high portability among
different DBMSs.
Ginja exploits a new region in the design space of disaster tolerance/recovery systems, right between
backup and restore and pilot light solutions. In particular, it has costs close to the former (i.e.,
maintaining a backup database snapshots in the cloud) with the same control over data loss and
performance of the later (i.e., having a passive database replica in a VM in the cloud). To design such
system in a portable way, we had to overcome several challenges: (1) define means to capture all the
relevant I/O from the DBMS, (2) map these updates to a data model implementable in the clouds’
object storage interface, and (3) provide algorithms and mechanisms for controlling the behavior of
the system to match different requirements and budgets. In the end, our design exposes the cost
vs. performance vs. maximum data loss tradeoff in two parameters, allowing a tight control of these
factors.
We have implemented and evaluated a prototype of Ginja supporting PostgreSQL [19] and MySQL [17]
to show that our solution is feasible, performant and cost-efficient. For instance, we are able to provide
DR for many database setups relevant to SMEs (e.g., databases with up to 30GB of size and hun-
dreads of updates/minute) costing only one dollar/month, which is 14× less than the cost of running
the cheapest EC2 VM for a month. Furthermore, our results show that using Ginja leads to a small
performance loss for the TPC-C benchmark and minor additional CPU and memory usage on the
database server. Although our present implementation only supports PostgreSQL and MySQL, it was
designed to be easily extended for other DBMS.

9.2 Disaster Recovery

A Disaster is an event that has a negative impact on organizations’ business continuity and/or fi-
nances [271]. Examples of disasters include network and power outages, hurricanes, earthquakes,
floods, and so forth. Disaster Recovery (DR) is the area that makes IT systems tolerant and recov-
erable from the damages caused by these disasters. This is mainly achieved by having a Primary
Site infrastructure to respond in normal operation, plus a Secondary Site (or Backup Site) in a
geographically-distant location [99, 194].
Yet, different systems have different disaster recovery requirements [256]. Such requirements include
recovery time, consistency degree of the data recovered, performance impact during normal operation,
distance between sites and costs. For defining such requirements there exist two main parameters [99]:
Recovery Point Objective (RPO), which is the amount of updates (measured in time) that can be lost
due to a disaster; and Recovery Time Objective (RTO), which refers to the duration of downtime that
is acceptable before a system recovers from a disaster.
There are several ways to implement a disaster recovery strategy [194]. The classical approach is the
Tape Backup and Restore [286]. This technique consists of periodically taking consistent snapshots of
the data (optionally interspersed with incremental backups), storing it into tape drives and sending
those tapes off site. Although this approach is attractive for being low-cost, it has the disadvantages
of having long recovery time and always restoring the system to an outdated state, as backup intervals
are typically long. An alternative strategy is Remote Mirroring [186]. In this approach, the system
continuously replicates its data to an online remote mirror, which ensures the continuity of the system
if a disaster occurs. Despite being usualy more expensive, this technique can substantially reduce both
the RPO and RTO when compared with tape backup and restore.
The data replication between sites can be performed essentially in two ways: synchronously or asyn-
chronously [317, 76] (also called Eager and Lazy replication in the database community [195]). In
Synchronous Replication, the system loses performance as the primary site can only return success-
fully from a write operation after it has been acknowledged by the secondary site. In Asynchronous
Replication the primary site is allowed to proceed its execution without waiting for the replication to

SUPERCLOUD D3.2 Page 100 of 182

D3.2 - Specification of security enablers for data management

be completed at the secondary site. This type of replication overcomes the performance limitations of
synchronous replication at the expense of allowing recent updates to be lost if a failure occurs.
Public clouds appear as a perfect solution for implementing DR mechanisms. The main reasons are
their large portfolio of services (e.g., object storage, computing, networking, database, queue services),
relatively user-friendliness, security, multi-site availability, and the pay-as-you-go cost model. These
factors allow the design of DR solutions suitable for each organization regarding its objective (RPO
and RTO) and budget [271]. The simplest (and probably the cheapest) possible example is the storage
of data backups in cloud storage services such as Amazon S3. A more evolved (and expensive) solution
considers a subset of services replicated in VMs running in the cloud (e.g., on Amazon EC2). This
latter technique allows a low data loss and recovery time in case of a disaster.
Some public clouds also provide disaster recovery services that typically use their infrastructures as
a secondary site. Examples of such services are Azure Site Recovery [14] and vCloud Air Disaster
Recovery [24]. These services automate the configuration and management of the cloud backup infras-
tructure, but their cost is equivalent or even higher than maintaining plain backup VMs in the cloud.
It is also possible to run the primary site of a system entirely in a cloud. However, this approach does
not eliminate the need for disaster recovery since cloud wide outages, although rare, are a potential
threat to systems that rely entirely on one cloud infrastructure to perform its functions [65].
The more cloud resources a system requires in failure-free operation, the higher will be the costs of
the DR solutions. Even if the costs during failover are slightly higher in cloud based solutions, the
overall costs can still be smaller since disasters are supposed to be rare events [316].

9.3 Low-cost Cloud-based Disaster Recovery

In this work, we advocate that current cloud-based disaster recovery solutions are much more expensive
and difficult to manage than they should be. In particular, we show that a full-fledge database disaster
recovery system could be implemented without requiring any dedicated VM in the cloud. Such system
works as follows. Initially, a copy of all database files is uploaded to a cloud storage service (e.g.,
Amazon S3), and then, as updates are committed to the log file, the system sends them to the cloud
as commit objects. As new updates keep being performed, the DBMS executes a checkpoint to update
the table files and to clean its commit log. In this situation, the system updates the database files in
the cloud and removes outdated commit objects. In case of disaster, the recovered database needs to
be able to figure out the pre-disaster state using the objects stored in the cloud.
Such system could be extremely cheap if one considers that some recent updates could be lost in case
of a disaster (as in most DR systems). This would enable the DR system to send batches of updates
to the cloud periodically.
As an illustrative example, consider that someone wants to spend a maximum of $1 per month in a
database DR solution. In October 2016, Amazon S3 standard storage costs are $0.03 per GB/month,
$0.01 per 1000 file uploads, and free upload bandwidth and delete operations [3].1 Considering this, it
is possible to plot the capacity of a database (in terms of size and number of cloud synchronizations
per hour) for such one-dollar budget, as shown in Figure 9.1.
In the figure, every point below the line represents a setup costing less than $1 per month. For example,
this budget is enough to protect a database with 4.5GB with two synchronizations per minute (setup
C), or a 19GB database with one synchronization per minute (setup B), or even a 28.5GB database
synchronized once every three minutes (setup A). Importantly, an organization whose activity happens
mostly from 9AM to 5PM (which is the case for many non-online business) can have roughly three
more synchronizations per hour during these hours.
Notice that these setups still provide acceptable RPOs for many SMEs and other medium-size organi-
zations. In any case, by understanding what one can have with $1 per month, it is possible to assess
the cost of more demanding setups (i.e., larger databases or smaller RPOs).

1Other services such as Azure Storage, Google Storage and Rackspace Files offer similar price models. Ginja can be
used with any of them.

SUPERCLOUD D3.2 Page 101 of 182

D3.2 - Specification of security enablers for data management

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 20 40 60 80 100 120 140

D
a
ta

b
a
s
e
 s

iz
e
 (

G
B

)

Number of cloud synchronizations per hour

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 20 40 60 80 100 120 140

> $1/month

< $1/month

A

B

C

Figure 9.1: Database size and number of cloud synchronizations per hour in a S3-based DR solution with a $1
monthly budget.

The system proposed in this chapter, Ginja, exploits this low-cost opportunity to enable any small
and medium organization running a relational DBMS to have a DR solution almost for free, and with
close-to-zero management effort.

9.4 Transactional Database I/O

Ginja is a DR system designed for database management systems. The integration between our
system and a DBMS happens at the file system level. This allow us to intercept every file system call
performed by the DBMS on the database-related files. In this section, we describe the kind of DBMSs
our system assumes and discuss how PostgreSQL and MySQL fits in this model.
We consider transactional databases that implement data durability using a set of table files and
a Write-Ahead Log (WAL) divided in several segment files [239, 114]. The I/O on these files is
performed on the granularity of a page, which is composed by many records. Every time a transaction
is committed, the only important I/O performed is a synchronous write to a WAL file segment. All
the table pages remain in memory until a periodic checkpoint occurs. When this happens, the pages
are written to the table files, and a special record is inserted in the WAL marking that everything
before this record is already in durable memory.
Implementing a DR solution with fine-grained control of the database RPO without changing the
DBMS requires a deep understanding on how databases access these files. More precisely, there are at
least three types of events that need to be detected. The first one is an update commit, when a record
is written to the WAL. The second one corresponds to the write that marks the start of a checkpoint.
The last type of event we need to detect is the last write of a checkpoint, i.e., the last write after which
it is safe to delete old WAL entries. Table 9.1 describes these events for the databases we use in this
work: PostgreSQL and MySQL.
PostgreSQL [290, 20] keeps its log segments in a set of x log files (pages of 8kB), and periodically
(with a configurable period), writes the dirty pages (also 8kB) to the table files. Additionally, it uses
a pg log file to store the status of each transaction (the checkpoint starts with a write in this file)
and a small pg control file to store a pointer to the last checkpoint record in the WAL, marking the
starting point on the WAL upon a recovery. A write to pg control marks the end of a checkpoint.
MySQL supports different types of storage engines, being InnoDB the standard one for having ACID
transactions [17]. MySQL/InnoDB (or simply MySQL) writes all committed transactions to an
ib logfile file (in pages of 512 bytes), and executes checkpoints quite differently from PostgreSQL.
More specifically, the system can flush modified database pages (of 16kB) to their respective files at
any moment, in small batches. This mechanism is known as fuzzy checkpoint [16]. The fact check-
points are “opportunistic” makes their write pattern a bit more complicated and variable than the
ones in PostgreSQL. However, as can be seen in the Table 9.1, it is possible to detect their start and
finish by verifying a handful of conditions.

SUPERCLOUD D3.2 Page 102 of 182

D3.2 - Specification of security enablers for data management

Event PostgreSQL MySQL

Update commit sync. write to a pg xlog file sync. write in one of the ib logfile files (except the header of the ib logfile0)
Checkpoint start sync. write to a pg clog file sync. write to one of the data files (ibdata, .ibd, and .frm)
Checkpoint end sync. write to the global/pg control file sync. write in the offset 512 and/or 1536 of the ib logfile0 file

Table 9.1: How Ginja detects the three most important DBMS events in PostgreSQL and MySQL.

9.5 Ginja

Ginja intercepts the I/O performed by the DBMS and backs up the relevant data to a cloud storage
service in a cost-efficient manner. Although our implementation consists in an application-specific
FUSE file system (see §9.6 for details) able to capture the semantics of the database’s I/O operations
without having to change the DBMS, our design is generic and only assumes that the events of Table 9.1
are intercepted.
Ginja relies on cloud storage services (e.g., Amazon S3, Azure Blob Storage) to store its data in a
remote site. As described before, we choose such services as secondary infrastructure because they
have the potential of lowering both the monetary and management costs of our DR solution.
This decision fundamentally differs Ginja from existing works on cloud disaster recovery [256, 186, 317,
237], and impacts our design in three important ways. First, storage clouds provide REST interfaces
containing only a few basic operations (PUT, GET, LIST, and DELETE). Consequently, we have to
implement all DR control at the primary side (i.e., at the client side). Second, we must make as few
assumptions as possible about the underlying storage clouds, so that our clients can choose the cloud
provider they want with few or no modifications to our code. Finally, it is crucial that we take into
account the pricing model of the cloud storage services when performing cloud operations, to reduce
costs as much as possible.

9.5.1 Controlling Costs and Data Losses

Ginja deals with the fundamental trade-off between performance and data protection by allowing
users to decide the maximum amount of recent updates that can be lost when a disaster occurs. Thus,
instead of following a completely synchronous or asynchronous approach, we defined a model that
allows users to choose the desired synchronization level. Furthermore, as sending data to the cloud
has its costs, our model also delegates to users the performance-cost trade-off. This model includes
two parameters:

• Batch—the maximum number of database updates included in each cloud synchronization;

• Safety—the maximum number of database updates that can be lost in the event of a disaster.

Batch defines how often WAL writes are sent to the cloud, whereas Safety defines the durability
guarantees provided by Ginja. These parameters define a threshold of database updates that trigger
Ginja to perform its actions, even when the DBMS receives bursts of write requests.
Batch and Safety can be defined both in terms of number of updates – B and S – and time – TB and
TS – working as follows. A batch of updates is sent to the cloud if B updates are executed or if there
are some updates to be sent to the cloud and TB seconds have elapsed since the last synchronization
ended. Similarly, a WAL write performed by the database blocks if there are more than S updates
that are not confirmed to have been written to the cloud or if there are some updates to be sent to
the cloud and TS seconds have elapsed since the first non-synchronized update was executed. Notice
that in intensive workloads, only B and S will be relevant as there will be no time for timeouts.
Figure 9.2 illustrates how these parameters work. Whenever B operations are executed in the DMBS,
Ginja performs a cloud synchronization and allows the database management system to proceed its
normal operation. On the other hand, when the Sth database update since the last successful synchro-
nization is submitted (U21 in the figure), our system blocks the DBMS until a positive acknowledgment
is received from the pending cloud synchronizations.

SUPERCLOUD D3.2 Page 103 of 182

D3.2 - Specification of security enablers for data management

Client	

Database	

Cloud	

U1	 U2	 U3	 U4	 ... U20	

Block	

U21	

[U1	,U2]	
[U3	,U4]	 ACK1,2	 ACK3,4	

B=2	

S=20	

Figure 9.2: Influence of B (Batch) and S (Safety) in the execution of Ginja. In this example B = 2, thus each
cloud backup includes two database updates. It is possible to observe that Ginja blocks the DBMS whenever
more than S = 20 database updates are executed without being acknowledged by the cloud.

Ideally, B should be substantially lower than S so that Ginja does not block or interfere with the
DBMS performance during regular operation.

9.5.2 Data Model

Ginja uses a specialized data model that allows the synchronization of file updates as they are issued
locally, and the reconstruction of those files from the objects present in the cloud when necessary.
This model aims to reduce the total volume of data kept in the cloud, and to minimize the number of
cloud operations executed (as these are the only factors that influence Ginja’s monetary cost in the
absence of disasters). The data model considers two types of objects:

• WAL Objects—contain data written to the local WAL segments. The content of each local
WAL segment is stored in several WAL objects (one for up to B updates). The WAL objects
are named following the format WAL/<ts> <filename> <offset>, in which the ts establishes
total order on the WAL objects, filename is the name of the corresponding WAL segment, and
offset is the position of its content in the segment.

• DB Objects—store information relative to all relevant database files excluding the WAL seg-
ments. There are two types of DB objects: dumps and incremental checkpoints. The DB
objects are named following the format DB/<ts> <type> <size>, containing thus its ts, type
(“dump” or “checkpoint”), and size. In this case, the ts corresponds to the timestamp of the
last uploaded WAL object before the beginning of the checkpoint.

We limit the maximum size of each cloud object to a configurable limit to optimize the upload
time [177], and consequently, the Ginja performance.2

9.5.3 Algorithms

This section details Ginja algorithms for initialization and recovery, update processing and checkpoint
management.

9.5.3.1 Initialization.

Algorithm 5 describes how Ginja is initialized in its different modes (Boot, Reboot and Recovery).

2We hide this aspect from ours algorithms (see §9.5.3) for sake of simplicity.

SUPERCLOUD D3.2 Page 104 of 182

D3.2 - Specification of security enablers for data management

When started, and before engaging in one of its three initialization modes, the system first initializes
the cloudView data structure as empty. This structure is used to keep track of the existing WAL and
DB objects in the cloud, and is updated every time a cloud operation is performed. After that, all
threads required in the system are started (Lines 2–6).
The Boot mode is used to create a dump of an existing database on the cloud. Concretely, the system
creates a set of WAL objects (one for each local WAL segment), and one dump DB object (Lines
7–18). Only after all the objects are successfully uploaded to the cloud the file system is mounted and
the DBMS can be started.
The Reboot mode can be used to restart the system after a safe stop of the DBMS. This mode assumes
that the data on the cloud is synchronized with the local files of the database. Therefore, the only
required step is to update the cloudView by listing the objects present in the cloud (Lines 19–22).
The Recovery mode is used to rebuild the database files from the objects stored in the cloud. The
first step is to list the objects in the cloud and update the cloudView data structure (Lines 24–26).
Then, the database files are reconstructed from the most recent dump in the cloud (Lines 27–29) and,
afterwards, these files are updated with the incremental checkpoint objects (Lines 30–36). Finally,
Ginja downloads the WAL data objects written after the last checkpoint and rebuild the local WAL
segments following the ts ordering so that the DBMS can perform crash recovery (Lines 37–40).

9.5.3.2 Database Update Commits.

Algorithm 6 describes how Ginja processes the intercepted writes to WAL segment files without
violating the parameters B, S, TB and TS .
When the system intercepts an update to the WAL segment file it writes the data on the local copy
of the file and enqueues the update to be sent to the cloud (Lines 4–6). The operation only returns to
the DBMS if the S and TS parameters are not violated, otherwise the systems blocks (Line 7) until
the pending writes are successfully uploaded.
Lines 8–22 show how the commits are processed. First, the writes are aggregated respecting B and TB
(Lines 9–12). Notice that this aggregation may result in more than one object because the batch of
committed updates could belong to different WAL segments.3 After being aggregated, they are sent
to the cloud (Lines 13–16).
The aggregation is important because the DBMSs write to the log on the granularity of a page, and
many times these pages are overwritten with more updates. Consequently, by aggregating them we
coalesce many updates in a single cloud object upload. This reduces the storage used and the total
number of PUTs executed in the cloud and, consequently, the monetary cost of our DR solution.
Additionally, it is possible to have several threads uploading cloud objects in parallel (Lines 4–5 of
Algorithm 5), which brings great benefits in terms of performance [177]. However, it is no longer
guaranteed that the WAL objects are uploaded following the timestamp order (i.e., the ts obtained
on Line 14). In the worst case scenario, a disaster may occur in the moment when the most recent
WAL updates are already replicated in the cloud, while others with smaller timestamps are still in
transmission. During Recovery, Ginja deals with this incomplete state by downloading only the WAL
objects that have consecutive timestamps. Consequently, to guarantee that the maximum amount of
updates lost in case of disaster do not exceed Safety, Ginja unblocks the DBMS only after uploading
all WAL objects with consecutive ts values. This can be observed in Algorithm 6: the variables that
control these parameters (specifically commitQueue.size, timeoutTS and the timer of TaskTS) are
reset (unblocking the DBMS) if all WAL objects previously uploaded can be used to recover from a
disaster that would occur immediately (Lines 20–22).

3WAL segments are typically much larger (e.g., 16MB in PostgreSQL and 48MB in MySQL by default) than the page
size. Consequently, this aggregation results normally in only one cloud object.

SUPERCLOUD D3.2 Page 105 of 182

D3.2 - Specification of security enablers for data management

Algorithm 5: Initialization tasks.
1 cloudView ← ∅; // Used in all Algs.

2 TaskTB.startTimer(TB); // Used in Alg. 6

3 TaskTS.startTimer(TS); // Used in Alg. 6

4 for 1 ≤ i ≤ nThreads do
5 CommitThread i .start ; // Used in Alg. 6

6 CheckpointThread .start ; // Used in Alg. 7

7 Mode Boot begin
8 currentTs ← 0;
9 for each file in Local WAL Segments, in increasing order do

10 objName ←“WAL/”+currentTs+“ ”+file.name+“ 0”;
11 cloud .PUT (objName, file.content);
12 cloudView .addWAL(currentTs, file.name, 0);
13 currentTs ← currentTs + 1;

14 dbObject← ∅;
15 for each file in Local DB Files do
16 dbObject .add(file.name, file.content);

17 cloud .PUT (“DB/0 dump ”+dbObject .size, dbObject);
18 cloudView .addDB(0, “dump”, dbObject .size);

19 Mode Reboot begin
20 cloudList ← cloud .LIST ();
21 for each obj in cloudList do
22 cloudView .add(obj);

23 Mode Recovery begin
24 cloudList ← cloud .LIST ();
25 for each obj in cloudList do
26 cloudView .add(obj);

27 dump ← cloud .GET (mostRecentDump(cloudList .dbObjects));
28 for each file in dump do
29 writeLocally(file.name, 0, file.content);

30 checkpoints ← newerThan(cloudList .dbObjects, dump.ts);
31 maxCkptTs ← dump.ts;
32 for each obj in checkpoints, in increasing ts order do
33 currentCkpt ← cloud .GET (obj);
34 for each file in currentCkpt do
35 writeLocally(file.name, file.offset , file.content);

36 maxCkptTs ← obj .ts;

37 segments ← newerThan(cloudList .walObjects, maxCkptTs);
38 for each obj in segments, in increasing ts order and with no gaps do
39 content ← cloud .GET (obj);
40 writeLocally(obj .filename, obj .offset , obj .content);

9.5.3.3 Checkpoints and Garbage Collection.

Algorithm 7 describes how Ginja handles checkpoints. As performance is one of our key concerns,
we decouple as much as possible the (local) DBMS checkpoints from the writing of checkpoints to
the cloud (Lines 6, 20–21). Therefore, checkpoint data is collected as the files are updated during
a checkpoint (Lines 3–16) and, when the checkpoint is finished locally, a separate thread is used for
sending the updates to the cloud as DB objects (Lines 17–29). Notice the checkpoint start and end
conditions (see Table 9.1) are verified in Lines 4 and 8.
There are two ways of sending checkpoint data to the cloud: as a checkpoint or as a dump. Whenever
the total size of the DB objects in the cloud is greater or equal to 150% of the local database size,
Ginja creates a new database dump (Lines 9–11). Otherwise, it creates an incremental checkpoint.
In the first situation, Ginja will not execute any write in the local DB files while the dump object
is being created, to guarantee that the database is dumped in a consistent way. This does not block
database commits as WAL file writes are mostly independent of checkpoint processing (at least in the
two databases we support).
Every time a DB object with timestamp ts is completely uploaded to the cloud, Ginja removes all
WAL objects with timestamps up to ts (Lines 4–5 and 23–25). This is safe because such WAL objects

SUPERCLOUD D3.2 Page 106 of 182

D3.2 - Specification of security enablers for data management

Algorithm 6: Database Commits.
1 commitQueue ← ∅; // Holds all the pending synchronizations

2 timeoutTS ← false;
3 timeoutTB ← false;
4 When write(WAL segment, offset, content) is intercepted begin
5 writeLocally(WAL segment , offset , content);
6 commitQueue.put(〈WAL segment , offset , content〉);
7 wait until commitQueue.size ≤ S and timeoutTS = false;

8 CommitThread Execution begin
9 Loop

10 wait until commitQueue.size ≥ B or timeoutTB = true;
11 updates ← commitQueue.getNextBatch();
12 aggUpdates ← aggregateUpdates(updates);
13 for each u in aggUpdates do
14 ts ← cloudView .getNextWALts();
15 cloud .PUT (“WAL/”+ts+“ ”+u.filename+“ ”+u.offset);
16 cloudView .addWAL(ts, u.filename, u.offset);

17 TaskTB.resetTimer();
18 timeoutTB ← false;
19 wait until commitQueue.lastBatchElements() = updates;
20 commitQueue.removeLastNElements(updates.size);
21 TaskTS.resetTimer();
22 timeoutTS ← false;

23 TaskTB (upon timeout) begin
24 if commitQueue.size > 0 then
25 timeoutTB ← true; // Trigger an upload

26 TaskTS (upon timeout) begin
27 if commitQueue.size > 0 then
28 timeoutTS ← true; // Block the DBMS

Algorithm 7: Checkpoints and Garbage Collection.
1 checkpointQueue ← ∅;
2 timestamp ← ∅;
3 When write(dbFile, offset, content) is intercepted begin
4 if 〈dbFile, offset , content〉 is the first write in checkpoint then
5 timestamp ← cloudView .getLastWALts();

6 writeLocally(dbFile, offset , content);
7 dbObject ← addAndAggregate(〈dbFile, offset , content〉);
8 if 〈dbFile, offset , content〉 is the last write in checkpoint then
9 if cloudView .getTotalDBSize() ≥ 150%× local DB size then

10 dbObject ← create dump from local DB files;
11 dbObject .type ← “dump”;

12 else
13 dbObject .type ← “checkpoint”;

14 dbObject .ts ← timestamp;
15 checkpointQueue.add(dbObject);
16 dbObject ← ∅;

17 CheckpointThread Execution begin
18 Loop
19 wait until checkpointQueue.size > 0;
20 obj ← checkpointQueue.remove();
21 cloud .PUT (“DB/”+obj .ts+“ ”+obj .type+“ ”+obj .size, obj);
22 cloudView .addDB(obj .ts, obj .type, obj .size);
23 for each walObject ∈ cloudView : walObject .ts ≤ obj .ts do
24 cloud .DELETE(walObject .objectName);
25 cloudView .delete(walObject);

26 if obj .type =“dump” then
27 for each dbObject ∈ cloudView : dbObject .ts < obj .ts do
28 cloud .DELETE(dbObject .objectName);
29 cloudView .delete(dbObject);

SUPERCLOUD D3.2 Page 107 of 182

D3.2 - Specification of security enablers for data management

contain information that will not be used in a recovery. Additionally, when the uploaded DB object
is a dump, all the previous DB objects (incremental checkpoints and the previous dump) are deleted
as well (Lines 26–29).

9.5.4 Extensions

In the following we describe some extensions to the basic disaster recovery algorithms described in
previous section.

9.5.4.1 Compression and encryption.

Ginja supports the compression and/or encryption of WAL and DB objects before their write to
the cloud. Compression decreases the data size and is straightforward to implement. Encryption, on
the other hand, requires the management of a local secret key that cannot be stored in the cloud to
preserve the database confidentiality. Ginja uses a key generated from a password (assumed to be
kept secure) provided during the initialization of the system. At runtime, this key is kept in memory
and never written to any local or remote file.
Our system also implements some basic integrity protection by storing a MAC of each object together
with it. If encryption is enabled, the provided password is also used to generate the MAC key,
otherwise, a default string (a configuration parameter) is used to generate this key.

9.5.4.2 Point-in-time recovery.

The garbage collection algorithm discussed in the previous section deletes all outdated objects when a
new checkpoint is written to the cloud. However, the algorithm can be easily modified to delete only
certain objects and keep others to allow the recovery of the system to a certain point in time. More
specifically, Lines 23–29 of Algorithm 7 can be modified to keep the database state on date-time T by
finding the first object o stored in the cloud after T and keeping (1) the most recent dump d written
before this object, (2) all incremental checkpoints written between d and o, and (3) all WAL objects
written between the last incremental checkpoint and o.
As expected, storing snapshots for point-in-time recovery might substantially increase the cloud storage
costs, unless they are moved to cold storage (e.g., Amazon Glacier).

9.5.4.3 Backup verification.

One of the key concerns in every disaster recovery plan is how to ensure the plan will work when a
disaster strikes. An important feature of Ginja is that it allows the verification of a database backup
in an easy and cheap way, without interfering with the production system.
To do that we just need to start a replica of the database in recovery mode and run a set of service-
specific tests. This implies in a sequence of three validations:

1. Every object downloaded from the cloud has its integrity validated through its MAC verification;

2. The DBMS itself verifies the integrity of the tables and WAL segments when restarting the
system with the local files rebuilded by Ginja;

3. Once the DBMS starts, a pre-prepared script can run a series of queries to assess if recent updates
are available on the database. This verification can be made automatically using some service-
specific heuristic and the result of the script can be sent to an administrator for verification.

The cost of database verification is basically the cost of downloading the database objects to a local
machine or the cost of running a VM in the same cloud (if appropriate). In any case, the verification
procedure can be fully automated.

SUPERCLOUD D3.2 Page 108 of 182

D3.2 - Specification of security enablers for data management

FUSEVFS Local	Storage
Device Cloud

Kernel
User	Space

DBMS PG	Processor

FS	Interpreter

FUSE-J

Checkpointer

CheckpointQueue

Safety

Batch
CommitQueue

Aggregator

Unlocker Uploader1 Uploadern...

Figure 9.3: Detailed architecture of Ginja.

9.6 Implementation

Ginja was implemented as a File System in User Space [299] using approximately 4000 lines of
Java code distributed in 32 files. Most of this code is DBMS-agnostic and there are only two small
modules that are specific for processing I/O from PostgreSQL and MySQL/InnoDB, with around
200 lines of code each. The cloud synchronization module is based on an external library to execute
cloud operations (we use DepSky’s cloud storage drivers [65]). Furthermore, our current prototype
implements compression using ZLIB configured for fastest operation, encryption using AES with 128-
bit keys, and MACs using SHA-1.
Figure 9.3 presents the internal architecture of Ginja. The FS Interpreter implements a FUSE-J
interface [9], and is responsible for three main tasks: (1) intercepting the file system calls performed
by the DBMS; (2) accessing the local disk; and (3) forward a well-formatted data do the database
processor. In this way, Ginja can be easily extended to support other DBMS by implementing new
processors.
The implementation of a processor is a relatively simple and straightforward procedure. However,
this requires an in-depth knowledge of the DBMS I/O management. The processor uses two different
queues to put the data received from the file system: one for the WAL writes and another for the
checkpoint writes.
The write operations performed in the WAL are sent to a queue named CommitQueue. This data
structure has a maximum capacity of S elements, and only supports getting B elements at a time. Any
attempt to put an element into a full CommitQueue will block. Likewise, attempts to take elements
from a CommitQueue with less than B elements will result in blocking until the TB’ timer expires.
A thread called Aggregator is responsible to read sets of B updates from this queue (without removing
them), aggregate those writes into a single object, and submit the resulting data to a second queue.
A number of Uploader threads will retrieve elements from this queue and upload them in parallel as
WAL objects, submitting an acknowledgment to a third queue whenever a cloud upload completes.
Last but not least, a thread called Unlocker will remove sets of Batch elements from the head of
CommitQueue, according to the acknowledgments received by the Uploader threads. In the end, the
Aggregator, Uploader and Unlocker threads implement Algorithm 6.
The write operations performed during checkpoints are enqueued to the CheckpointQueue so that a
thread called Checkpointer aggregates the data and uploads it to the cloud in the form of DB cloud
objects (this thread implements Algorithm 7).

9.7 Cost Analysis

A key objective of our work is to reduce the operational cost of the database disaster recovery solution.
In this section, we consider the operational cost of the system.

SUPERCLOUD D3.2 Page 109 of 182

D3.2 - Specification of security enablers for data management

9.7.1 Ginja Cost Model

The factors that influence the operational cost of Ginja in the absence of disasters are the storage
used to keep WAL and DB objects in the cloud, as well as the amount of PUT operations used to
upload the WAL and DB data. Thus, the monthly operational cost of our system is given by the
following equation:

CTotal = CDB Storage + CDB PUT + CWAL Storage + CWAL PUT

Let us now explore in detail how each of the four factors of this equation can be calculated.

9.7.1.1 Storage of DB objects.

Ginja uploads the information of the database files in the form of DB objects. The cost of storing
these objects is given by the following equation:

CDB Storage =
DBSize× 1.25

CR
× CStorage

The DB Size is measured in GBs and the CStorage in $/GB/month. The main factor that influences
this cost is the size of the database. Recall that Ginja ensures that the maximum volume that the DB
objects can take in the cloud is 150% of the local database size (due to the incremental checkpoints). As
a result, the average DB storage in the cloud will be 25% greater than the database size. Additionally,
the DB data size can be further reduced by using compression (the compression rate, CR in the
equation).

9.7.1.2 PUT operations of DB objects.

The number of PUT operations used to upload DB objects depends essentially on how often checkpoints
occur, the average checkpoint size, and the price of each PUT operation. The cost of this component
can be calculated as follows:

CDB PUT =
30× 24× 60

CkptPeriod
×
⌈

CkptSize

20MB

⌉
× CPUT

The first fraction of this equation gives us the number of checkpoints that the DBMS performs per
month (note that CkptPeriod is given in minutes). The second fraction determines the number of PUT
operations executed in each checkpoint, i.e., number of uploaded DB objects split in files of up to
20MB.

9.7.1.3 Storage of WAL objects.

The third cost factor of Ginja is the volume of the WAL objects present in the cloud, calculated as
follows:

CWAL Storage =

(⌈
W × CkptTime

RecPerPage

⌉
+ 1

)
× PageSize

CR
× CStorage

The first part of the equation determines the maximum number of WAL segments that can be in
the cloud at any moment. Recall that WAL objects written before a checkpoint are deleted from
the cloud as soon as the checkpoint is completely uploaded. Consequently, the amount of storage is
directly proportional to the number of updates per minute (W – assuming each update uses a record),
and to the CkptTime , which includes the checkpoint period, its duration, and the amount of time that
it takes to be uploaded to the cloud.

SUPERCLOUD D3.2 Page 110 of 182

D3.2 - Specification of security enablers for data management

 0.1

 1

 10

10 100 1000
C

o
s
t
($

/M
o
n
th

)

Workload (Updates/Minute)

B=1000
B=100
B=10

Figure 9.4: Effect of different configurations and workloads in Ginja’s monetary cost for a 10GB-database and
Amazon S3.

The total number of updates performed between checkpoints is divided by the number of records per
WAL page (RecPerPage), as we coalesce multiple writes to the same page, reaching the number of
WAL segments uploaded to the cloud. The “+1” considers the worst case scenario – the situation in
which the first WAL write after a checkpoint is performed in the last record of a WAL segment.
Finally, PageSize is the size in GB of each WAL page, CR is the compression rate and CStorage is the
storage cost.

9.7.1.4 PUT operations of WAL objects.

Finally, the cost associated with the number of PUT operations of WAL cloud objects is represented
by CWAL PUT . This cost depends essentially on the database workload and the value of the parameter
B, and it is given by the following equation:

CWAL PUT =
W × 60× 24× 30

B
× CPUT

Every time B database updates are executed in the DBMS, a WAL object is uploaded to the cloud.
Thus, the CWAL PUT is calculated using the number of database updates executed per month and
multiplying this value by the price charged for each PUT operation.

9.7.2 The Cost of Running Ginja

Figure 9.4 presents the operational monetary costs of Ginja with different values of B and under
different workloads. The values presented consider the usage of Amazon S3, and a database of 10GB
with pages of 8kB containing 75 WAL records. We also consider that a checkpoint happens every
60 minutes, has a duration of 20 minutes, and a compression rate of 1.43 (i.e., every 1MB becomes
700kB).
The results show that the parameter B has a severe impact on the total monetary cost of Ginja. This
can be explained by the fact that B reduces the number of executed cloud synchronizations (i.e., PUT
operations). Additionally, we can also observe that this relation is even more evident when considering
more demanding update-heavy workloads.
It is worth to mention that the size of the database we consider (10GB) implies in a fixed CDB Storage

of $0.26. If one wants to consider, for instance, a 10× bigger database, the cost will be $2.62.
These results show that there are plenty of possible configurations that cost less than $1 per month.
For reference, the cheapest VM in Amazon EC2 (Linux t1.micro, with 600MB of memory) costs
$14.64/month in October 2016.

9.7.2.1 Real application.

We now present an evaluation of the costs of Ginja considering the database used in a real clinical
analysis system deployed in more than 100 institutions in Europe. Table 9.2 presents the monetary

SUPERCLOUD D3.2 Page 111 of 182

D3.2 - Specification of security enablers for data management

Configuration Ginja with S3 EC2 VMs

Laboratory $0.48 (1 sync./min) VM t2.small + VPN +
(10GB, 6 up/min) $1.56 (6 sync./min) EBS 100IOS = $61.6

Hospital $26.5 (1 sync./min) VM t2.medium + VPN +
(1TB, 138 up/min) $27.5 (6 sync./min) EBS 500IOS = $190.6

Table 9.2: Costs of performing cloud-based disaster recovery with AWS using Ginja or database replication
with VMs.

costs of performing disaster recovery in the cloud (specifically, Amazon Web Services) using Ginja
with one (RPO ≈ 1 minute) and six (RPO ≈ 10 seconds) cloud synchronizations per minute. For
comparison purposes, the table also shows the cost of a DR solution based on a single backup database
VM on Amazon EC2, as a pilot light for recovering the system [271].4 We consider two database
configurations: one hospital with a 1TB-database and a workload of 630 transactions per minute, and
a clinical laboratory with a 10GB-database that processes 30 transactions per minute. Among these
transactions, only 20% are updates. These results are averages obtained through a month.
In the laboratory scenario, Ginja has an operational cost between 39× to 128× smaller when compared
with the cost of using a backup replica in a VM. The dominant factor in this scenario is the cost of
uploading WAL objects to the cloud, i.e., CWAL PUT . In the hospital scenario, Ginja has a cost 7×
smaller than the cost of running a backup database on a VM instance in the cloud. The benefits of
Ginja in this case are not so expressive as the cost is dominated by the storage of the DB objects
(1.25TB, on average).
These results show that using Ginja is substantially cheaper than maintaining VM instances in the
cloud, especially for small to medium databases, which are expected to be the norm in SMEs. Perhaps
even more importantly, besides these economical advantages, our system is arguably much simpler to
manage than the alternative solution, which requires configuring a firewall, setting up a public IP, etc.

9.7.3 The Cost of Recovery

The cost of recovering a database backed-up using Ginja is basically defined by the cost of downloading
all DB and WAL objects. Currently, the costs of downloading a GB of data is 3× higher than the
cost of storing it for a month in Amazon S3 [3]. Therefore, the cost of recovering a database can
be approximated by 3 × (CDB Storage + CWAL Storage) plus the costs of the GET operations used to
download these files (not significant). For instance, the costs of recovering from a disaster on the real
clinical databases mentioned before would be $112.5 and $1.125 for the Hospital and the Laboratory,
respectively. Importantly, if the database is recovered to a EC2 VM in the same location as the data,
this cost goes to zero, as downloads from S3 to EC2 in the same region are free of charge [3].

9.8 Experimental Evaluation

In this section we present an experimental evaluation of Ginja using the PostgreSQL 9.3 database
management system [19] and MySQL 5.7 with InnoDB [17]. The experiments were executed in two Dell
Power Edge R410 machines (one for the DBMS and Ginja and another for the benchmark software)
equipped with two Intel Xeon E5520 CPUs (quad-core, HT, 2.27Ghz), 32GB of RAM and a 146GB
Hard Disk Drive with 15k RPMs. The operating system used was Ubuntu Server (14.04 LTS, 64-bits),
with kernel 3.5.0-23-generic and Java 1.8.0 (64-bits). The databses’ default configuration was used in
all experiment. The cloud storage service used was Amazon S3 (US Standard).
We report average results from five executions running TPC-C [1] during 5 minutes. We chose this
benchmark for measuring the overhead of Ginja due to its update-heavy workload (≈ 90% of updates),
as our system has no effect on read transactions. For PostgreSQL we used the BenchmarkSQL 4.1.1

4Values obtained using https://calculator.s3.amazonaws.com.

SUPERCLOUD D3.2 Page 112 of 182

https://calculator.s3.amazonaws.com

D3.2 - Specification of security enablers for data management

 0

 1.5

 3

 4.5

 6

 7.5

ext4 FUSE 1000 100 10 1 100 10 1 10 1 1 No-Loss

T
ra

n
s
a
c
ti
o
n
s

P
e
r

M
in

.
(x

1
0
0
0
)

Tpm-C

Tpm-Total

S=10S=100S=1000S=10000

(a) PostgreSQL

 0

 2.5

 5

 7.5

 10

 12.5

ext4 FUSE 1000 100 10 1 100 10 1 10 1 1 No-Loss

Tpm-C

Tpm-Total

S=10S=100S=1000S=10000

(b) MySQL

Figure 9.5: Influence of different configurations in the performance of Ginja with PostgreSQL and MySQL.
The values of B are expressed immediately below the columns. Exceptions are the first two columns (native file
system and FUSE), and the last column (S = B = 1).

 0

 1.5

 3

 4.5

 6

 7.5

Normal Comp Crypt C+C Normal Comp Crypt C+C Normal Comp Crypt C+C

T
ra

n
s
a
c
ti
o
n
s

P
e
r

M
in

.
(x

1
0
0
0
)

Tpm-C

Tpm-Total

B=1000
S=10000

B=100
S=1000

B=10
S=100

(a) PostgreSQL

 0

 2.5

 5

 7.5

 10

 12.5

Normal Comp Cryp C+C Normal Comp Cryp C+C Normal Comp Cryp C+C

Tpm-C

Tpm-Total

B=1000
S=10000

B=100
S=1000

B=10
S=100

(b) MySQL

Figure 9.6: Effect of compression and cryptography in the performance of Ginja. The columns are grouped
by configuration (B and S), and the values immediately below de columns specify whether compression, cryp-
tography or both (C+C) are active.

tool [4] with one warehouse and 5 terminals, while for MySQL we used a Java implementation of
TPC-C [12] configured with two warehouses and 60 terminals.5 The reported metrics are the total
number of transactions per minute (Tpm-Total), and the number of newOrder transactions per minute
while the DBMS is also processing other types of transactions (Tpm-C). In all experiments Ginja was
configured with five Uploader threads, which corresponds to the best setup in our environment.

9.8.1 Overhead of Ginja

9.8.1.1 Performance overhead.

Figure 9.5 shows the effect that different configurations of B (Batch) and S (Safety) have in the
throughput of the PostgreSQL and MySQL running TPC-C on top of Ginja. We also ran the
benchmark on top of a native file system (ext4) and of a FUSE file system6 in order to have a baseline
for comparison.
The first observation to make is that the FUSE-J file system presents a throughput decrease of 7%
and 12% for PostgreSQL and MySQL, respectively. Since Ginja is also a FUSE-J file system, this
will be our baseline.
The most important observation is that, for sufficiently high values of B and S, Ginja introduces
a small performance loss (3.7% and 1.1% for PostgreSQL and MySQL, respectively). Furthermore,
small values of B make the amount of pending updates reach S earlier, constantly blocking the DBMS
and decreasing its performance.
The figure also shows results for Ginja with S = B = 1 (No Loss), which corresponds to synchronous
replication. As expected, this configurations presents the lowest performance among all the ones we
tested: 248 and 348 Tpm-Total, for PostgreSQL and MySQL, respectively.

5We chose these configurations as they allow the DBMS to reach the highest performance without Ginja.
6It only catches the DBMS disk accesses and writes them locally.

SUPERCLOUD D3.2 Page 113 of 182

D3.2 - Specification of security enablers for data management

Configuration
Num. PUTs Object Size PUT latency

(5 min) (kB) (millisec.)
PG MS PG MS PG MS

10/100 plain 1789 3864 386 26 692 391
10/100 C+C 1990 3994 237 11 562 376
100/1000 plain 364 1046 3018 180 2880 698
100/1000 C+C 383 1063 1908 78 2007 610
1000/10000 plain 119 139 10081 1309 7707 1552
1000/10000 C+C 119 137 6339 606 4422 1354

Table 9.3: Ginja’s use of storage cloud. All results are averages collected during five executions of five minutes
of TPC-C for different configurations with both PostgreSQL (PG) and MySQL (MS).

Configuration
PostgreSQL MySQL

CPU Memory CPU Memory

Native FS 6.4% 4.3% 13.7% 1.2%
FUSE FS 6.9% 4.9% 14.9% 1.7%
100/1000 7.8% 6.9% 15.3% 8.1%
100/1000 Comp 11.6% 9.7% 15.8% 12.1%
100/1000 Crypt 9.1% 7.2% 16.4% 9.7%
100/1000 C+C 13.4% 9.9% 16.0% 11.1%

Table 9.4: Database server (eight cores with hyper-threading and 32GB of RAM) resource usage with and
without Ginja.

9.8.1.2 Compression and encryption.

Figure 9.6 shows how compression and encryption influence the performance of Ginja. For Post-
greSQL (Figure 9.6a), the use of these features made the results vary slightly, as the latency of
uploading compressed data is smaller (see next section). On the other hand, encryption introduces
a minimal overhead. For MySQL (Figure 9.6b), there are basically no changes in performance. This
happens because the page size of MySQL WAL segments are quite small (512 bytes vs. 8kB in
PostgreSQL), leading to diminished effects of compression and encryption in the data upload latency.

9.8.2 Resource Usage

9.8.2.1 Cloud usage and its implications.

Table 9.3 shows the number of PUTs, the size of the objects written and the observed upload la-
tency during the benchmark execution of a 5-minute TPC benchmark. We focus our discussion on
PostgreSQL results, but the insights are similar for MySQL.
The results show that increasing the batch from 10 to 100 decreases the number of PUTs by 80%,
while an additional tenfold increase further decreases this number by almost 70%. In the same way,
increasing the batch increases the object size and, consequently, the latency to write the object to the
cloud. However, this increase is not linearly proportional with the increase of the object size due to
coalescing of writes during the page aggregation.
The table shows also that using compression (and encryption) reduces the object size by 37%, reducing
the PUT latency, and bringing the benefits discussed before.

9.8.2.2 Database server resource usage.

Table 9.4 presents the resource usage of a database server running a TPC-C workload under different
configurations with and without Ginja.
For PostgreSQL, the table shows that using a Native or FUSE file system already require around 8%
of the machine CPU and less than 1.6GB of memory (< 5%). When using Ginja, the server CPU and
memory usage increase by 1% and 2%, respectively, when compared with a FUSE FS. Additionally,

SUPERCLOUD D3.2 Page 114 of 182

D3.2 - Specification of security enablers for data management

 0

 1

 2

 3

 4

1 5 10

R
e
c
o
v
e
ry

 T
im

e
 (

m
in

.)

Number of TPC-C Warehouses

On-premises server
Amazon EC2 VM

Figure 9.7: Recovery times of Ginja for different database sizes using a local server and a VM in the same
location as the data.

compression and encryption introduce some CPU load: +4.5% and +1.5%, respectively. In terms of
memory, these features increase the memory usage by 3% (compression) and 0.3% (encryption). When
compression and encryption are used, the overheads of these features are summed up.
For MySQL, the CPU usage is basically the same, independently of the enabled features (under
the standard deviation of ≈ 10%). The memory usage follows the same trends as in PostgreSQL:
compression demands more memory than encryption.
In the end, using Ginja with compression and encryption requires at most +7% of CPU (for Post-
greSQL, which is less than a core in our server) and +10% of memory (for MySQL, less than 3.2GB)
of our 8-core 32GB server. We consider these costs would not be a deterrent for using Ginja.

9.8.3 Recovery Time

Our last experiment measure the recovery time of Ginja after experiencing a failure when executing
TPC-C for five minutes. The experiment was done with PostgreSQL, but the results for MySQL would
be similar as the key factor here is the database download time from the storage service.
We ran the experiment for three different database sizes, by varying the number of warehouses in
TPC-C [1] (with a maximum DB size of 1.5GB) and executed the recovery process in a machine in
our site, and in an Amazon EC2 VM (located in the same region where Ginja stored the data).
As expected, the recovery time grows with the database size as more data has to be downloaded.
Furthermore, the recovery time can be remarkably reduced by executing Ginja in a computing instance
located in the same cloud infrastructure where the backup data is being stored.

9.9 Related Work

9.9.1 Database disaster recovery.

There is a large body of work related with database replication for fault tolerance [195] (which is
mostly orthogonal to this work), but practical off-the-shelf systems normally implement only the
simplest solutions [98]. Here we discuss some relevant solutions for PostgreSQL and MySQL disaster
recovery.
PostgreSQL provides two mechanisms for helping disaster tolerance [20]. The first one, Continuous
Archiving, consists of performing a file-system-level backup of the database directory and setting a
process (the archiver) that periodically backs up completed WAL segments. This mechanism could be
used to tolerate disasters by configuring the archiver process to copy the log files to a geographically
remote facility such as a cloud storage service. However, the archiver process only operates over
completed WAL segments, and thus it does not provide any fine-grained control over the RPO. The
second mechanism is named Streaming Replication, and allows a primary server to replicate, in a
synchronous or asynchronous way, the changes made to its database to a backup server.

SUPERCLOUD D3.2 Page 115 of 182

D3.2 - Specification of security enablers for data management

MySQL also offers replication solutions very similar to PostgreSQL’ streaming replication, supporting
asynchronous, delayed or synchronous replication [18]. In both databases, this primary-backup repli-
cation could be used as a disaster tolerance solution by placing the backup replica in a cloud VM. As
discussed before, this implies substantially higher costs than what we achieve with Ginja.
PostgreSQL and MySQL can also be protected by a third-party solution named Zmanda [25], which
is a bit more closer to Ginja. This tool extends the PostgreSQL and MySQL backup solutions, and
improves them by allowing customers to specify a well-defined backup schedule and do point-in-time
recovery in a simple way. Zmanda also allows the execution of (full or incremental) online backups to
Amazon S3 or Google Storage. Since Zmanda only backs up the state of the databases at the schedule
time, it can not provide a fine-grained control over the RPO as Ginja, that works at the transaction
commit level. Furthermore, being a commercial service, the costs of using Zmanda are much higher
than running Ginja.

9.9.2 Filesystem mirroring.

A common way of having disaster tolerance is by replicating data at the storage level. By continuously
backing up the relevant files to remote storage facilities, a system is no longer susceptible to lose all
its data if a disaster occurs in its primary infrastructure.
Two examples of such systems are SnapMirror [256] and Seneca [186]. Both use asynchronous repli-
cation in order to avoid any significant loss of performance. The main difference between these two
solutions is that the first replicates consistent file system snapshots, while the second sends batches of
updates to the remote site.
The most important advantage of such solutions is that they allow any application to protect its
data, without requiring changes to its source code. However, they do not consider the semantics of
the applications, which can result in inconsistent states after recovery. Additionally, these solutions
require computing instances running on the backup site, which implies much higher costs in the cloud
than running Ginja.

9.9.3 Virtual machine replication.

The virtualization of IT resources is one of the key features of modern disaster tolerance/recovery
strategies [271, 316]. Here we discuss some works for transparent VM replication that could be used
for disaster recovery in database systems.
RemusDB [237] is an extension for the Remus VM replication system [122] that provides high availabil-
ity for DBMSs in a transparent manner. This is achieved by running the DBMS in a virtual machine,
making the virtualization layer perform the high availability tasks related with data replication, fail-
ure detection and recovery. A key limitation of RemusDB is that it was not designed for wide-area
replication, and the higher latencies can render the system impractical.
SecondSite [267] is another extension for Remus, specifically designed for disaster recovery. The
system continuously replicates the entire state of several virtual machines to backup images in a
different geographic location, which can assume the responsibility after a disaster in the primary site
in a completely transparent manner. SecondSite deals with the limitations of wide-area replication by
making a better use of bandwidth through checkpoint compression, and using quorums of servers for
detecting failures.
PipeCloud [317] is a cloud-based disaster recovery system for multi-tier client-server applications run-
ning on a set of VMs. This system runs in the virtual machine monitor of each cloud physical server
and replicates all disk writes to geographically distant backup servers.
All these virtualization-based approaches have the advantage of performing fast failover since they
include a backup VM running in a secondary site ready to take over when a disaster is detected in the
primary infrastructure. Such additional computing resources implies higher operational costs.

SUPERCLOUD D3.2 Page 116 of 182

D3.2 - Specification of security enablers for data management

9.9.4 Cloud-backed storage services.

Although the following solutions were not explicitly conceived for disaster recovery, the mechanisms
they employ are often similar to the ones we use in Ginja.
Brantner et al. [75] presented a DBMS core design that uses Amazon S3 as its storage subsystem.
This core allows retrieving pages from S3, buffering them locally (in memory or disk), updating them,
and then writing them back. All this remote operations are coordinated by a page manager, on top
of which there is a record manager that provides a record-oriented interface to the applications. The
work proposes several protocols for accessing the cloud services with different guarantees, but its design
does not prioritizes either cost or performance. Furthermore, integrating this solution with existing
DBMS requires substantial reengineering effort, on the contrary of Ginja.
Cumulus [306] is a utility that performs efficient file system backups to cloud storage services. Thus,
it can be used to take snapshots of the data directory where DBMSs writes preventing the failure of
the local infrastructure.
Cloud-backed file systems such as BlueSky [307] and SCFS [66] translate local file system operations
to a cloud storage service with minimum or no use of cloud VMs. SCFS in particular provides strong
consistency and durability guarantees and thus could be used for implementing disaster recovery on
a database running on top of it. However, the system implements only synchronous or asynchronous
replication of whole files, which means that the database files replication will be very inefficient.

9.10 Conclusion

We presented Ginja, a transactional DBMS disaster recovery system that uses the public cloud
storage services for offering efficient and low-cost DR. Our current prototype supports PostgreSQL and
MySQL, and the experimental results show that using our system degrades the database performance
by less than 5% when running TPC-C, with less than 10% additional CPU and memory load on our
server. Furthermore, our system is between 7-108× cheaper than having a VM-based cloud disaster
recovery service for a database used in a real application.

SUPERCLOUD D3.2 Page 117 of 182

D3.2 - Specification of security enablers for data management

Part III

Advanced privacy-preserving
components

SUPERCLOUD D3.2 Page 118 of 182

D3.2 - Specification of security enablers for data management

Chapter 10 Privacy-Preserving Outsourcing by Distributed

Verifiable Computation

Verifiable computation allows a client to outsource computations to a worker with a cryptographic
proof of correctness of the result that can be verified faster than performing the computation. Re-
cently, the Pinocchio system achieved faster verification than computation in practice for the first
time. Unfortunately, Pinocchio and other efficient verifiable computation systems require the client to
disclose the inputs to the worker, which is undesirable for sensitive inputs for preserving the privacy
of the owners of the data.
In this chapter, we propose the Trinocchio system for solving this problem. This work builds on the
preliminary architecture of the SUPERCLOUD data management and storage presented in deliverable
D3.1 “Architecture for Data Management”[308]. More specifically, it advances the state-of-the-art
solutions regarding privacy enabling mechanisms like secure multi-party computation (MPC), secret
sharing and verifiable computation.
Trinocchio is a system that distributes Pinocchio to three (or more) workers, that each individually
does not learn which inputs they are computing on. We fully exploit the almost linear structure
of Pinocchio proofs, letting each worker essentially perform the work for a single Pinocchio proof;
verification by the client remains the same. We created a SUPERCLOUD prototype for this approach
and integrated it within the SUPERCLOUD architecture.

10.1 Introduction

Recent cryptographic advances are starting to make verifiable computation more and more practical.
The goal of verifiable computation is to allow a client to outsource a computation to a worker and
cryptographically verify the result with less effort than performing the computation itself. Based on
recent ground-breaking ideas [168, 159], Pinocchio [255] was the first implemented system to achieve
this for some realistic computations. Recent works have improved the state-of-the-art in verifiable
computation, e.g., by considering better ways to specify computations [63], or adding access control
[33].
However, one feature not yet available in practical verifiable computation is privacy, meaning that the
worker should not learn the inputs that it is computing on. This feature would enable a client to save
time by outsourcing computations, even if the inputs of those computations are so sensitive that it
does not want to disclose them to the worker. In addition, it would allow verifiable computation to be
used in settings where multiple clients do not trust the worker or each other, but still want to perform
a joint computation over their respective inputs and be sure of the correctness of the result.
While privacy was already defined in the first paper to formalize verifiable computation [158], it has
not been shown so far how it is efficiently achieved. Indeed, existing constructions rely on inefficient
cryptographic primitives. By outsourcing a computation to multiple workers using multiparty com-
putation, it is possible to guarantee privacy (if not all workers are corrupted) and correctness, but
existing constructions from the literature lose the most appealing feature of verifiable computation:
namely, that the computations can be verified very quickly, even in time independent from the com-
putation size. This leads to the question: can we perform verifiable computation with the correctness
and performance guarantees of [255], but while also getting privacy against corrupted workers?

SUPERCLOUD D3.2 Page 119 of 182

D3.2 - Specification of security enablers for data management

10.2 Related Work

Privacy-preserving outsourcing to single workers has been considered in the literature, but construc-
tions in this setting rely on inefficient cryptographic primitives like fully homomorphic encryption
[158, 108, 147], functional encryption [164], and multi-input attribute-based encryption [167]. (This is
not surprising: indeed, even without guaranteeing correctness, letting a single worker perform a com-
putation on inputs it does not know would intuitively seem to require some form of fully homomorphic
encryption.) Some of these works also consider a multi-client setting [108, 167].
A large body of works considers multiparty computation for privacy-preserving outsourcing (see, e.g.,
[190, 259, 95, 184]). These works do not consider verifiability and achieve correctness at best in the
case that all-but-one workers are corrupt (due to inherent limitations of the underlying protocols). We
stress that this is rather unsatisfactory for the outsourcing scenario, where one naturally wishes to
cover the case that all workers are corrupt—dispensing of the need to trust any particular worker.
Concerning outsourcing to multiple workers, [38] presents a verifiable computation protocol combining
privacy and correctness; but unfortunately, they guarantee neither privacy nor correctness if all workers
are corrupted and may collude; and it places a much higher burden on the workers than, e.g., [255].
Alternatively, recent works [55, 127, 280], guarantee correctness independent of worker corruption,
but privacy only under some conditions. Our work offers a substantial performance improvement over
these works by fully exploiting a set-up that needs to be trusted both for guaranteeing privacy and
for guaranteeing correctness.
We should mention that the notion of verifiability exists in various forms and the field has a richer
background than presented here. However, we focus entirely on the notion of verifiable computation
first formalized by [158], because it is tailored to the outsourcing scenario.

10.3 Distributing the Prover Computation

In this section, we present the single-client version of our Trinocchio protocol for privacy-preserving
outsourcing. In Trinocchio, a client distributes computation of a function x2 = f(x1) to n workers (we
consider here single-valued input and output, but the generalisation is straightforward). Trinocchio
guarantees correct function evaluation (regardless of corruptions) and secure function evaluation (if at
most θ workers are passively corrupted, where n = 2θ + 1). Trinocchio in effect distributes the proof
computation of Pinocchio; the number of workers to obtain privacy against one semi-honest worker is
three, hence its name.

10.3.1 Multiparty Computation using Shamir Secret Sharing

To distribute the Pinocchio computation, Trinocchio employs multiparty computation techniques
based on Shamir secret sharing [62]. Recall that in (θ,n) Shamir secret sharing, a party shares a
secret s among n parties so that θ + 1 parties are needed to reconstruct s. It does this by taking a
random degree-≤ θ polynomial p(x) = αθx

θ + . . .+ αx+ s with s as constant term and giving p(i) to
party i. Since p(x) is of degree at most θ, p(0) is completely independent from any θ shares but can
be easily computed from any θ+ 1 shares by Lagrange interpolation. We denote such a sharing as JsK.
Note that Shamir-sharing can also be done “in the exponent”, e.g., J〈a〉1K denotes a Shamir sharing
of 〈a〉1 ∈ G1 from which 〈a〉1 can be computed using Lagrange interpolation in G1.
Shamir secret sharing is linear, i.e., Ja+ bK = JaK + JbK and JαaK = αJaK can be computed locally.
When computing the product of JaK and JbK, each party i can locally multiply its points pa(i) and pb(i)
on the random polynomials pa and pb. Because the product polynomial has degree at most 2θ, this
is a (2θ,n) sharing, which we write as [a · b] (note that reconstructing the secret requires n = 2θ + 1
parties). Moreover, the distribution of the shares of [a · b] is not independent from the values of a and
b, so when revealed, these shares reveal information about a and b. Hence, in multiparty computation,
[a · b] is typically converted back into a random (θ,n) sharing Ja · bK using an interactive protocol due

SUPERCLOUD D3.2 Page 120 of 182

D3.2 - Specification of security enablers for data management

to [160]. Interactive protocols for many other tasks such as comparing two shared value also exist (see,
e.g., [126]).

10.3.1.1 The Trinocchio protocol

We now present the Trinocchio protocol. Trinocchio assumes that Pinocchio’s KeyGen [279] has been
correctly performed: formally, Trinocchio works in the KeyGen-hybrid model. Furthermore, Trinoc-
chio assumes pairwise private, synchronous communication channels. To obtain x2 = f(x1), a client
proceeds in four steps:

• The client obtains the verification key, and the workers obtain the evaluation key, using hybrid
calls to KeyGen.

• The client secret shares Jx1K of its input to the workers.

• The workers use multiparty computation to compute secret-shares Jx2K of the output and
J〈Vmid〉1K, J〈αvVmid〉1K, J〈Wmid〉2K, J〈αwWmid〉1K, J〈Ymid〉1K, J〈αyYmid〉1K, J〈Z〉1K, [〈H〉1] of the
Pinocchio proof, as we explain next; and sends these shares to the client.

• The client recombines the shares into 〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2, 〈αwWmid〉1, 〈Ymid〉1, 〈αyYmid〉1,
〈Z〉1, 〈H〉1 by Lagrange interpolation, and accepts x2 as computation result if Pinocchio’s Verify
returns success.

Algorithm 8: Trinocchio’s compute protocol

Algorithm 8 shows in detail how the secret-shares of the function output and Pinocchio proof are
computed. The first step is to compute function output x2 = f(x1) and values (x3, . . . ,xk) such that
(x1, . . . ,xk) is a solution of the QAP (line 4). This is done using normal multiparty computation
protocols based on secret sharing. If function f is represented by an arithmetic circuit, then it is
evaluated using local addition and scalar multiplication, and the multiplication protocol from [160]. If
f is represented by a circuit using more complicated gates, then specific protocols may be used. Any
protocol can be used as long as it guarantees privacy, i.e., the view of any θ workers is statistically
independent from the values represented by the shares.

SUPERCLOUD D3.2 Page 121 of 182

D3.2 - Specification of security enablers for data management

The next task is to compute, in secret-shared form, the coefficients of the polynomial h = ((
∑

i xivi) ·
(
∑

i xiwi)−(
∑

i xiyi))/t ∈ F[x] that we need for proof element 〈H〉1. In theory, this computation could
be performed by first computing shares of the coefficients of (

∑
i xivi) · (

∑
i xiwi)− (

∑
i xiyi), and then

dividing by t, which can be done locally using traditional polynomial long division. However, this scales
quadratically in the degree of the QAP and hence leads to unacceptable performance. Hence, we take
the approach based on fast Fourier transforms (FFTs) from [63], and adapt it to the distributed setting.
Given a list S = {ω1, . . . ,ωd} of distinct points in F, we denote by P = FFTS(p) the transformation
from coefficients p of a polynomial p of degree at most d−1 to evaluations p(ω1), . . . , p(ωd) in the points
in S. We denote by p = FFT−1

S (P) the inverse transformation, i.e., from evaluations to coefficients.
Deferring specifics to later, we mention now that the FFT is a linear transformation that, for some S,
can be performed locally on secret shares in O(d · log d).
With FFTs available, we can compute the coefficients of h by evaluating h in d distinct points and
applying FFT−1. Note that we can efficiently compute evaluations v of v = (

∑
i xivi), w of w =

(
∑

i xiwi), and y of y = (
∑

i xiyi) in the zeros {ω1, . . . ,ωd} of the target polynomial. Namely, the
values vk(ωi), wk(ωi), yk(ωi) are simply the coefficients of the quadratic equations represented by the
QAP, most of which are zero, so these sums have much fewer than k elements (if this were not the
case, then evaluating v, w, and y would take an unacceptable O(d · k)). Unfortunately, we cannot
use these evaluations directly to obtain evaluations of h, because this requires division by the target
polynomial, which is zero in exactly these points ωi. Hence, after determining v, w, and y, we first use
the inverse FFT to determine the coefficients V, W, and Y of v, w, and y, and then again the FFT to
compute the evaluations v′, w′, and y′ of v, w, and y in another set of points T = {Ω1, . . . , Ωk} (lines
5–7). Now, we can compute evaluations h′ of h in T using h(Ωi) = (v(Ωi) ·w(Ωi)− y(Ωi))/t(Ωi). This
requires a multiplication of (θ,n)-secret shares of v(Ωi) and w(Ωi), hence the result is a (2θ,n)-sharing.
Finally, the inverse FFT gives us a (2θ,n)-sharing of the coefficients H of h (line 8). Given secret
shares of the values of xi and coefficients of h, it is straightforward to compute secret shares of the
Pinocchio proof. Indeed, 〈Vmid〉1, . . . , 〈H〉1 are all computed as linear combinations of elements in the
evaluation key, so shares of these proof elements can be computed locally (lines 9–16) , and finally
returned by the respective workers (lines 17–18).
Note that compared to Pinocchio, our client needs to carry out slightly more work. Namely, our
client needs to produce secret shares of the inputs and recombine secret shares of the outputs; and it
needs to recombine the Pinocchio proof. However, according to the micro-benchmarks from [255], this
overhead is small. For each input and output, Verify includes three exponentiations, whereas Combine
involves four additions and two multiplications; when using [255]’s techniques, this adds at most a 3%
overhead. Recombining the Pinocchio proof involves 15 exponentiations at around half the cost of a
single pairing.
Alternatively, it is possible to let one of the workers perform the Pinocchio recombining step by using
the distributed zero-knowledge variant of Pinocchio and the techniques from Section 10.4. In this case,
the only overhead for the client is the secret-sharing of the inputs and zero-knowledge randomness,
and recombining the outputs.

10.3.1.1.1 Parameters for Efficient FFTs

To obtain efficient FFTs, we use the approach of [63]. There, it is noted that the operation P =
FFTS(p) and its inverse can be efficiently implemented if S = {ω,ω2, . . . ,ωd = 1} is a set of powers
of a primitive dth root of unity, where d is a power of two. (We can always demand that QAPs have
degree d = 2k for some k by adding dummy equations.) Moreover, [63] presents a pair of groups
G1,G2 of order q such that Fq has a primitive 230th root of unity (and hence also primitive 2kth roots
of unity for any k < 30) as well as an efficiently computable pairing e : G1 × G2 → G3. Finally, [63]
remarks that for T = {ηω, ηω2, . . . , ηωd = η}, operations FFT−1

T and FFT−1
T can easily be reduced to

FFTS and FFT−1
S , respectively. In our implementation, we use exactly these suggested parameters.

SUPERCLOUD D3.2 Page 122 of 182

D3.2 - Specification of security enablers for data management

10.3.1.2 Security of Trinocchio

Theorem 6. Let f be a function. Let n = 2θ + 1 be the number of workers used. Let d be the degree
of the QAP computing f used in the Trinocchio protocol. Assuming the d-PKE, (4d + 4)-PDH, and
(8d+ 8)-SDH assumptions:

• Trinocchio correctly evaluates [279] f in the KeyGen-hybrid model.

• Whenever at most θ workers are passively corrupted, Trinocchio securely evaluates f in the
KeyGen-hybrid model.

The proof of this theorem is easily derived as a special case of the proof for the multi-client Trinocchio
protocol later. Here, we present a short sketch.
To prove correct function evaluation, we need to show that for every real-world adversary A interacting
with Trinocchio, there is an ideal-world simulator SA that interacts with the trusted party for correct
function evaluation such that the two executions give indistinguishable results. The only interesting
case is when the client is honest and some of the workers are not. In this case, the simulator receives the
input of the honest party, and needs to choose whether to provide the output. To this end, the simulator
simply simulates a run of the actual protocol with A, until it has finally obtained function output x2

and the accompanying Trinocchio proof. If the proof verifies, it tells the trusted party to provide
the output to the client; otherwise, it tells the trusted party not to. Finally, the simulator outputs
whatever A outputs. Because Trinocchio is secure, except with negligible probability a verifying proof
implies that the real-world output of the client (as given by the adversary) matches the ideal-world
output of the client (as computed by the trusted party); and by construction, the outputs of A and
SA are distributed identically. This proves correct function evaluation.
For secure function evaluation, again the only interesting case is if the client is honest and some of
the workers are passively corrupted. In this case, because corruption is only passive, correctness of
the multiparty protocol used to compute f and correctness of the Pinocchio proof system used to
compute the proof together imply that real-world executions (like ideal-world executions) result in
the correct function result and a verifying proof. Hence, we only need to worry about how SA can
simulate the view of A on the Trinocchio protocol without knowing the client’s input. However, note
that the workers only use a multiparty computation to compute f (which we assume can be simulated
without knowing the inputs), after which they no longer receive any messages. Hence simulating the
multiparty computation for f and receiving any messages that A sends is sufficient to simulate A.
This proves secure function evaluation.

10.3.1.2.1 Privacy against Active Attacks

We remark that, actually, Trinocchio in some cases provides privacy against corrupted workers as well.
Namely, suppose that the protocol used to compute f does not leak any information to corrupted
workers in the event of an active attack (even though in this case it may not guarantee correctness).
For instance, this is the case for the protocol from [160]: the attacker can manipulate the shares that it
sends, which makes the computation return incorrect results; but since the attacker always learns only
θ many shares of any value, it does not learn any information. Because the attacker learns no additional
information from producing the Pinocchio proof, the overall protocol still leaks no information to the
adversary. (In addition, security of Pinocchio ensures the client notices the attacker’s manipulation.)
This crucially relies on the workers not learning whether the client accepts the proof. If the workers
would learn whether the client obtained a validating proof, then, by manipulating proof construction,
they could learn whether a modified version of the tuple (x1, . . . ,xk) is a solution of the QAP used,
so corrupted workers could learn one chosen bit of information about the inputs (cf. [240]).

SUPERCLOUD D3.2 Page 123 of 182

D3.2 - Specification of security enablers for data management

10.4 Handling Mutually Distrusting In- and Outputters

We now consider the scenario where there are multiple (possibly overlapping) input and result parties.
There are some significant changes between this scenario and the single-client scenario. In particular,
we need to extend Pinocchio to allow verification not based on the actual input/output values (indeed,
no party sees all of them) but on some kind of representation that does not reveal them. Moreover,
we need to use the zero-knowledge variant of Pinocchio and we need to make sure that input parties
choose their inputs independently from each other.

10.4.1 Multi-Client Proofs and Keys

Our multi-client Trinocchio proofs are a generalisation of the zero-knowledge variant of Pinocchio
with modified evaluation and verification keys. Recall that in Pinocchio, the proof terms 〈Vmid〉1,
〈αvVmid〉1, 〈Wmid〉2, 〈αwWmid〉1, 〈Ymid〉1, 〈αyYmid〉1, and 〈Z〉1 encode circuit values xl+m+1, . . . ,xk; in
the zero-knowledge variant, these terms are randomised so that they do not reveal any information
about xl+m+1, . . . ,xk. In the multi-client case, additionally, the inputs of all input parties and the
outputs of all result parties need to be encoded such that no other party learns any information about
them. Therefore, we extend the proof with blocks of the above seven terms for each input and result
party, which are constructed in the same way as the seven proof terms above. Although some result
parties could share a block of output values, for simplicity we assign each result party its own block
in the protocol.

Algorithm 9: ProofBlock

To produce a block containing values x, a party first samples three random field values δv, δw, and δy
and then executes ProofBlock, cf. Algorithm 9. The BK argument to this algorithm is the block key ;
the subset of the evaluation key terms specific to a single proof block. Because each input party should
only provide its own input values and should not affect the values contributed by other parties, each
proof block must be restricted to a subset of the wires. This is achieved by modifying Pinocchio’s key
generation such that, instead of a sampling a single value β, one such value, βj , is sampled for each
proof block j and the terms 〈rvβjvi + rwβjwi + ryβjyi〉1 are only included for wires indices i belonging
to block j. That is, the jth block key is

BKj = {〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,

〈rvβjvi + rwβjwi + ryβjyi〉1, 〈rvβjt〉1, 〈rwβjt〉1, 〈ryβjt〉1},

with i ranging over the indices of wires in the block. Note that ProofBlock only performs linear
operations on its x, δv, δw and δy inputs. Therefore this algorithm does not have to be modified to
compute on secret shares.

SUPERCLOUD D3.2 Page 124 of 182

D3.2 - Specification of security enablers for data management

Algorithm 10: CheckBlock

A Trinocchio proof in the multi-client setting now consists of one block Qi = (〈Vi〉1, . . . , 〈Zi〉1) for each
input and result party, one block Qmid = (〈Vmid〉1, . . . , 〈Zmid〉1) of internal wire values, and Pinocchio’s
〈H〉1 element. Verification of such a proof consists of checking correctness of each block, and checking
correctness of 〈H〉1. The validity of a proof block can be verified using CheckBlock, cf. Algorithm 10.
Compared to the Pinocchio verification key, our verification key contains “block verification keys” BVi
(i.e., elements 〈βj〉1 and 〈βj〉2) for each block instead of just 〈β〉1 and 〈β〉2. Apart from the relations
inspected by CheckBlock, one other relation is needed to verify a Pinocchio proof: the divisibility check
from [279] In the protocol, the algorithm that verifies this relation will be called CheckDiv. We denote
the modified setup of the evaluation and verification keys by hybrid call MKeyGen.

10.4.2 Protocol Overview

We will proceed with a protocol overview. The multi-client variant of our Trinocchio protocol makes
use of private channels, just as the single-client variant, to privately communicate in- and output
values, and to let the workers carry out the computation. We need some additional communication
to ensure input independence and fix the input parties’ values. For this, we use a bulletin board. To
achieve input independence, we first have the input parties commit to a representation of their input
and then reveal these, which requires the use of a commitment scheme.
Apart from key set-up there are three phases to the multi-client Trinocchio protocol.

• In the input phase, the input parties provide representations of their input on the bulletin board.
These representations are later used as part of the proof to verify the computation results. They
also serve to ensure that each input party provides its value independent of the other input values.
The input parties then secret share their input values to the workers. The workers verify that
the secret shared input values are consistent with their representations on the bulletin board, to
prevent malicious input parties from providing a different value.

• The computation phase is very similar to the single-client variant of Trinocchio. In this phase, the
workers perform multi-party computation to carry out the actual computation and obtain secret
shares of intermediate and result wire values. They then use these secret shared wire values to
construct shares of the proof elements. These are then posted on the bulletin board, instead
of being communicated directly to the result parties to ensure that all result parties receive a
consistent result. In order to prevent these proof elements from revealing any information about
the wire values, the zero-knowledge variant of the proof is used .

• In the result phase the workers privately send the shares of the result values to the result parties.
The result parties recombine the proof shares from the bulletin board and check whether the
proof verifies. The result parties further check whether the recombined shares of the result are
consistent with the information on the bulletin board. The result parties only accept the result
received from the workers if both checks are satisfied.

SUPERCLOUD D3.2 Page 125 of 182

D3.2 - Specification of security enablers for data management

10.4.3 Security of the Trinocchio Protocol

Analogously to the single-client case, we obtain the following result:

Theorem 7. Let f be a function. Let n = 2θ + 1 be the number of workers used. Let d be the
degree of the QAP computing f used in the multi-client Trinocchio protocol. Assuming the d-PKE,
(4d+ 4)-PDH, and (8d+ 8)-SDH assumptions:

• Trinocchio correctly evaluates f in the (ComGen,MKeyGen)-hybrid model.

• Whenever at most θ workers are passively corrupted, Trinocchio securely evaluates f in the
(ComGen,MKeyGen)-hybrid model.

We stress that “at most θ workers are passively corrupted” includes both the case when the adversary
is passively corrupted, and corrupts at most θ workers (as well as arbitrarily many input and result
parties); and the case when the adversary is actively corrupted, and corrupts no workers (but arbitrarily
many input and result parties)
The complete proof of this theorem is given in the full version of the system [281]. To prove secure
function evaluation, we obtain privacy by simulating the multiparty computation of the proof with
respect to the adversary without using honest inputs. To prove correct function evaluation, we run the
protocol together with the adversary: if this gives a fake Pinocchio proof, then one of the underlying
problems can be broken.
In the single-client case, we remarked that Trinocchio actually provides security against up to θ actively
corrupted workers. Namely, although θ actively corrupted workers may manipulate the computation
of the function and proof, they do not learn any information from this because they do not see the
resulting proof that the client gets. In our multi-client protocol, it is less natural to assume that the
workers cannot see the resulting proof; and in fact, in our protocol, corrupted workers do see the full
proof as it is posted on the bulletin board. It should be possible to obtain some privacy guarantees
against actively malicious workers (who do not collude with any result parties) by letting the result
parties provide proof contributions directly to the result parties instead of posting them on the bulletin
board. We leave an analysis for future work.

10.5 Performance

In this section, we show that our approach indeed adds privacy to verifiable computation with little
overhead. We demonstrate this in a case study: we take the “MultiVar Poly” application from [255],
and show that using Trinocchio, this computation can be outsourced in a private and correct way at
essentially the same cost as letting three workers each perform the Pinocchio computation.
In our experiments, one client outsources the computation to three workers. In particular, we use
multiparty computation based on (1, 3) Shamir secret sharing. As discussed in Sections 10.3.1.2
and 10.4.3, this guarantees privacy against one passively corrupted worker (or, in the single-client
case against θ actively corrupted workers when the multiparty computation protocol does not leak
any information). We did not implement the multiple client scenario; this would add small overhead
for the workers, with verification effort growing linearly in the number of input and result parties
but remaining small and independent from the computation size. To simulate a realistic outsourcing
scenario, we distribute computations between three Amazon EC2 “m3.medium” instances1 around the
world: one in Oregon, United States; one in Ireland; and one in Tokyo, Japan. Multiparty computation
requires secure and private channels: these are implemented using SSL.

10.5.1 Case Study: Multivariate Polynomial Evaluation

In [255], Pinocchio performance numbers are presented showing that, for some applications, Pinocchio
verification is faster than native execution. One of these applications, “MultiVar Poly”, is the evalua-

1Running Intel Xeon E5-2670 v2 Ivy Bridge with 4 GB SSD and 3.75 GiB RAM

SUPERCLOUD D3.2 Page 126 of 182

D3.2 - Specification of security enablers for data management

mult Pinoc. Dist f Dist π Trinoc. Verif.
MultiVar Poly, Medium 203428 2102 96 2092 2187 0.04
MultiVar Poly, Large 571046 6458 275 6427 6702 0.05

Table 10.1: Performance of multivariate polynomial evaluation with Trinocchio: number of multipli-
cations in f ; time for single-worker proof; time per party for computing f and proof, and total; and
verification time (all times in seconds)

tion of a constant multivariate polynomial on five inputs of degree 8 (“medium”) or 10 (“large”). In
this case study, we use Trinocchio to add privacy to this outsourcing scenario.
We have made an implementation2 of Trinocchio’s Compute algorithm (Algorithm 8) that is split into
two parts. The first part performs the evaluation of the function f (line 4) , given as an arithmetic
circuit, using the secret sharing implementation of VIFF. (We use the arithmetic circuit produced by
the Pinocchio compiler, hence f is exactly the same as in [255].) Note that, because f is an arithmetic
circuit, this step does not leak any information against actively corrupted workers. Hence, in the
single-client outsourcing scenario of Section 10.3, we achieve privacy against one actively corrupted
worker. The second part is a completely new implementation of the remainder of Trinocchio using
[238]’s implementation of the discrete logarithm groups and pairings from [63].
Table 10.1 shows the performance numbers of running this application in the cloud with Trinocchio.
Significantly, evaluating the function f using passively secure multiparty computation (i.e., line 4 of
Compute) is more than twenty times cheaper than computing the Pinocchio proof (i.e., lines 5–16 of
Comp). Moreover, we see that computing the Pinocchio proof in the distributed setting takes around
the same time (per party) as in the non-distributed setting. Indeed, this is what we expect because
the computation that takes place is exactly the same as in the non-distributed setting, except that it
happens to take place on shares rather than the actual values itself. Hence, according to these numbers,
the cost of privacy is essentially that the computation is outsourced to three different workers, that
each have to perform the same work as one worker in the non-private setting. Finally, as expected,
verification time completely vanishes compared to computation time.

10.6 Architectural integration and prototyping

With secure multiparty computation (MPC), SUPERCLOUD servers outsource computation on their
joint data to multiple workers such that no individual server sees the data it is computing on. When
combining MPC with verifiable computation (VC), clients get a proof that the result of the computa-
tion is correct with respect to signed data from the servers.
Within the SUPERCLOUD system, the workers should be deployed in the compute resources of the
cloud providers (as depicted in Figure 10.1). The data that is sent to the workers are the shamir shares
of the input (e.g. [[s]], [[t]]) (step 1). Next, the secure multi-party computation component from each
of the workers is performing the needed computations on the received input data (step 2). Within
the same VM of the cloud provider, the data is transferred as shamir shares to the Pinocchio System
for computing shares (e.g. [[y]], [π]) of the cryptographic proof of the computation (step 3). The
cryptographic proof is generated using the evaluation key received from the pinocchio key generation
component (step 0).
Later the data owner (App component), which outsourced the computation to the workers, reconstructs
the results of the requested computations using the shamir secret shares that he received from the
workers ([[y]], step 4). For verifying the outsourced computation, the data owner uses the verification
key received from the pinocchio key generation component (step 0).
Trinocchio was prototyped within the SUPERCLOUD project. This prototype implements secure
multi-party computation (MPC) and verifiable computation based on a privacy-preserving implemen-

2Implementation available at http://meilof.home.fmf.nl/

SUPERCLOUD D3.2 Page 127 of 182

http://meilof.home.fmf.nl/

D3.2 - Specification of security enablers for data management

Figure 10.1: Trinocchio architectural integration

tation of Pinocchio, as depicted in Figure 10.1. The secure multi-party computation component is
a deployement of the VIFF framework3. VIFF is a general framework for doing secure multi-party
computations. In a secure multi-party computation, several parties jointly compute an agreed function
without leaking any information on their inputs. This could be an election where the correct tally is
computed *without* revealing any information on the individual votes. In a protocol with n players,
the confidentiality of the inputs is ensured when up to n/2 of the players are corrupted. VIFF is still
under development, but it is nevertheless quite usable and offers the following features:

• secret sharing based on standard Shamir and pseudo-random secret sharing (PRSS).

• arithmetic with shares from Zp or GF(28): addition, multiplication, exclusive-or. Some support
for actively secure multiplication.

• two comparison protocols which compare secret shared Zp inputs, with secret GF(28) or Zp
output.

• reliable broadcast, even in the presence of active adversaries.

• computations with any number of players for which an honest majority can be found.

• optional support for encrypted TLS connections between the players.

All operations are automatically scheduled to run in parallel meaning that an operation starts as soon
as the operands are ready.
The computation outsourced by a client is transformed into a quadratic arithmetic program (QAP).
Next this quadratic artihmetic program is used as input for both the secure multiparty computation
(MPC) and pinocchio components that are run by the workers. Potentially, the C-to-QAP compiler
from Pinocchio could be used to generate this QAP. However, the QAP file format of Pinocchio is
currently incompatible with this prototype. We leave adding this compatibility as future work.
The first line of the QAP file format starts by giving the number of circuit values of the QAP. Then,
the number of values in each “block” is given: the first block consists of public inputs and outputs;

3http://security1.win.tue.nl/~meilof/files/verifiability/local.tar.gz

SUPERCLOUD D3.2 Page 128 of 182

http://security1.win.tue.nl/~meilof/files/verifiability/local.tar.gz

D3.2 - Specification of security enablers for data management

each party delivering a private input or obtaining a private output should have a block; and there
should be one block for the internal circuit wires of the circuit. The line ends with a dot. For instance,

25649 0 1640 41 41 23927 .

represents a QAP with 25649 circuit values: 0 public and 25649 private, divided into blocks of 1640,
41, 41, and 23927 values. (In this case, there will be 1640 inputs, 41 outputs for one party, 41 outputs
for another party, and 23927 internal wire values.)
The second line specifies inputs to the QAP, starting from the first circuit value, and ending with a
dot, e.g., “1 2 3 .”. This second line is used for demo purposes by some provers; if this is not needed,
then a line with a single dot suffices.
The remainder of the lines give the QAP equations v · w = y, with v, w, and y linear functions
α1x1 + · · · + αnxn + α0. A term αkxk is given as “αk k”; the constant term as “α0 0”. Plus signs
are ommitted, and “*” and “=” are used to separate the v, w, and y parts. E.g., “1 1763 * 1 0 -1

1763 = .” represents the equation 1 · x1763 · (1 +−1 · x1763) = 0.
The tools available in the Trinocchio prototype are:

• genkey Generates evaluation and verification keys from a given QAP.

• combine Reads proofs and combines them into one overall proof. This combines all blocks from
the parts given in the respective proof files.

• eval Produces a ZK-QAP proof based on the given wire values and randomness.

• ver Verify a QAP proof. Takes as input an evaluation key.

10.7 Conclusion

In this chapter we have presented Trinocchio, a system that adds privacy to the Pinocchio verifiable
computation scheme essentially at the cost of replicating the Pinocchio proof production algorithm at
three (or more) servers. Trinocchio has the same correctness and security guarantees as Pinocchio;
distributing the computation between 2θ+ 1 workers gives privacy if at most θ of them are corrupted.
We have shown in a case study that the overhead is indeed small.
As far as we are aware, our work is the first to deliver efficient verifiable computation (i.e., with cryp-
tographic guarantees of correctness and practical verification times independent of the computation
size) with privacy guarantees. Although privacy is only guaranteed if not too many of the workers
are corrupt, the use of verifiable computation ensures that the outcome of the protocol cannot be
manipulated by the workers. This allows us to hedge against an adversary being more powerful than
anticipated in a real world scenario. Existing verifiable computation constructions in the single-worker
setting [158, 164, 147] use very expensive cryptography, while multiple-worker efforts to provide pri-
vacy [38] do not guarantee correctness if all workers are corrupted. In contrast, existing works from
the area of multiparty computation [55, 280, 127] deliver privacy and correctness guarantees, but have
much less efficient verification.
Trinocchio is a first step towards privacy-preserving verifiable computation, and there are many promis-
ing directions for future work. Recent work in verifiable computation has extended the Pinocchio
approach by making it easier to specify computations [63], and by adding access control functional-
ity [33]. In future work, it would be interesting to see how these kind of techniques can be used in
the Trinocchio setting. Also, recent work has focused on applying verifiable computation on large
amounts of data held by the server (and possibly signed by a third party) [105]; assessing the impact
of distributing the computation (in particular when aggregating information from databases from sev-
eral parties) in this scenario is also an important future direction. It would also be interesting to
base Trinocchio on the (much faster) Pinocchio codebase [255] and more efficient multiparty compu-
tation implementations, and see what kind of performance improvements can be achieved. Another

SUPERCLOUD D3.2 Page 129 of 182

D3.2 - Specification of security enablers for data management

interesting direction is to investigate the possibility of practical universally compose-able [92, 93] dis-
tributed verifiable computation; or to use the universal composability framework to obtain a more
generic framework for combining multiparty computation with verifiable computation (even with only
standalone guarantees).

SUPERCLOUD D3.2 Page 130 of 182

D3.2 - Specification of security enablers for data management

Chapter 11 Privacy of Image Processing

In this chapter, we target on privacy-preserving image processing algorithms in data storage manage-
ment. The concrete use cases targeted by the SUPERCLOUD project in work package 5 address the
medical sector and involve the use and processing of medical images. Privacy-preserving processing
techniques specifically targeted for image data are therefore of particular interest for those use cases.
In Sect. 11.1 we first overview popular image processing techniques and survey privacy-preserving
techniques for image processing algorithms in Sect. 11.2. In Sect. 11.3, we survey the security and
performance analysis of different privacy-preserving image processing algorithms. SGX-based privacy-
preserving image processing implementatio are subsequently discussed in Sect. 11.4.

11.1 Image Processing Techniques

11.1.1 Content Based Image Retrieval

Content Based Image Retrieval (CBIR) is a solution for the image retrieval problem to search for
images in databases, one important application for multimedia information retrieval (MIR) [217, 285].
Indexing of images in CBIR is done by the visual content of the image [150, 273]. The main goal of
CBIR system is to extract a signature or visual features from images. Features to describe the content
could be like colour, texture, shape and so on. For a general CBIR scheme, the user provides a query
image, and the feature vector is extracted to query the index structure. A query for CBIR scheme
could be an image or a part of it. One advantage of CBIR is that the user can express the query
more precisely, with smaller semantic gap between the system and the user. Moreover, CBIR systems
automate the retrieval process, compared with traditional keyword-based systems. Keyword-based
systems usually require time-consuming annotation of database images.
In the process of querying, the index structure is traversed, and suitable child nodes are chosen to
traverse next, based on the feature vector of the query and the data in the node. Usually, based on
the underlying index structure, functions, e.g., threshold functions or distance metrics are used for
making the decision for the next traversing. The results are supposed to be in leaf nodes, and will be
returned to the user at the end of inquiry. In some situations, we may need backtracking to acquire
the complete results.
A typical CBIR system needs the construction of image descriptors, characterized by, first, an extrac-
tion algorithm which encodes image features into feature vectors; second, similarity metric to measure
and compare two images. The function of similarity measure provides the degree of similarity for a pair
of images, based on their feature vectors. Usually, this could be a distance metric (e.g., Euclidean).
The larger the distance value, the less similar the images are. Therefore, an image descriptor is a
pair of functions: an extraction function for feature vector and a distance function. Existing image
descriptors include color descriptors, texture descriptors, shape descriptors and so on.
Content Based Image Retrieval is widely used in, e.g., scientific databases, general image collections for
licensing, biodiversity information systems, medical image systems, fingerprint identification, digital
libraries, historical research, and so on. For example, a large amount of images in medical systems
are produced and stored in an outsourced cloud. Traditional CBIR schemes focus on how to select
the features, how to make efficient indexing and high performance precisely. However, as the issue of
image privacy is getting more and more attention, some users prefer not to reveal the content of their

SUPERCLOUD D3.2 Page 131 of 182

D3.2 - Specification of security enablers for data management

query image when the features are retrieved, not even to the database. Various privacy-preserving
CBIR systems have been proposed, as we will discuss in Section 11.2.

11.1.2 Scalar Invariant Feature Transform

Scalar Invariant Feature Transform (SIFT) is one of the most popular image descriptors in CBIR to
detect and describe image features [222, 221]. The original SIFT descriptor was computed from the
image intensities around interesting locations in the image domain which can be referred to as interest
points, or key points. The image descriptor is computed at each interest point. The original SIFT
descriptor proposed can be considered as a position-dependent histogram of local gradient directions
surrounding the interest point. The SIFT descriptor is invariant to translations, scale and rotations
transformations in the image domain. To achieve scale invariance of the descriptor, the size of location-
based neighbours requires to be normalised in a scale-invariant way. To achieve rotational invariance
of the descriptor, a dominant orientation in the neighbourhood is decided based on the direction of
the gradient vectors.
The key points of SIFT can be briefly summarized as follows. Firstly, the size of the area surrounding
the interest point is estimated by the detection scale of the interest point times a constant. Secondly,
the local histogram of gradient directions is calculated by accumulating over the neighbour surrounding
the interest point, therefore a preferred orientation estimate for the interest point can be decided.
Thirdly, after the estimate of orientation and scale for the interest point is obtained, a rectangle grid
with the interest point as center will be set. The orientation is decided by the main peaks of the
histogram, and the size is the detection scale of the interest point times a constant. Then, after the
vectors of image descriptors are calculated from two images, they are matched with each other by
locating the points which minimize the distance (e.g., Euclidean distance) of the vectors. Finally, the
descriptor is normalized.
There are a few extensions for SIFT. Dense SIFT was proposed by Bosch et al [72, 73], which is often
used in object category classification. In object category classification, better classification results
could be obtained by calculating SIFT descriptor over dense interest points. Other SIFT descriptors
extending SIFT from grey-level to color images [72, 303, 78, 26]. PCA SIFT is another method for
local image descriptors [193]. Similarly to regular SIFT, PCA SIFT detects interest points with scale
estimates. However, the underlying image measurements are different. They calculate local maps of
the gradient magnitude, instead of gradient orientations.
The SIFT descriptor and its extensions has been proven to be very useful in many applications,
including object recognition, visual search [125], object category classification [73, 242], and so on.

11.1.3 Speeded Up Robust Features

Speeded Up Robust Features (SURF) [57] is similar to SIFT descriptors in the sense that it is also
a feature vector derived from receptive-field-like responses in a neighbourhood of an interest point.
However, there are several differences between SURF and SIFT: approximations of scale-space extrema;
SURF is based on Haar wavelets instead of derivative approximations; the components of feature vector
are computed as sums and absolute sums of first-order derivatives instead of histograms of gradient
directions.

11.1.4 Shape-based Image Features

As mentioned in Section 11.1.1, shape is one of the key visual features for distinguishing an image. In
shape-based feature extraction, shapes (line segments, circles, etc) are collected as a set of features for
the images. One widely used shape-based feature extraction is using Hough Transform method [182].
Other shape-based systems use measures of moment invariants and Fourier descriptors, especially in
2D shape searching [151, 232].

SUPERCLOUD D3.2 Page 132 of 182

D3.2 - Specification of security enablers for data management

11.2 Privacy-Preserving Techniques for Image Processing

Image processing operations can be delegated to clouds to ease computational overhead on the client
side. To prevent the leakage of private information of the image owner or users who are querying,
various privacy-preserving techniques for image processing have been investigated. Even features
extracted from the image may reveal important private information of the owner/user. The attacker
can deduce the image content by comparing features in a benchmark image database, or even recover
part of the image based on these features. Therefore, we discuss existing popular privacy-preserving
techniques for the above image processing algorithms accordingly.

11.2.1 Content Based Image Retrieval

Do et al. study the security issues of the typical technology blocks used in content-based image retrieval
system [132]. There are work focusing on the functionality of image retrieval in the encryption domain.
Some works target image feature protection where the similarity measures can be operated in the
encryption domain. Lu et al. propose to encrypt images and their features separately [224]. Zhang
et al. propose a solution to allow histogram-base image retrievals when the images are encrypted
by permuting DCT coefficients [320]. Homomorphic encryption is another solution of retrieving and
processing image content [224, 321, 319]. By combining signal processing and cryptographic techniques,
Lu et al. propose three schemes where the similarity can be compared among protected features [223].
Bellafqira et al. propose a secure implementation of CBIR in homomorphic encryption domain that
makes possible diagnosis aid systems to work in externalized environment [60]. Erkin et al. propose
a privacy-preserving biometric face recognition protocol based on additive homomorphic encryption
where a query image is sent homomorphically encrypted to the server [145]. Avidan et al. propose
a so-called Blind Vision scheme which uses secure multi-party computation to vision algorithms [45].
Some research targets performing certain computation/processing over the encrypted data based on
Shamir’s Secret Sharing. These works assume that the cloud providers are trustworthy and therefore
will not reveal private information. Lathey et al. propose a scheme which applies low-pass filtering to
the ciphertext [213]. Later, they also propose a few image enhancement operations to the encrypted
image data [214]. Upmanyu et al. extract image frames from video stream and detect the difference,
to obtain the goal of video surveillance [302]. Another encryption direction for image protection
is block-based image encryption algorithms. Besides general solutions like multi-party protocol and
homomorphic encryption, there are also tailor-made solutions, which could be more efficient. Shashank
et al. propose a private CBIR where the database is indexed using hierarchical index structure or hash
based indexing scheme [283]. Their scheme can retrivie similar images from an image database without
revealing the query image, while the image database is not encrypted. Weng et al. propose a privacy
protection framework for large-scale CBIR [315], providing two levels of protection, where the privacy
protection level can be adjusted according to a policy. Bernardo et al. propose a scheme called IES-
CBIR for image data [146]. In IES-CBIR, both the data storage and query image are encrypted. Chou
et al. propoase a block-based transformation algorithm for the purpose of image content protection,
while the operations of image retrieval and image convolution can still be performed on the content-
protected images [109].

11.2.2 Scalar Invariant Feature Transform

In this section we focus on secure image feature extraction algorithms using a Scalar Invariant Fea-
ture Transform (SIFT) descriptor. For secure applications of SIFT, Roy et al. propose to generate
hash sequences from thresholding SIFT feature vectors [272]. Hsu et al. point out that SIFT fea-
tures can be deleted or destroyed while maintaining acceptable visual qualities. Based on this, they
propose an improved scheme to enhance the security of SIFT by introducing a key-based transform
process to images [179]. Hsu et al. also propose a homomorphic encryption-based privacy-preserving
SIFT method for feature extraction, based on Paillier cryptosystem [180]. Later, a privacy-preserving

SUPERCLOUD D3.2 Page 133 of 182

D3.2 - Specification of security enablers for data management

implementation of SIFT has been proposed by using the Paillier’s homomorphic cryptosystem [178]
and improved by order-preserving encryption (OPE) [265]. Qin et al. propose a privacy-preserving
SIFT feature detection system called SecSIFT [265], which distributes the computation procedures of
SIFT to a set of independent, co-operative cloud servers. Schneider et al. further study Hsu et al.’s
scheme, proposing optimization and shortcomings of their secure comparison protocol [27]. Schneider
et al. improve the scheme by shifting computation from the server to the user. They also propose to
use interactive comparison protocols or non-interactive somewhat or fully homomorphic encryption as
alternatives.

11.2.3 Speeded Up Robust Features

Speeded Up Robust Features (SURF) is an enhanced version of SIFT. Bai et al. propose to use the
Paillier cryptosystem to construct a multi-round interactive protocol to enable the cloud server to
perform SURF on encrypted images [46]. Bai et al.’s scheme conduct the operations of interest point
locations and feature descriptor extraction on the encrypted data. In their experiments, the location
and number of interest points in the encrypted image and the same as those from the original image.
Aiming to reduce the communication overhead of Bai et al.’s scheme, Wang et al. propose another
privacy-preserving outsourcing scheme for SURF which preserves its key characteristics in terms of
distinctiveness and robustness [311]. They split the original image data randomly and distribute
the encrypted data shares to two independent cloud servers, in order to construct two new efficient
protocols for secure multiplication and comparison. Somewhat homomorphic encryption (SHE) and
single-instruction multiple-data (SIMD) are the two main techniques in their design.

11.2.4 Shape-based Image Features

Wang et al. present two schemes for shape-based image feature extraction by combining Hough
transform, Pailliers homomorphic encryption, Gaussian Blur, and Garbled Circuits [312].

11.2.5 Techniques in other Applications

In the area of secure image processing, related work also includes the manipulation of encrypted image
data in different applications, e.g., face recognition [193, 274, 252], fingercode authentication [53], ECG
signals [52], and so on. Erkin et al. firstly propose a privacy-enhanced face recognition scheme which
can hide both the biometrics and the result from the server that performs the matching operation
efficiently [145]. In Erkin et al.’s scheme, they use secure multi-party computation. Sadeghi et al.
propose a privacy-preserving face recognition scheme which substantially improves the communication
and computation efficiency compared with Erkin et al.’s scheme[274]. Erkin et al.’s scheme requires
O(log M) rounds and computationally expensive operations on homomorphically encrypted data to
recognize a face in a database of M faces, while Sadeghi et al.’s scheme requires only O(1) rounds
and has a substantially smaller online communication complexity (by a factor of 15 for each database
entry) and less computation complexity. Sadeghi et al.’s scheme is based on garbled circuit. Osadchy
et al. propose a so-called SCiFI system face identification using secure computation techniques [252].
Barni et al. propose a privacy-preserving protocol for fingerprint-based authentication using multi-
party computation and homomorphic encryption [53]. Barni et al. present two methods for privacy-
preserving ECG classification [52]: one is based on linear branching programs and the other one relies
on neural networks.

11.3 Performance and Security Analysis

Given different descriptors in the image processing algorithms and their corresponding privacy-preserving
implementation, the above mentioned schemes have different performance and security. Hsu et al.’s
scheme [178] has a high computational complexity on encrypted data comparison. Their scheme uses

SUPERCLOUD D3.2 Page 134 of 182

D3.2 - Specification of security enablers for data management

homomorphic encryption scheme (Paillier) and requires the cloud to traverse half of the ciphertext
space for each comparison. In Hsu et al.’s scheme, the data owner needs to encrypt and decrypt each
pixel in the image under Paillier scheme, which a huge overload for data owner. Qin et al.’s scheme [265]
distributes the computation of SIFT to independent but co-operative cloud servers, therefore the out-
sourced computation can be kept simpler compared with Hsu et al.’s scheme. Two anti-SIFT attacks
proposed by Hsu et al. can remove interest points retrieved by traditional SIFT [179]. Subsequently,
Hsu et al. perform the security analysis under the attack models of ciphertext only and known plain-
text for the proposed scheme. Wang et al. evaluate their secure SURF scheme regarding effectiveness
and efficiency [311], and compare their scheme with the original SURF [57] and Bai et al.’s scheme [46].
For efficiency, they evaluate the communication and time cost on the data owner with different size
of images. Compared with Bai et al.’s scheme, Wang et al.’s scheme reduce the computation burden
on the data owner. Moreover, in the evaluation results, Wang et al.’s scheme has an even lower than
doing SURF locally especially for large images. By combining homomorphic encryption and garbled
circuit, Sadeghi et al.’s scheme [274] improves the communication and round complexity compared
with Erkin et al.’s scheme, under different security parameters. In general, homomorphic encryption
based algorithms result in heavier workload compared with tailor-made solutions.

11.4 Efficient Implementation of Image Processing in SGX

In this section we propose an approach for implementing efficient privacy-preserving image processing
with the help of hardware features provided by Intel Software Guard Extensions (SGX). SGX is an
emerging technology providing improved isolation capabilities for computations, which can be used
protect sensitive computations and data.

11.4.1 Software Guard Extensions (SGX)

SGX is an extension of the x86-64 instruction set architecture that allows to instantiate trusted
execution environments, called enclaves. SGX enclaves are isolated from the rest of the system. In
contrast to other trusted execution environments [42] SGX does not require trust in any hardware but
the CPU. Trust in the CPU is necessary because the access control to enclaves, i.e., enclave memory,
is enforced within the CPU.
The application developer can divide her application into an untrusted and trusted part which should
be executed in enclave mode. To start an enclave, the applications defines a region of memory which
should be used for the enclave using the newly introduced SGX instructions. Once the enclave is
initialized the memory region that was assigned to the enclave becomes inaccessible to the rest of the
system. This includes higher privileged modes such as kernel, hypervisor, and system management
mode (SMM). In fact, the memory can only be accessed by the code of the enclave. As mentioned
before, SGX does not require any trust in the underlaying hardware. This is implemented by encrypting
and integrity protecting enclave memory with enclave-specific keys before the memory physically leaves
the CPU cache and is written to the external memory (RAM). If an enclave wants to access enclave
memory that was swapped into RAM, the CPU will fetch the data, check the integrity, and decrypt it
only after the integrity has been verified. This ensures that an attacker cannot tamper with enclave
memory that was stored outside the CPU. Further enclaves ensure that when the CPU changes from
enclave mode to non-enclave mode, that all registers are securely stored in memory, so they cannot be
modified, and cleared, so no information from inside the enclave are leaked.
After an enclave is started, the untrusted part of the application can communicate with the trusted part
of the application (which runs in enclave mode) by calling functions that were defined during enclave
initialization. These well defined entry points prevent attackers to execute enclave code starting from
the middle of a function or even an instruction which could result in unwanted behavior. On the other
hand, the trusted code of the enclave can access the whole application memory.
To ensure that the trusted part of an application was not modified before it is loaded into the enclave,
SGX features attestation. Specifically, the CPU creates a hash value over the whole enclave memory

SUPERCLOUD D3.2 Page 135 of 182

D3.2 - Specification of security enablers for data management

before initializing it. This hash can then later be used to attest that the trusted part of an application
was not modified before or during the creation of an enclave. Further, an enclave can attest that it is
executed in a benign SGX enclave, and not in an emulated environment.

11.4.2 Overview of SGX-based Privacy-Preserving Image Processing

To achieve both security and efficiency, SGX can be used to load algorithm code and data into enclave.
Existing solutions for Bajaj et al. propose a trusted hardware-based database called TrustedDB [48].
Baumann et al. propose Haven using instruction-level isolation mechanism of SGX to protect malicious
host OS [56]. However, existing isolating databases with SGX load a whole unmodified database
management system into an enclave without considering information leakage. We take into account
the side channel information which could be leaked between trusted environment and untrusted host.
Moreover, an enclave has a limited memory size, which could be not very feasible to load the whole
database system.
Leveraging Intel’s SGX, we present a hardware-based solution which is suitable for achieving privacy-
preserving of image processing algorithms while still guarantee high efficiency. We provide two SGX
constructions, dependent on how to manage the B+ tree of database management systems. In the first
construction, the whole database will be loaded and processed inside the enclave. The client constructs
the B+ tree locally, encrypts the structure of B+ tree and then sends them to the cloud. The SGX
application is deployed to a SGX capable server. The second construction only load the candidate
nodes for the tree traversing, instead of the whole database. One advantage of this construction is
that it can reduce the requirement of memory inside the enclave to O(1) for the tree. All nodes are
encrypted in the regular memory or disk, and will be decrypted by the enclave. The challenges of
this construction are a slightly larger leakage compared with the first construction. In general, our
proposed solutions are very efficient. It has a logarithmic complexity in the size of database. The
searches can be performed in a few milliseconds. Besides, we formally prove the security of our scheme.
Our implementation also has a small code and memory footprint.

11.4.3 Structure of SGX-based Privacy-Preserving Image Processing

SGX enabled Server

Enclave

... K

V

2 Provision

Untrusted

3

4

7

Send Query

5

Load Tree

Search
Return Results

Result List6

1 Deploy Tree and Data

VV

K
V

K

K

K

Client Cloud

Query K Query

Query

Figure 11.1: Structure in high level

As shown in Figure 11.1, our scheme contains three parties: an SGX enabled server (which is un-
trusted), the hardware protected SGX enclave within the server and the client (the data owner who is
trusted). Our scheme includes several steps. Firstly, the client augments the data values with search
keys. The keys and the corresponding values are inserted into a B+ tree. This value can be data in a
relational database or files. Multiple search keys can be supported by different trees. The data nodes

SUPERCLOUD D3.2 Page 136 of 182

D3.2 - Specification of security enablers for data management

and the values are stored in a pseudo-random order. The tree and values are linked via pointers which
are added to the leaves of the tree and can identify the position of the related values.
All nodes in the tree are then encrypted by the client with a secret key SKk. All data values are
encrypted by the client with a secret key SKv. The encrypted B+ tree and the encrypted values are
then deployed on the server in the cloud which is untrusted (Step 1 in Figure 11.1). The tree nodes
and values can be encrypted as a block or individually, depending on the visualizing setting or real
setting. In Step 2, a secure link is built between the enclave and the client. The client utilizes the
attestation feature of SGX to authenticate the enclave and provisions SKk into the enclave via this
secure connection (Step 2). The one time setup of our scheme is completed by this step.
Afterwards, the client can send search queries of image processing to the server. All search queries
which are encrypted by SKk is under randomized encryption. Therefore, the untrusted server is not
able to learn information about the image query, even if the same query has already been sent before.
When the image query arrives in the enclave, SKk can be used to decrypt this query (Step 3).
The enclave then loads the structure of B+ tree (only including tree nodes but not values) into the
memory of enclave from the untrusted storage, and decrypts the B+ tree (Step 4). When the memory
is sufficient, the entire B+ tree will be loaded into the enclave. Then the search can be performed
(Step 5).
However, in a more often case, the size of the B+ tree can be much bigger than the size of the available
memory within the enclave, therefore we provide another design which is suitable for this case: only
a subset of the tree nodes will be loaded into the enclave. After this, we traverse the B+ tree from
the root node. When the image query arrives to a node which does not exist in the enclave at that
moment, this node will be fetched from the untrusted storage.
In Step 6, the queried results which are represented by a list of pointers are then returned to the
untrusted part. Note that during this interaction the untrusted part cannot learn anything, except
for the cardinality of the result set, since the values are stored in a randomized order. In both cases
we mentioned above, the search algorithm will always reach to a set of nodes, which holds a list of
pointers to data values which match the query.
In the last step, with the returned pointers, the server fetches the encrypted image values from the
untrusted storage and passes these values to the client (Step 7). The client then decrypts the received
values and conducts further image processing.
In both proposed schemes, the server never receives the image data in plaintext. We can encrypt these
data with any strong standard cryptographic encryption algorithms (e.g., AES-128 in GCM mode).
The server is also never able to decrypt the data, even within the SGX enclave. Only the client
possesses the key to decrypt the image data

11.4.4 Adversarial model and related assumptions

In this section we highlight some assumptions in our scheme and the adversarial model. We have
three main assumptions in our scheme. Firstly, we assume that a system which provides SGX (or
any system having a TEE with capabilities similar to SGX). Secondly, we assume that code and data
within the TEE are protected regarding their integrity and confidentiality. Lastly, we assume that the
TEE provides methods to build a secure channel to the client which allows secure communication as
well as secure provisioning.
Our adversarial model is shown in Figure 11.2. The attacker cannot access the enclave directly due to
the protection of SGX. However, the attacker might potentially achieve sensitive information through
side channels. The goal of the attack is to learn the structure of the B+ tree which shows him the
relation between the stored data. If the attacker is able to learn the structure of the B+ tree, he
can further use this information to derive other information about the data. At the beginning, the
structure of the tree is hidden from the attacker, since the tree nodes are stored in a randomized order
on the server.
Our scheme resists the following attacker (Figure 11.2):

SUPERCLOUD D3.2 Page 137 of 182

D3.2 - Specification of security enablers for data management

External
Resource Access

SGX enabled Server

Enclave

Node 1

1
7

4
2

6
3
m 5

n

Mapping Page-Fault
Side-Channel

Cache Side-
Channel

1 742 6 5

1

2 3 4 5

n m6 7 ...

Figure 11.2: Adversary channels

1 The attacker can use page-fault side channel to observe data access inside the enclave at page
granularity, and use this side channel to observe access patterns on the B+ tree stored within
the enclave.

2 The attacker can observe all interaction of the enclave with resources outside the enclave. In
particular, the attacker can observe the access pattern to B+ tree nodes stored outside the
enclave.

3 The attacker can use cache side channel to learn about code paths or data access patterns inside the
enclave, as SGX does not provide protection. In this case, third party libraries, like cryptographic
libraries, are assumed to be secure against cache side channel.

Our scheme doesn’t consider hardware attacks and Denial of Service attacks.

SUPERCLOUD D3.2 Page 138 of 182

D3.2 - Specification of security enablers for data management

Chapter 12 Other Encryption-based privacy-preserving com-

ponents

In this chapter, we focus on encryption techniques used to protect data in the SUPERCLOUD infras-
tructure. Our solutions are mainly compatible with any kind of storage (blocks, objects, files), even
if some of these specifications are given in the case of a file system (see Section 12.3). In this chapter,
we also focus on the data deduplication problem and give a concrete solution.

12.1 Context

Cloud data storage is a widespread option and it is today easy to find such solutions for any digital
content. A key issue is the confidentiality of stored data, which becomes even trickier when the owner
wants to share her/his data. It is then crucial to offer solutions that combine storage, sharing and
confidentiality of data, without changing the user experience.
The idea behind cloud storage is that data are stored as if they were in a safe, where the cloud storage
plays the role of an access control to this safe. In reality, the data are encrypted but, most of the
time, the cloud server has the decryption key and manages the rights for each user to access or not
the data.
This is a critical problem in the case of private sensitive data such as administrative documents (e.g.
identity cards, bills or pay sheets) or, as in the use cases described in the SUPERCLOUD project,
health data. For instance, the result of a medical exam is typically accessible to all medical doctors,
but not to other types of medical professionals (e.g., IT or administrative). The results of more private
exams may be only accessible by specific medical doctors. Additionally, the Cloud Service Provider
storing the data is obviously not allowed to obtain information about these exams. This is also a
tricky point in the case of confidential documents owned by a business enterprise and shared between
collaborators or with trading partners.
The main problem is that simple encryption only provides a backup service, and not a secure storage
one with practical features. More precisely, it does not work when one wants to share the stored
data with other customers. In the SUPERCLOUD project, we solve this problem by using advanced
cryptographic tools:

• proxy re-encryption, with which it becomes feasible to share encrypted data with other users,
known by their identities. For example, the exam’s lab can encrypt the medical exam before
sending it to the CSP, and then share it with either all medical doctors (but not, e.g., IT
professionals) or with some specific ones;

• attribute-based encryption, for which the data is encrypted according to a specific policy. In
this case, only receivers with attributes satisfying this specific policy can decrypt the encrypted
message. For example, the exam’s lab can encrypt the medical exam with a specific access
control policy “any user with attribute medical doctor”.

In this chapter, we specify both these solutions.

SUPERCLOUD D3.2 Page 139 of 182

D3.2 - Specification of security enablers for data management

12.1.1 Some Notations

All along this chapter, a public key encryption scheme is given by the following algorithms: PKKeyGen
is the key generation to create public pk and private sk keys, PKEnc is the encryption process and
PKDec is the decryption.
The AES symmetric key encryption scheme is also used several times. Its description should be taken
from the FIPS 197 on “Advanced Encryption Standard (AES)”. Below, the AES encryption algorithm
is denoted AESEnc and the decryption one is denoted AESDec.

12.2 Key Encapsulation and Deduplication

As shown in the context section above, we sometimes have to treat data which size can be big (e.g.,
medical analysis,). This makes public key cryptography unsuitable and poses some problem. To deal
with that point, one may use the so-called “encapsulation technique”, described in this section. Note
that this one can be used in addition to the other public key encryption techniques describe later in
this chapter.
We also focus on the deduplication problem, since it also refers to a method to efficiently encrypt the
data itself, with some additional properties.

12.2.1 Key Encapsulation

Motivation. Public key cryptography better suits the addition of features on encrypted data. But
the price to pay is that it is only efficient when the data to be encrypted are relatively small. In this
section, we focus on this particular problem by explaining the way to perform key encapsulation, and
then encrypt the data using much more performing secret key cryptography for the data itself.

Description. The encapsulation technique consists in encrypting the data using a symmetric encryption
algorithm (say AES) using a secret key k that is next encrypted using an asymmetric encryption
algorithm. Such procedure is given by Algorithm 11 for a data d.

Algorithm 11: Key encapsulation.

Input : data d, public key pk.
Output: encrypted data Cd and metadata MDd.

1 generate e.g., an AES key kd;
2 encrypt the data f using the AES algorithm and the key kd as Cd = AESENC(d, kd);
3 encrypt the secret key kd using the public key encryption procedure MDd = PKEnc(pk, kd);
4 output (Cd,MDd).

The ciphertext Cf is then the true encrypted file, while MDf corresponds to some meta-data associated
to the encrypted file. We consider that these meta-data also contain the identity of the client uploading
the file.

Remark 1. In the first part of this section, dedicated to privacy preserving techniques, we will focus
on these three steps and the way one can implement them for data confidentiality. More precisely, the
first and second steps can be implemented either by using standard techniques (e.g., AES), or using the
convergent encryption [137] that is given in the next section. Then, in the third step, the used public
key encryption procedure PKEnc can be implemented either by a standard encryption algorithm such
as RSA [270] or ElGamal [154], by a proxy re-encryption scheme if one wants to share the stored data
(see Section 12.3) or by an attribute based encryption if one wants to give an access control policy to
stored data (see Section 12.4).

SUPERCLOUD D3.2 Page 140 of 182

D3.2 - Specification of security enablers for data management

12.2.2 Convergent Encryption for Deduplication

Motivation. Cloud computing is often promoted towards companies as a way to reduce their costs
while increasing accessibility and flexibility. It is common sense to have one large computing infras-
tructure that companies would share instead of replicating smaller ones. This saves money and is an
eco-friendlier way to distribute resources. But cloud platforms are neither cheap nor eco-friendly. The
larger amount of data these platforms host, the more expensive they become. Impact on the environ-
ment grows as well. One way to address this issue is to delete identical files stored by users. This
method, called deduplication, is widely used by cloud providers. However, some of the cloud storage
users may want to encrypt their data, distrusting honest-but-curious providers. If they use a classical
encryption scheme, deduplication is not possible anymore: two encryptions of the same plaintext under
different keys yield indistinguishable ciphertexts. A new kind of encryption is needed, under which it
is possible to determine whether two different ciphertexts are locked to the same message or not. In
this document, we describe the convergent encryption.

Description. The convergent encryption [137] works as follows, where H is a hash function and AES
is the deterministic version of the standard symmetric encryption system.

• CESetup(κ) returns the global parameters param.

• CEKeyGen(param,m) returns kce = H(m).

• CEEnc(m, kce) returns the ciphertext C = AESENC(m, kce).

• CEDec(C, km) gets back the plaintext m = AESDEC(C, kce).

• CETest(C1,C2) returns 1 iff H(param‖C1) = H(param‖C2). The value H(param‖C) is called a
“tag”.

Remark 2. As explained in [61], this convergent encryption guarantees all desired security properties
and has also good properties regarding performances. Its main drawback is that the time to compute
a tag (i.e., T = H(param‖C1)) can be considered as too long. One may thus prefer to use other close
constructions, such as HCE2 or RCE (see also [61] for a description of those schemes). The counterpart
is that the encryption process is less efficient.

Usage. If one wants to implement data deduplication with key encapsulation, one has to modify the
first and second steps above and replace them by respectively the CEKeyGen and the CEEnc given by
the convergent encryption scheme. The Algorithm 12 gives the way to execute the key encapsulation
with the convergent encryption.

Algorithm 12: Key encapsulation with convergent encryption.

Input : data d, public key pk.
Output: encrypted data Cd and metadata MDd.

1 executes the CEKeyGen procedure of the convergent encryption to obtain the key kce;
2 encrypt the data f using the convergent encryption procedure CEEnc and the key kce as

Cce = CEENC(d, kce);
3 encrypt the secret key kce using the public key encryption procedure MDd = PKEnc(pk, kce);
4 output (Cd,MDd).

12.2.3 Encrypted Data Storage Sequence Diagrams

We consider a user, say Alice, wanting to upload and then download a file in an encrypted manner
to a Cloud Service Provider. For that purpose, Alice makes use of the SUPERCLOUD Proxy and

SUPERCLOUD D3.2 Page 141 of 182

D3.2 - Specification of security enablers for data management

Server. We here consider that the PKSetup and PKKeyGen procedures for a public key encryption
scheme have already been executed.

File upload. After the validation of the user (steps 1 to 6), this step, given in Figure 12.1, executes
the key encapsulation procedure (steps 7 to 9, see Algorithm 11 or 12). The algorithm outputs the
encrypted file Cf sent to the Cloud Service Provider (steps 11 and 12) and the meta-data MDf sent
to the WP3 SUPERCLOUD server (steps 13 and 14).

Figure 12.1: Upload phase

File download. As shown in Figure 12.2, the client gets back the meta-data MDf from the SUPER-
CLOUD server (steps 4 and 5), and the encrypted file itself is simply requested from the corresponding
Cloud Service Provider (steps 6 and 7). Then, the client can use its secret key to decrypt the meta-
data MDf to obtain the AES key kf (step 9), and then use the AES decryption algorithm with kf and
Cf to obtain the file f in clear (step 10).

Data deduplication. The implementation of a data deduplication mechanism in this system necessi-
tates an additional procedure to test whether a new uploaded file is a duplicate or not. Figure 12.3
gives the modifications that should be done to the above downloading phase (given by Figure 12.2).

Remark 3. One may notice that a specificity of convergent encryption is that the way to obtain the
file f in plain necessitates the use of the key kf , which one is derived from the file f . This may be
seen as contradictory, but the use of the above encapsulation method permits to easily solve that point.

SUPERCLOUD D3.2 Page 142 of 182

D3.2 - Specification of security enablers for data management

Figure 12.2: Download phase

Figure 12.3: Additional interactions in the download phase for deduplication

12.3 Proxy re-encryption

In deliverable D3.1, we have shown that proxy re-encryption is a cryptographic tool that can be used
to protect data, while permitting clients to share it securely. In this deliverable, we focus on the way
such tool can be used to store and share data within a file system, inside the SUPERCLOUD WP3

SUPERCLOUD D3.2 Page 143 of 182

D3.2 - Specification of security enablers for data management

architecture.

12.3.1 Proxy re-encryption in a nutshell

Motivation. We consider a set of users wanting to store and share some documents to a Cloud Service
Provider. As they do not trust the CSP, they first encrypt their data before sending it. We here focus
on the sharing procedure. At first, Alice uploads a new document, in an encrypted form, to the CSP.
then, she wants to share such document to say Bob, in such a way that the CSP does not learn any
information about the data. Finally, Bob downloads Alice’s document.
Description. In a nutshell, a Proxy Re-Encryption scheme (PRE for short) allows a user to delegate its
decryption capability in case of unavailability. To do so, this user, Alice, computes a re-encryption key
rkA→B which is given to a proxy. The key rkA→B allows the proxy to transform a ciphertext intended
to Alice into one intended to Bob. While doing this, the proxy does not learn any information on
the plaintexts nor any secret key. In the sequel, we focus on (1) unidirectional and (2) single-hop
PRE schemes, which means (1) that with a re-encryption key rkA→B, a proxy cannot translate Bob’s
ciphertexts into ciphertexts intended to Alice and (2) that once a message has been moved into a
ciphertext intended to Bob, no more transformation on the new ciphertext intended to Bob is possible.
Such cryptographic scheme is composed of seven algorithms that have been detailed in D3.1. We
here only recall the main characteristics and inputs/outputs. We recall that κ is a security parameter
giving the size of the parameters and keys that have to be used, and ⊥ denotes an error message. The
parameters param are given on input to all algorithms but, for sake of clarity, we omit them in the
description.

• Setup(κ)→ param.

• KeyGen(param)→ (skA, pkA).

• ReKeyGen(skA, pkB)→ RA→B.

• Enc(pkA,m)→ C.

• ReEnc(rkA→B,C)→ C ′/ ⊥.

• Dec1(skB,C)→ m/ ⊥.

• Dec2(skA,C)→ m/ ⊥.

Within the SUPERCLOUD WP3 architecture, as explained in D3.1, the WP3 proxy is responsible for
the ReKeyGen procedure and the WP3 servers manages the storage of (i) re-encryption keys and (ii)
file meta-data.
We first describe the cryptographic algorithm that is at the core of the implemented PRE scheme. We
then do not give all the mathematical details of the used PRE scheme, but only an overview of the
scheme. We also give the main interactions between the client, the proxy and the server, when a file
is uploaded, shared and finally downloaded.

12.3.2 Cryptographic Basis

A close look on related work shows that unidirectional single-hop schemes are mainly based on the
seminal work by Blaze, Bleumer and Strauss [69], itself based on the ElGamal encryption scheme [154].
For efficiency reasons, we focus on the hash ElGamal encryption scheme (in its IND-CPA version [104]),
which is now given.

Hash ElGamal scheme. Let G = 〈g〉 be a group of prime order p with a multiplicative law, as in the
original paper, and let H be a collision-resistant hash function. The symbol ⊕ denotes the bit-wise or
operation.

SUPERCLOUD D3.2 Page 144 of 182

D3.2 - Specification of security enablers for data management

• Private key x ∈R Z∗p and public key X = gx.

• Encryption1: T1 = m⊕H(gr) and T2 = Xr where r ∈R Z∗p.

• Decryption: m = T1 ⊕H(T
1/x
2).

Proxy Re-Encryption. Based on (hash) ElGamal, Blaze et al. [69] have proposed a bidirectional multi-
hop PRE scheme that can then be transformed into a secure unidirectional and single-hop PRE scheme,
using the technique given in [110, 90]. We do not give the details and refer the reader to the corre-
sponding references.

Conditional PRE. Finally, our construction makes use of a “conditional” PRE [298]. In such variant,
the encryption process is related to a chosen condition γ0, and the re-encryption key is generated under
a condition γ1. Given a decryption key and the condition γ1, one can decrypt as usual. Moreover, if
γ0 = γ1, the re-encryption process outputs a value that can be normally decrypted.
More formally, we have:

c = Enc(pkA,m, γ0) and

rki→j,γ1 = ReKeyGen(ski, pki, pkj , γ1).

If γ0 = γ1, then
Dec1(skj ,ReEnc(rki→j,γ1 , c)) = m

and otherwise, the level 1 decryption process outputs ⊥. A concrete construction can be found
in [298, 89].

12.3.3 Management of a File System

Objective. A standard PRE scheme has an “all or nothing” sharing property. If the re-encryption
key is generated by Alice, then the proxy can re-encrypt for Bob any document initially encrypted to
Alice. There is no way for Alice to restrict what the proxy can re-encrypt or not, except by trusting
it. But if the storage space is structured as a tree (as shown in Figure 12.4), Alice may want to only
share a specific folder, or a specific files, but not all her files.

folder F0

file f0,0

folder F1

file f1,1

file f1,2

file f1,3

folder F2

folder F2,1

file f2,1,1

file f2,1,2

folder F2,2

Figure 12.4: A tree structure

1One may note that the role of the generator g and the public key X are inverted w.r.t. the traditional ElGamal
scheme. This does not compromise the security, and is necessary to obtain a PRE, as shown in [69].

SUPERCLOUD D3.2 Page 145 of 182

D3.2 - Specification of security enablers for data management

?

-

-

--

rkA → B,F2

f2,1,1
Enc

Bob’s device

Alice’s device

f2,1,1
Dec

Enc(pkA, f2,1,1, γF2,1
)

rkF2,1 → F2,A

Enc(pkA, f2,1,1, γF2
)

Enc(pkB , f2,1,1)

Enc(pkA, f2,1,1, γf2,1,1
)

rkf2,1,1 → F2,1,A

Figure 12.5: Re-conditioning principle

Main ideas. For this purpose, one solution is conditional PRE (see above). But this is not enough in
our case. In fact, this can only be helpful to manage a “file by file” sharing, but not a true file system,
since there is no possible link between a file and the folder to which it belongs. The idea, illustrated in
Figure 12.5, is then to manage a two directional conditional PRE, one to go from one folder to another,
and the other to go from one user to another.
We then attach to each uploaded file a unique condition, defined during the encryption process, and
denoted γf2,1,1 for file f2,1,1 for example. We then obtain the ciphertext Enc(pkA, f2,1,1, γf2,1,1), using
Alice’s public key pkA. Knowing γf2,1,1 , Alice, the owner of the file, can easily decrypt it, using her
own private key skA.
Then, if Alice wants to give the rights to e.g. Bob for folder F2, she computes a re-encryption key, from
Alice to Bob, under a condition related to F2, denoted γF2 . Such re-encryption key is denoted rkA→B,F2

and is sent to the proxy to publish the validity of the sharing. It permits a vertical transformation
between users, if and only if the conditions match. Going back to our example, this is not yet the
case since the file is encrypted under condition γf2,1,1 , while the re-encrypted key has been computed
under condition γF2 .
We then add an horizontal transformation inside the file system, using additional re-encryption keys
such as rkf2,1,1→F2,1,A or rkF2,1→F2,A (see Figure 12.5). These keys permit to go back up the tree
from a file to a specific folder by modifying the condition attached to the ciphertext, while preserving
the plaintext and the entity being able to decrypt the resulting ciphertext. As an example, using
the re-encryption key rkf2,1,1→F2,1,A, one can transform the ciphertext Enc(pkA, f2,1,1, γf2,1,1) into the
ciphertext Enc(pkA, f2,1,1, γF2,1). As shown in Figure 12.5, the re-encryption key rkF2,1→F2,A then
permits to obtain Enc(pkA, f2,1,1, γF2), that is the file f2,1,1 encrypted under Alice’s public key pkA
and condition γF2 .
Then, for each couple (file, folder) or (folder, folder) in the path from the file to the root, Alice needs
to compute a re-encryption key (but only once for each link between folders).
Finally, when the encrypted file is related to a condition for which it exists a re-encrypted key rkA→B,F2

from Alice to Bob (in our example Enc(pkA, f2,1,1, γF2)), then the proxy can re-encrypt it into a
ciphertext that can be decrypted by Bob, that is Enc(pkB, f2,1,1) (the condition is withdrawn during
the mathematical transformation).

12.3.4 High Level Specifications

We now give a high level description of the scheme, which can be instantiated using the basic crypto-
graphic scheme given above. The details can be found in [89].

Encryption process. During the encryption step, we use the conditional encryption algorithm, with a
condition γf related to the uploaded/encrypted file f itself. We then obtain

c = Enc(pk, f , γf).

Tree re-encryption key generation. The novelty of this method is that the proprietary of the tree
structure needs to generate a re-encryption key for each edge in the tree, i.e. each link folder-file or

SUPERCLOUD D3.2 Page 146 of 182

D3.2 - Specification of security enablers for data management

folder-folder, as shown in Figure 12.4. Our example in this figure necessitates 10 re-encryption keys,
such as rkA,f0,0→F0 , rkA,F1→F0 or rkA,f2,1,1→F2,1 .
The main aim of these re-encryption keys will be to modify the condition related to the ciphertext
so that it goes from the file to its belonging folder, then to the upper folder and so on until a given
nonce in the tree structure. This should be done without modifying the underlying public key which
has been used to encrypt the file. This will be the role of the user re-encryption key (the “vertical”
one).
More precisely, given a ciphertext c = Enc(pk, f , γf) (as computed above) and a tree re-encryption key
rkA,f→F output by the TReKeyGen(skA, γf , γF) algorithm, we describe a tree re-encryption procedure
TReEnc such that

TReEnc(rkA,f→F , c) = Enc(pk, f , γF). (12.1)

User re-encryption key generation. We consider that Alice wants to share a folder with Bob. For this
purpose, Alice computes a re-encryption key as usual, using a condition dedicated to the file/folder
she wants to share with Bob. For example, if Alice wants to share the folder F2 with Bob, she has to
compute

rkA→B,F2 = UReKeyGen(skA, pkB, γF2).

The main problem is now that it is necessary to modify the condition from the one related to the cipher-
text, to the one related to the rights. This is precisely why such two directional PRE has been designed.

Re-encryption process. Let us suppose that Alice has computed a re-encryption key rkA→B,F2 related
to folder F2 for Bob. We also assume that Bob wants to access the file f2,1,1. As explained above, this
file is encrypted as c = Enc(pkA, f2,1,1, γf2,1,1), for Alice.
If this is not already the case (as it is in our example), the first step of the re-encryption process

ReEnc(rkA→B,F2 , {rkA,f2,1,1→F2,1 , rkA,F2,1→F2}, c)

consists in transforming c into a ciphertext c′ such that

c′ = Enc(pkA, f2,1,1, γF2),

still for Alice. This is done by using the tree re-encryption keys rkA,f2,1,1→F2,1 and rkA,F2,1→F2 , and
the appropriate re-encryption algorithm, as described above in the tree re-encryption key generation
paragraph, especially equation (12.1).
The second step is then the execution of the traditional re-encryption key algorithm, on input c′ and
rkA→B,F2 computed as shown above.
As the conditions match, both equals to γF2 , this re-encryption is now possible. The result is finally
the ciphertext

c′′ = Enc(pkB, f2,1,1).

Decryption process. This is obvious that Bob can decrypt the ciphertext c′′ resulting from the whole
re-encryption procedure to obtain the file f2,1,1 in plain:

f2,1,1 = Dec(skB, c′′).

12.3.5 Sequence Diagrams

In the previous section, we have described each algorithm composing our proxy re-encryption scheme.
We now explain how those algorithms can be used in the WP3 architecture. For sake of simplicity,
we consider that the Setup and KeyGen procedures have already been executed and we now focus on
the file upload, file/folder sharing, and file download. In particular, we consider in the sequel that the
tree re-encryption key generation given above has already been executed (except for the new uploaded
file). We give the whole set of sequence diagrams for both upload and download, even if some parts

SUPERCLOUD D3.2 Page 147 of 182

D3.2 - Specification of security enablers for data management

are quite close to the ones given previously in Figures 12.1 and 12.2.

File upload. This phase (see Figure 12.6) implies the execution of both the encryption process (step
7), and the tree re-encryption key generation for the link “new file/parent folder” (step 8). As in the
general case, the encryption process outputs some meta-data MDf and the encrypted file Cf , each
one sent to the right entity (steps 10 to 13). The new tree re-encryption key is also added to the file
meta-data (within step 12).

Figure 12.6: Upload using proxy re-encryption

File/folder sharing. We next consider the case where Alice wants to share a file or a folder with
Bob. As shown in Figure 12.7, this step implies the execution of the user re-encryption key generation
given above (step 15). The generated re-encryption key is then sent to the SUPERCLOUD WP3
dedicated server (step 19), and the new sharing is also sent to the Cloud Storage Provider (step 17)
to let it know that the sharing exists, and that Bob can access the encrypted file.

File download. We focus on the case Bob wants to access a file owned by Alice, and for which a share
exists. The resulting sequence diagram is given in Figure 12.8. As the file does not belong to Bob, the
WP3 SUPERCLOUD proxy has first to re-encrypt the file (step 10), using the re-encryption process
given previously. For this purpose, the proxy has to request the SUPERCLOUD servers to obtain the
needed re-encryption keys (both tree and user, see step 9). This process only modifies the meta-data
attached to the requested file. The encrypted file itself is simply requested to the corresponding Cloud
Service Provider (steps 6 and 7). At the end of this re-encryption process, the proxy sends back to
Bob the encrypted file and the modified meta-data (step 11). The latter can execute the decryption
process given above (step 12), and obtain the file in clear.

SUPERCLOUD D3.2 Page 148 of 182

D3.2 - Specification of security enablers for data management

Figure 12.7: Sharing using proxy re-encryption

Figure 12.8: Download using proxy re-encryption

12.3.6 A First Implementation

We have implemented a first version of the above scheme, in a smartphone prototype. This is not
the final implementation for SUPERCLOUD and the below figures will be updated during next year.
This only gives a first overview of what will be possible.

Environment. The server side is a standard PC, with an Intel(R) Celeron(R) CPU E3300 at 2.50GHz.

SUPERCLOUD D3.2 Page 149 of 182

D3.2 - Specification of security enablers for data management

0 5 10 15

10

20

30

depth

re
-e

n
cr

y
p

ti
on

ti
m

e
(m

s)

Figure 12.9: Re-encryption execution time per depth

The smartphone is a Samsung Galaxy S3. The implementations have been done in Java language,
with some pre-computations for the cryptographic part.

Cryptographic algorithm. The cryptographic algorithm has been implemented using the elliptic curve
variant of ElGamal, with a 128-bits security curve (namely the brainpool P256r1 one described in the
IETF RFC 5639).
Efficiency. On the server/proxy side, the re-encryption process is related to the depth of the tree
between the requested file and the shared folder (for example, in Figure 12.4, the depth between file
f2,1,1 and folder F0 is equal to 3). With our experiment, we obtain a quasi-linear relation between the
depth and the execution time, as shown in Figure 12.9.
From the smartphone’s point of view, the decryption process is also close to a linear function in the
tree depth. For a depth equal to 3, the decryption is done in less than 30 ms. With a depth of 15, we
have nearly 120 ms. Other computations can be done in less than 10 ms and are independent in the
depth of the file in the tree. The exact values are given in Table 12.1, for a depth equals to 3.

operation time (in ms)

encryption 7.5
user re-encryption key generation 7.0
tree re-encryption key generation 8.0
decrypt with file rights 9.0
decrypt with upper folder rights 27.0

Table 12.1: Implementation results (for a depth = 3)

12.4 Attribute-based encryption

Another way to share data is to associate to each file an access control policy based on user’s attributes.
In case the data are encrypted, this is made possible by using a so-called attribute based encryption
scheme, as explained in D3.1. We now focus on the way such cryptographic can be used in the context
of SUPERCLOUD.

SUPERCLOUD D3.2 Page 150 of 182

D3.2 - Specification of security enablers for data management

12.4.1 Attribute-Based Encryption in a Nutshell

Motivation. We consider a group wishes to put in place a system for its members, so that they can store
and share sensitive documents, using a non-trusted Cloud Service Provider for storage. Each member
of the group is first given some attributes, such as his/her role within the group (medical doctor, IT
professional, ...), his/her living/working place, ... Based on that, an attribute-based encryption (ABE)
scheme gives to anyone the possibility to encrypt and upload to the CSP a document, by choosing
an access control policy related to attributes. Finally, if the attributes of a group member verify the
access control policy embedded in the ciphertext, he/she will be able to decrypt the data. The Cloud
Service Provider does not learn any information about the data in clear.
Description. Attribute-based encryption is an extension of traditional public key encryption in which
the encryption and decryption phases are based on user’s attributes. More precisely, we focus on
ciphertext-policy ABE (CP-ABE) where the secret-key is associated to a set of attributes and the
ciphertext is generated with an access policy. It then becomes feasible to decrypt a ciphertext only
if one’s attributes satisfy the used access policy. In this deliverable, we focus on Conjunctive Normal
Form (CNF, i.e., with conjunctions (AND) of disjunctions (OR)) access policies.
An ABE scheme is composed of four algorithms, as detailed in D3.1. We here only recall the main
characteristics and inputs/outputs, where κ is a security parameter and ⊥ is the error message. As
for PRE schemes, the parameters param are implicitly on input to all algorithms.

• Setup(κ)→ (param,msk, ek,B).

• KeyGen(msk,B(u))→ (sku).

• Enc(ek,m,A)→ (C,Hdr).

• Dec(Hdr), sku,B(u)→ m/ ⊥.

We recall that B is the set of all possible client’s attributes, u is a user having a set of attributes
B(u) ⊂ B, and A is the access policy attached to the ciphertext.
Within the SUPERCLOUD WP3 architecture, the WP3 proxy is responsible for the KeyGen proce-
dure and the WP3 servers manage the storage of file meta-data. Again, we now only sketched the
cryptographic solution that is used. Details can be found in [91].

12.4.2 Main Ideas of the Scheme

The construction given in this document is based on two techniques. At first, we make use of the
Junod-Karlov idea [187] to fight against attribute collusion (two users putting together their attributes
to access a protected file each of them is not allowed to access alone). Secondly, we integrate the
techniques from the multi-channel broadcast encryption (MCBE) scheme in [260] to obtain a ciphertext
with a constant size. Note that the ideas in [187] and [260] are constructed from Boneh-Gentry-Waters
(BGW) scheme [71].
More precisely, in [71], each element of the header has the form(

gr, (v ·
∏
j∈βk

gn+1−j)
r
)

,

where r is a random integer, and g, v and the gj ’s are public group elements. Note that the proposed
scheme inherits the use of a bilinear setting [153].
In the Junod-Karlov scheme [187], the authors manage to transform many instances of the BGW
scheme [71] to an attribute-based encryption scheme, such that one instance of the BGW scheme
corresponds to one clause in the CNF access policy. The resulting attribute-based encryption scheme
then contains m BGW instances where m is the maximal number of clauses in the CNF access policy.

SUPERCLOUD D3.2 Page 151 of 182

D3.2 - Specification of security enablers for data management

However, this leads to a ciphertext with m + 1 parts. More precisely, for a CNF access policy A =
β1 ∧ · · · ∧ βm, each component βk, k ∈ [m], is related to a BGW header as(

grtk , (vr
∏
j∈βk

grn+1−j)
tk
)

.

In the MCBE scheme given in [260], the authors introduce a technique to multiply many BGW instances
in one single value in order to support the new property of multi-channel for broadcast encryption.
For this purpose, they introduce new integers xj and provide a unique header given by

(
gr,

m∏
k=1

(v ·
∏
j∈βk

gn+1−j)
r+

∑
j∈βk

xj
)

.

Inspired by the technique given in [260], we manage to multiply the m instances of the BGW schemes
to achieve an ABE scheme with constant-size ciphertext. The resulting ABE scheme therefore inherits
the properties of the MCBE scheme, especially regarding compactness and security.

12.4.3 Sequence Diagrams

The sequence diagrams that are implemented for an ABE scheme are the ones given in Figures 12.1
and 12.2. We here only give some additional information.

Key generation. We notice that one can quite naturally adapt the techniques given in [59] and [103]
to distribute the role of the central authority, managing msk, into several independent entities. This
way, no external entity can know the secret keys sku of users.

File upload. The main point here is that the meta-data should include the header Hdr output by the
ABE encryption process.

File download. Regarding the download phase, the client has to execute the ABE decryption phase
and, if it has the correct attributes, its secret key sku would be able of decrypting the file and obtaining
it in clear.

12.5 Conclusion

In this chapter, we have specified cryptographic tools that can be used to securely share data that are
stored in an untrusted Cloud Service Provider. The aim of these tools is to let the user control his/her
data by encrypting them before the upload. Then, the data can be shared, without needing to trust
the CSP. In SUPERCLOUD, we propose two ways to proceed.

• Proxy re-encryption scheme permits to share the data with other users, by using their identities.
Such solution is very mature and can easily be integrated into an existing platform. On client’s
side, there are two options. At first, a SUPERCLOUD library can be directly added to the
end-user front-end. Such library is responsible for all cryptographic operations and requests to
the SUPERCLOUD proxy. In this case, the front-end should implement the interface with the
library. In the second option, the encryption/decryption components are also embedded in a
specific Virtual Machine (SUPERCLOUD proxy and server), and the front-end has to request it
to perform cryptographic operations. On that component, a first implementation has been done
(see figures in Section 12.3.6) and the final version will be ready at the beginning of 2017.

• Attribute-based encryption scheme permits to share the stored data by using users’ attributes.
In this case, the solution that should be used depends on the context since it gives the kind
(and number) of attributes that are needed, but also the kind of access control policy that

SUPERCLOUD D3.2 Page 152 of 182

D3.2 - Specification of security enablers for data management

should be implemented (for example, the above specification is designed for CNF types access
control policies). Besides, the integration of an ABE is quite similar to the one of a PRE and the
two options are possible for the encryption/decryption processes. The implementation has just
strated and we do not yet have figures. The components will be ready by mid 2017.

SUPERCLOUD D3.2 Page 153 of 182

D3.2 - Specification of security enablers for data management

Chapter 13 Data Anonymization

In order to preserve individual’s privacy while releasing personal data, anonymization techniques are
commonly used to guarantee that the data subject can no longer be identified. Working on sensitive
data requires therefore data anonymization. For that reason, datasets are processed in such a way
that no inference in respect to user’s identity can be made or rather assign revealed data to a natural
person. There are several techniques known that can be applied to achieve data anonymization, such
as Perturbation, Encryption of personally identifiable information or k-anonymity including among
others Generalization. Within SUPERCLOUD we mainly focused on k-anonymity concerning data
anonymization as already mentioned in the previously released SUPERCLOUD deliverable D3.1 [308].
Therefore, data anonymization, especially k-anonymity, was determined as a part of an alternative
architecture approach. For this architecture proposal, k-anonymity was selected as an additional se-
curity component in combination with Multi-Party Computation (MPC). The combination of MPC
with k-anonymity prevents from storing data in plaintext inside one of the SUPERCLOUD servers. If
any data are needed, such as for statistical purposes (for a read-only recipient), the data anonymiza-
tion (k-anonymity) will be performed. More precisely, when the data shares (produced by MPC)
are re-computed again, the anonymization of the records will take place directly after to avoid that
an adversary sees a plain record. This anonymization is performed on the side of SUPERCLOUD’s
architecture, as shown in Figure 13.1.

Figure 13.1: Modified WP3 architecture based on MPC and k-anonymity [308]

Within this chapter, we will go into detail on k-anonymity and related algorithms in order to set-up
a basis for the upcoming implementation work within the next deliverable D3.3 of SUPERCLOUD.

SUPERCLOUD D3.2 Page 154 of 182

D3.2 - Specification of security enablers for data management

13.1 K-anonymity

The focus of anonymization lies on the irreversibility of the released sensitive data. In order to release
data without any disclosure of sensitive information, several techniques, such as Generalization (remove
specificity by replacing an attribute by a more general value), Perturbation (change data of record in
a statistically insignificant way), Encryption of personally identifiable information or k-anonymity, are
commonly used. As already mentioned, within this chapter we will mainly focus on k-anonymity, as
this is among the most relevant anonymization technique for the SUPERCLOUD use cases dedicated
to health services and their data anonymization.
In general, data may contain different kind of attributes/identifiers: explicit identifiers (clearly identify
individuals, e.g. by name), sensitive attributes (e.g. salary, disease) and quasi-identifiers (attributes
in combination could lead to data disclosure / re-identification).
The main goal of k-anonymity is to enable the opening of data, where each record is indistinguishable
from at least k − 1 other records with respect to the quasi-identifier (QI). This implies that the
anonymity of the released data is satisfied, if each sequence of values k in the respective data table
occurs at least k-times. In this case, the k can be replaced by an integer. Therefore, if a 4-anonymity
was reached, it implies that the attributes representing the quasi-identifier can be found in at least
four rows.
K-anonymity itself is comprised by the already introduced anonymization technique Generalization
and the so-called Suppression method. While the former is responsible for the generalization of the
quasi-identifier attributes with less specific values until k-identical values are reached, the latter is
deleting uniquely identifying attributes (explicit identifiers), like names among others, in order to
avoid information disclosure.

Table 13.1 demonstrates briefly the principle of k-anonymity based on generalization and suppression
performed on sample health data. In the ensuing table, the quasi-identifier is composed of age,
gender and ZIP code. While table (a) represents the plain health data including explicit identifiers
(first and last name of patient), which would reveal sensitive information of patients in case of data
opening, table (b) depicts the anonymized health data based on the chosen quasi-identifier. In detail,
suppression (eliminating of the explicit identifier Name) and a generalization (of age and ZIP code)
was performed. As seen in table (b), age as well as ZIP code was generalized by one level in order
to avoid the irreversibility and provide privacy-preserved data with minimal information loss. Within
this anonymization example, the maximal anonymity amounts k = 2, as it is implied by the definition
of k-anonymity, respectively the occurrence of the sequence of values.

Table 13.1: Usage of k-anonymity on untreated plain health data (a) by means of a quasi-identifier
QI = [age, gender, ZIP code], which results in a 2-anonymity, seen in table (b)

Name Age Gender ZIP Code Objection

Damien Luongo 26 Male 22145 Short Breath

Jamar Rollinson 28 Male 22147 Chest Pain

Indira Lindon 28 Female 22131 Hypertension

Lizette Atchison 25 Female 22133 Hypertension

Rhonda Paisley 41 Female 22133 Obesity

Carie Casselman 44 Female 22135 Chest Pain

Deeann Goldschmidt 63 Male 22131 Chest Pain

Charles Hardegree 62 Male 22131 Obesity

Eddy Luedtke 60 Male 22132 Short Breath

Casandra Padro 15 Female 22144 Chest Pain

Kerstin Fullerton 18 Female 22143 Chest Pain

(a) Plain health data

Tuple Age Gender ZIP Code Objection k

t1
25-49 Male 2214* Short Breath

2
25-49 Male 2214* Chest Pain

t2

25-49 Female 2213* Hypertension

4
25-49 Female 2213* Hypertension

25-49 Female 2213* Obesity

25-49 Female 2213* Chest Pain

50-74 Male 2213* Chest Pain

t3 50-74 Male 2213* Obesity 3

50-74 Male 2213* Short Breath

t4
0-24 Female 2214* Chest Pain

2
0-24 Female 2214* Chest Pain

(b) Anonymized health data

SUPERCLOUD D3.2 Page 155 of 182

D3.2 - Specification of security enablers for data management

The figures presented below (Figure 13.2 and 13.3) represent a step-by-step generalization of the
attributes age, gender and ZIP code based on the previous depicted data in Table 13.1. Figure 13.2
depicts the generalization of the attribute age, whereby the values are incrementally generalized three
times until the highest level of the generalization (total generalization) is reached (age 0-99). Whereas
the attribute gender can only be generalized once. However, the attribute ZIP code, a five-digit
zip-code, is generalized five times until the total generalization is reached. As a result of this, there
are two main noticeable generalization types: on the one hand, an incremental generalization of the
age, whereby the value is generalized into a more general range of values (ages), as it can be seen in
Figure 13.2. On the other hand, a sequential generalization, which represents a replacement of the
last non-generalized character of the attribute, as seen in Figure 13.3.

0-99

0-49

0-24

0 1 2 3 · · · 24

25-49

...

50-99

...

...

Figure 13.2: 3-stage incremental generalization of the attribute age

*

Male Female

2****

22***

221**

2213*

22138 22139

2214*

22145 22147

25***

253**

...

...

254**

...

...

3****

...

...

...

...

(a) Gender generalization (b) ZIP code generalization

Figure 13.3: Sequential generalization of the attributes gender and ZIP-code respectively

13.1.1 Detailed Procedure

The principle and procedure of anonymization, respectively the generalization of a data table, is
straightforward. First of all, the quasi-identifier, based on various attributes, has to be selected. Upon
this, the generalization of the data table can be done (on the basis of the quasi-identifier) and a so-
called lattice can be built. The lattice represents stepped generalization of the data in the form of a
node list. A graphical representation of a lattice based on the health data depicted in Table 13.1 and
the quasi-identifier QI = [Age, Gender, ZIP Code] can be seen below in Figure 13.4. The lattice itself
is based on the generalization of each attribute, which composes the quasi-identifier. The top node of
the lattice represents the total anonymization, whereas the data, respectively the value behind, does
not contain useful information anymore. The lattice is an important tool within the generalization
to find the globally optimal solution with minimal information loss. There are so-called cost metrics

SUPERCLOUD D3.2 Page 156 of 182

D3.2 - Specification of security enablers for data management

available in order to select the optimal solution, described in detail in section 13.2. As the traverse of
the lattice represents the costly part of the anonymization procedure, there exist several algorithms,
which traverse and prune efficiently the lattice in order to find the globally optimal solution. The most
efficient algorithm is the Optimal Lattice Anonymization [143] algorithm and is described in detail in
section 13.3.

Figure 13.4 represents the lattice based on the plain health data depicted in Table 13.1 composed
on the basis of the quasi-identifier QI = [Age, Gender, ZIP Code]. In order to compose completely
a lattice, it is important to generalize each quasi-identifier attributes until its total anonymization is
achieved.

(3, 1, 5)Level 9:

(3, 1, 4) (3, 0, 5) (2, 1, 5)Level 8:

(3, 1, 3) (3, 0, 4) (2, 1, 4) (2, 0, 5) (1, 1, 5)Level 7:

(3, 1, 2) (3, 0, 3) (2, 1, 3) (2, 0, 4) (1, 1, 4) (1, 0, 5) (0, 1, 5)Level 6:

(3, 1, 1) (3, 0, 2) (2, 1, 2) (2, 0, 3) (1, 1, 3) (1, 0, 4) (0, 1, 4) (0, 0, 5)(5)Level 5:

(3, 1, 0) (3, 0, 1) (2, 1, 1) (2, 0, 2) (1, 1, 2) (1, 0, 3) (0, 1, 3) (0, 0, 4)(4)Level 4:

(3, 0, 0) (2, 1, 0) (2, 0, 1) (1, 1, 1) (1, 0, 2) (0, 1, 2) (0, 0, 3)(3) (3)Level 3:

(2, 0, 0) (1, 1, 0) (1, 0, 1) (0, 1, 1) (0, 0, 2)(2) (2)Level 2:

(1, 0, 0) (0, 1, 0) (0, 0, 1)(1) (1) (1)Level 1:

(0, 0, 0)(0) (0) (0)Level 0:

[Age] [Gender] [ZIP Code] [Age, Gender, ZIP Code]

Figure 13.4: Composition of a lattice based on the quasi-identifier QI = [Age, Gender, ZIP Code]

13.2 Cost Metric

The more the data will be generalized, the higher will be the information loss. Hence to keep the loss
of information as low as possible, so-called cost metrics are used for the measurement of information
loss. There are several metrics known, such as the distance measurement proposed by Samarati [275]
and precision cost metric published in [293] by Sweeney. According Samarati’s distance cost metric,
the optimal solution is given by the node with the lowest lattice height. However, this solution does
not constitute a good cost metric for information loss measurement, because it does not account for

SUPERCLOUD D3.2 Page 157 of 182

D3.2 - Specification of security enablers for data management

the generalization hierarchy depths of the QIs. On the contrary, the precision cost metric by Sweeney
considers the height and depth of the generalization hierarchy. Therefore, the ratio of the number of
applied generalization steps to the total number of (possible) generalization steps will be calculated
in order to provide the precision for a specific generalization. The ratio for the precision cost metric
for QI = [QI1, ...,QIn] is calculated as follows:

Prec (QI1, ...,QIn) = (Level [QI1] / Max [QI1] + ... + Level [QIn] / Max [QIn]) / n

As a result, the precision of the first bottom node or rather the start node is zero, respectively the
information loss is 0%, whereas the precision of the top node is one, respectively the information loss
is 100%. This implies that the higher the precision of a node is, the greater the information loss (or
equivalently the lower the precision the lesser the information loss).

13.3 Optimal Lattice Anonymization Algorithm

Besides the main goal of k-anonymity concerning the de-identification of data, the focus lies on the
search of the optimally generalized node that satisfies the k-anonymity with minimal information
loss (or with maximal information content respectively). Since the seminal paper of Sweeney [293]
concerning the invention of k-anonymity, several improvements were proposed, such as an algorithm
provided by Samarati [275] and the optimized approach called Optimal Lattice Algorithm (OLA) [143]
of few years later. The OLA approach was proposed by El Emam et al. in 2009 and is based on the
divide-and-conquer technique in order to divide a lattice into smaller sub lattices. By means of binary
search, the OLA algorithm is used to find optimal nodes (k-minimal nodes) for each sub-lattices,
while keeping the efficiency high and information loss low. The particular optimization in contrast to
previously proposed algorithms is the usage of predictive tagging to prune parts of the search space.
The OLA algorithm proceeds in three steps:

1. Choose a path (sub-lattice), whereby all generalizations of the path are untagged

2. Apply binary search on the sub-lattice in order to find the local optimal k-anonymous node and
store all located k-minimal nodes.

3. Compare all located k-minimal nodes concerning their precision cost metric in order to select
the globally optimal solution with the smallest information loss

The pseudo code Algorithm 13 covers the main procedure of the above-described Optimal Lattice
Anonymization algorithm in an abstract way. Based on the three steps of the OLA algorithm, Algo-
rithm 13 is composed of three separated functions.
The first function getGloballyOptimalSolution requires the lattice built previously as input, which
represents in general a bottom-up generalization of the data. Further on, the chosen k, respectively the
minimum anonymization, which has to be reached in order to open the data without de-identification,
is necessary.
The function is based on two loops. While the first loop iterates over all levels of the provided lattice
in order to call the function findPath as well as the function findKMinimalNodes, the second loop
iterates over all found k-minimal nodes to get the globally optimal solution, which constitutes the
returning value of this function. As a result, the first loop of this algorithm embraces the first two
steps of the OLA algorithm procedure as described in the section above.
The final outcome of this function is the globally optimal solution for the provided lattice and is
represented in the form of a specific node, which satisfies the k-anonymity while minimal information
loss.

SUPERCLOUD D3.2 Page 158 of 182

D3.2 - Specification of security enablers for data management

The function findPath is responsible for finding a path within the lattice, where all generalizations
of this path are not classified or untagged. If the transferred node (as parameter) is not already the
end of the lattice, then this node will be added into the path-nodelist. Further on, by means of the
function getNextNode, the next untagged node for a given node within the lattice will be returned.
As the lattice has to be traversed completely in order to select a path successfully, the algorithm calls
itself in a recursive way to finally return the path.
The last function findKMinimalNodes within the OLA Algorithm 13 is used in order to find all k-
minimal nodes, which in turn are needed to determine the globally optimal solution by means of
precision metric. As mentioned in the previous paragraph, the Optimal Lattice Anonymization algo-
rithm is using the binary search that constitutes the core of the findKMinimalNodes function below.
Furthermore, the focus of this function lies in the decision-making process concerning the level of the
anonymization. To be more accurate, the function is responsible for the validation, if the transferred k
equals the anonymization of the entrance node or not. Based on the following two decisions, different
action points are triggered:

• If the node on the entrance level (calculated by means of binary search) is equal or greater than
chosen and transferred k, then:

– Store the actual node on the entrance level as a possible k-minimal solution for this path

– Perform predictive tagging on all generalizations above the entrance node up to the top
(end) of the path

– Recursive function-call with the lower part of the path up to the node on the entrance level
in order to check, if there is a better k-minimal solution with less information loss there

• If the node on the entrance level (calculated by means of binary search) is less than chosen and
transferred k, then:

– Perform predictive tagging on all pre-generalizations below the entrance node down to the
bottom (beginning) of the path

– Recursive function-call with the upper part of the path up to the end node of the path in
order to prune further parts of the path

Figure 13.5 below sums up the subject matter of the k-anonymity principle including the cost metric
calculation and the described OLA algorithm. It illustrates the calculated precisions as well as the
degree of anonymity for each node up to the 3rd level of the depicted lattice (Figure 13.4) based on the
provided health data (Table 13.1). If we take only the first three levels into consideration and proceed
with the assumption that we only accept anonymity 2 and higher, the following four nodes will be
selected by the OLA algorithm as the possible k-minimal nodes, respectively as the candidates for
the optimal solution of the given lattice: (1, 0, 1); (2, 0, 1); (1, 1, 1); (1, 0, 2). In further consequence,
the calculated precision of the k-minimal nodes is crucial for the further procedure of the algorithm.
Therefore, the node with the lowest precision, respectively with the lowest information loss, will be
selected by the algorithm as the globally optimal solution. In case of the given lattice, the globally
optimal solution is represented by the node (1, 0, 1), as seen highlighted in Figure 13.5. On closer
examination, Table 13.1 depicts the result of a 2-anonymity data anonymization, whereby the QI is
represented by the resulting globally optimal solution node (1, 0, 1), which results in turn in a one-step
incremental generalization of the attribute age as well as a one-step sequential generalization of the
attribute ZIP code.

SUPERCLOUD D3.2 Page 159 of 182

D3.2 - Specification of security enablers for data management

(3, 1, 5)

100%, k=11
Level 9:

...
...

...
...

...
...

...
...

(3, 0, 0)

33%, k=1

(2, 1, 0)

56%, k=1

(2, 0, 1)

29%, k=2

(1, 1, 1)

51%, k=2

(1, 0, 2)

24%, k=2

(0, 1, 2)

47%, k=1

(0, 0, 3)

20%, k=1
Level 3:

(2, 0, 0)

22%, k=1

(1, 1, 0)

44%, k=1

(1, 0, 1)

18%, k=2

(0, 1, 1)

40%, k=1

(0, 0, 2)

13%, k=1
Level 2:

(1, 0, 0)

11%, k=1

(0, 1, 0)

33%, k=1

(0, 0, 1)

7%, k=1
Level 1:

(0, 0, 0)

0%, k=1
Level 0:

[Age, Gender, ZIP Code]

Figure 13.5: Graphical representation of a globally optimal solution assuming a 2-anonymity based on
the quasi-identifier QI = [Age, Gender, ZIP Code] considering only first three levels of lattice

SUPERCLOUD D3.2 Page 160 of 182

D3.2 - Specification of security enablers for data management

Algorithm 13: Optimal Lattice Anonymization (OLA) Algorithm

1 Function getGloballyOptimalSolution (Lattice lattice, Number k) begin
input : lattice, kth anonymity
output: globally optimal solution

2 path ← new NodeList
3 kMinimalNodes ← new List
4 potentialSolution ← new Node
5 highestPrecision ← new Double
6 globalOptimalSolution ← new Node
7 startNode ← lattice.firstElement

8 foreach level in lattice.level do
9 path ← findPath (lattice, startNode, path)

10 kMinimalNodes.add (findKMinimalNodes (path, k, path.firstElement, path.lastElement,
potentialSolution))

11 startNode ← getNextNode (startNode)

12 foreach node in kMinimalNodes do
13 precision ← calcPrecision (node)
14 if precision > highestPrecision then
15 highestPrecision ← precision
16 globalOptimalSolution ← node

17 return globalOptimalSolution

18 Function findPath (Lattice lattice, Node startNode, NodeList path) begin
input : lattice, start node, path (sub-lattice)
output: untagged path (sub-lattice)

19 if startNode 6= lattice.endNode AND !startNode.tagged then
20 path.add (startNode)
21 nextNode ← getNextNode (startNode)
22 return findPath (lattice, nextNode, path)

23 else
24 return path

25 Function findKMinimalNodes (NodeList path, Number k, Node startNode, Node endNode,
Node potentialSolution) begin

input : path (sub-lattice), k, start node, end node, potential solution (initially null)
output: k-minimal solution for given path

26 entranceLevel ← b (startNode.level + endNode.level) / 2 c
27 if path.node [entranceLevel].anonymity ≥ k then
28 potentialSolution = path.node [entranceLevel]
29 predictiveTagging (path, path.node [entranceLevel + 1], path.lastElement)
30 return findKMinimalNodes (path, k, startNode, path.node [entranceLevel],

potentialSolution)

31 else if path.node [entranceLevel].anonymity < k then
32 predictiveTagging (path, startNode, path.node [entranceLevel])
33 return findKMinimalNodes (path, k, path.node [entranceLevel + 1], path.lastElement,

potentialSolution)

34 return potentialSolution

SUPERCLOUD D3.2 Page 161 of 182

D3.2 - Specification of security enablers for data management

13.4 Conclusion

In this chapter we have presented an in-depth look into the subject matter of data anonymization
techniques, especially of those of k-anonymity. The main goal of data anonymization is defined by
the irreversibility while releasing sensitive data. Therefore, anonymization techniques, such as k-
anonymity, have to be applied on the plain data in order to avoid any information disclosure and
preserve the individual’s privacy while data opening. Generalization of the quasi-identifier attributes
and suppression of explicit identifiers constitutes the basis of k-anonymity. K-anonymity was already
introduced briefly and established as a part of an alternative architecture approach in D3.1 [308].
Through the application of k-anonymity, anonymized data can be provided to read-only users without
revealing any sensitive information.
There are several algorithms known in order to traverse a lattice. The lattice itself depicts the result of
a step-by-step generalization of the attributes representing the quasi-identifier. Among others, we have
described the Optical Lattice Anonymization algorithm invented by El Emam et al. [143]. The OLA
algorithm represents the most efficient algorithm concerning lattice traversal, which is generally based
on the divide-and-conquer technique. The decision-making process is in turn based on the previously
described precision cost metric calculation proposed by Sweeney [293].
The described OLA algorithm 13 and the related and depicted pseudo code in section 13.3 should state
a clear basis for the upcoming implementation work within the next deliverable. The consequent pro-
totype will be interconnected with the determined SUPERCLOUD architecture and its cloud storage
principle.

SUPERCLOUD D3.2 Page 162 of 182

D3.2 - Specification of security enablers for data management

Chapter 14 Conclusion and Future Work

In this deliverable we have presented the security and dependability components for SUPERCLOUD
data management solution. The deliverable first defined novel components pertaining to state-machine
replication, which will be used to replicate critical pieces of SUPERCLOUD metadata across multiple
clouds, orchestrated with Hyperledger fabric. Then, we covered SUPERCLOUD distributed storage
solutions which will be used use to manage bulk data. These solutions will be orchestrated around
Janus user-centric multi-cloud storage. Finally, the third part describes advanced data security com-
ponents, focusing, in particular on data privacy techniques. These components are envisioned to be
used orthogonally within Janus and Hyperledger fabric. The deliverable also provides a high level
overview on planned integration.

Whenever the state of maturity of our prototypes allowed so, we included detailed benchmarks and
evaluation of proposed components. Several components described in this deliverable have already
been published in top research conferences.

As future work, we will be working towards integrating a subset of these components into a proof-of
concept prototype (D3.3, M28) and the final prototype (D3.4, M36). Along the way we will be refining
and updating our designs and solutions and considering their mutual integration as well as integration
with other work packages.

SUPERCLOUD D3.2 Page 163 of 182

D3.2 - Specification of security enablers for data management

Bibliography

[1] TPC-C Benchmark: http://tpc.org.

[2] Amazon S3. http://aws.amazon.com/s3/.

[3] Amazon S3 pricing. https://aws.amazon.com/s3/pricing/.

[4] BenchmarkSQL. https://bitbucket.org/openscg/benchmarksql.

[5] bft-smart. http://code.google.com/p/bft-smart/.

[6] Cassandra documentation. http://www.datastax.com/documentation/cassandra/2.0/

cassandra/gettingStartedCassandraIntro.html.

[7] CockroachDB Design Document. https://github.com/cockroachdb/cockroach/blob/

master/docs/design.md.

[8] DepSky webpage. http://cloud-of-clouds.github.io/depsky/.

[9] FUSE-J. http://fuse-j.sourceforge.net/.

[10] Google storage. https://developers.google.com/storage/.

[11] HydraBase – The evolution of HBaseFacebook. https://code.facebook.com/posts/

321111638043166/hydrabase-the-evolution-of-hbase-facebook/.

[12] Java TPC-C. https://github.com/AgilData/tpcc.

[13] Kryo - Java serialization and cloning: fast, efficient, automatic. https://github.com/

EsotericSoftware/kryo.

[14] Microsoft Azure Site Recovery. https://azure.microsoft.com/en-us/services/

site-recovery/.

[15] MWMR-registers webpage. https://github.com/cloud-of-clouds/mwmr-registers/.

[16] MySQL - The InnoDB Storage Engine. http://dev.mysql.com/doc/refman/5.7/en/

innodb-storage-engine.html.

[17] MySQL 5.7 documentation. http://dev.mysql.com/doc/refman/5.7/en/.

[18] MySQL replication. http://dev.mysql.com/doc/refman/5.7/en/replication.html.

[19] PostgreSQL. http://www.postgresql.org/.

[20] PostgreSQL Documentation. http://www.postgresql.org/docs/.

[21] Rackspace cloud files. http://www.rackspace.co.uk/cloud/files.

[22] Softlayer Cloud Storage. http://www.softlayer.com/Cloud-storage/.

SUPERCLOUD D3.2 Page 164 of 182

http://aws.amazon.com/s3/
https://aws.amazon.com/s3/pricing/
https://bitbucket.org/openscg/benchmarksql
http://www.datastax.com/documentation/cassandra/2.0/cassandra/gettingStartedCassandraIntro.html
http://www.datastax.com/documentation/cassandra/2.0/cassandra/gettingStartedCassandraIntro.html
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
http://cloud-of-clouds.github.io/depsky/
http://fuse-j.sourceforge.net/
https://developers.google.com/storage/
https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
https://github.com/AgilData/tpcc
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://azure.microsoft.com/en-us/services/site-recovery/
https://azure.microsoft.com/en-us/services/site-recovery/
https://github.com/cloud-of-clouds/mwmr-registers/
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/
http://dev.mysql.com/doc/refman/5.7/en/replication.html
http://www.postgresql.org/
http://www.postgresql.org/docs/
http://www.rackspace.co.uk/cloud/files
http://www.softlayer.com/Cloud-storage/

D3.2 - Specification of security enablers for data management

[23] The rsync algorithm. http://rsync.samba.org/tech_report/tech_report.html.

[24] VMware vCloud Air Disaster Recovery.
https://www.vmware.com/cloud-services/infrastructure/

vcloud-air-disaster-recovery.

[25] Zmanda recovery manager for MySQL. http://www.zmanda.com/.

[26] Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32, 2010.

[27] Notesecure image retrieval thros on non-interactive secure comparison in image feature extraction
in the encrypted domain with privacy-preserving sift. 2014.

[28] Business continuity trends and challenges 2016. http://www.

continuitycentral.com/index.php/news/business-continuity-news/

776-business-continuity-trends-and-challenges-2016, January 2016.

[29] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos: opti-
mal resilience with Byzantine shared memory. Distributed Computing, 18(5), 2006.

[30] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. RACS: A case for cloud
storage diversity. SoCC, 2010.

[31] Atul Adya et al. Farsite: Federated, available, and reliable storage for an incompletely trusted
environment. In OSDI, 2002.

[32] M. Aguilera, B. Englert, and E. Gafni. On using network attached disks as shared memory. In
Proc. of the PODC, 2003.

[33] James Alderman, Christian Janson, Carlos Cid, and Jason Crampton. Access Control in Publicly
Verifiable Outsourced Computation. In Proc. ASIACCS, 2015.

[34] Bowen Alpern and FredB. Schneider. Recognizing safety and liveness. Distributed Computing,
2(3):117–126, 1987.

[35] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage.
Steward: Scaling Byzantine fault-tolerant replication to wide area networks. IEEE Transactions
on Dependable and Secure Computing, 7(1):80–93, 2010.

[36] Y. Amir and A. Wool. Evaluating quorum systems over the internet. In Proc. of the 26th Int.
Symposium on Fault-Tolerant Computing, 1996.

[37] Yair Amir, Brian A. Coan, Jonathan Kirsch, and John Lane. Prime: Byzantine replication under
attack. IEEE Transactions on Dependable and Secure Computing, 8(4):564–577, 2011.

[38] Prabhanjan Ananth, Nishanth Chandran, Vipul Goyal, Bhavana Kanukurthi, and Rafail Ostro-
vsky. Achieving Privacy in Verifiable Computation with Multiple Servers - Without FHE and
without Pre-processing. In Proceedings of PKC, 2014.

[39] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli,
and Randolph Y. Wang. Serverless network file systems. ACM Trans. on Computer Systems,
14(1):41–79, February 1996.

[40] Tal Anker, Danny Dolev, Gregory Greenman, and Ilya Shnayderman. Evaluating total order
algorithms in WAN. In In Proc. of the Int. Workshop on Large-Scale Group Communication,
2003.

SUPERCLOUD D3.2 Page 165 of 182

http://rsync.samba.org/tech_report/tech_report.html
https://www.vmware.com/cloud-services/infrastructure/
vcloud-air-disaster-recovery
http://www.zmanda.com/
http://www.continuitycentral.com/index.php/news/business-continuity-news/776-business-continuity-trends-and-challenges-2016
http://www.continuitycentral.com/index.php/news/business-continuity-news/776-business-continuity-trends-and-challenges-2016
http://www.continuitycentral.com/index.php/news/business-continuity-news/776-business-continuity-trends-and-challenges-2016

D3.2 - Specification of security enablers for data management

[41] Anonymous. Details omitted for double-blind reviewing. Reviewers can obtain a copy through
USENIX OSDI 2016 Program Chairs. Technical report.

[42] ARM. ARM security technology – Building a secure system using TrustZone
technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/

PRD29-GENC-009492C_trustzone_security_whitepaper.pdf, 2009.

[43] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1), 1995.

[44] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić.
The next 700 BFT protocols. ACM Trans. Comput. Syst., 32(4):12:1–12:45, January 2015.

[45] Shai Avidan and Moshe Butman. Blind vision. In 9th European Conference on Computer Vision,
ECCV, 2006.

[46] Y. Bai, L. Zhuo, B. Cheng, and Y. F. Peng. Surf feature extraction in encrypted domain. In
IEEE International Conference on Multimedia and Expo, ICME, 2014.

[47] Peter Bailis and Kyle Kingsbury. The network is reliable: An informal survey of real-world
communications failures. ACM Queue, 2014.

[48] Sumeet Bajaj and Radu Sion. Trusteddb: A trusted hardware-based database with privacy and
data confidentiality. In IEEE Transactions on Information Forensics and Security, 2014.

[49] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson, Jean-
Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In Proceedings of the Conference on Innovative
Data system Research (CIDR), pages 223–234, 2011.

[50] Omar Bakr and Idit Keidar. Evaluating the running time of a communication round over the
internet. In Proceedings of the 21st Symposium on Principles of Distributed Computing, 2002.

[51] Omar Bakr and Idit Keidar. On the performance of quorum replication on the internet. Technical
report, EECS Department, University of California, Berkeley, 2008.

[52] M. Barni, P. Failla, R. Lazzeretti, A. R. Sadeghi, and T. Schneider. Privacy-preserving ecg
classification with branching programs and neural networks. IEEE Transactions on Information
Forensics and Security, 6, 2011.

[53] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Raimondo, Ruggero Donida Labati,
Pierluigi Failla, Dario Fiore, Riccardo Lazzeretti, Vincenzo Piuri, Fabio Scotti, and Alessandro
Piva. Privacy-preserving fingercode authentication. In Proceedings of the 12th ACM Workshop
on Multimedia and Security, MM Sec, 2010.

[54] C. Basescu et al. Robust data sharing with key-value stores. In Proc. of the DSN, 2012.

[55] Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly Auditable Secure Multi-Party
Computation. In Proceedings of SCN, 2014.

[56] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an untrusted
cloud with haven. In USENIX Symposium on Operating Systems, 2014.

[57] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In 9th
European Conference on Computer Vision, ECCV, 2006.

SUPERCLOUD D3.2 Page 166 of 182

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

D3.2 - Specification of security enablers for data management

[58] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Consensus-oriented parallelization: How to
earn your first million. In Proceedings of the 16th ACM/IFIP/USENIX Middleware Conference
– Middleware’15, 2015.

[59] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Ho-
vav Shacham. Randomizable proofs and delegatable anonymous credentials. In CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 108–125. Springer, 2009.

[60] R. Bellafqira, G. Coatrieux, D. Bouslimi, and G. Quellec. Content-based image retrieval in
homomorphic encryption domain. In IEEE Engineering in Medicine and Biology Society, EMBC,
2015.

[61] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption and secure
deduplication. In EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
296–312. Springer, 2013.

[62] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems for Non-
cryptographic Fault-tolerant Distributed Computation. In Proceedings of STOC, 1988.

[63] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying Program Executions Succinctly and in Zero Knowledge. In Proceedings of
CRYPTO. 2013.

[64] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal distributed consensus.
In Proc. 30th IEEE Symposium on Foundations of Computer Science (FOCS), pages 410–415,
1989.

[65] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa. Depsky:
dependable and secure storage in a cloud-of-clouds. ACM Transactions on Storage, 9(4), 2013.

[66] Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel Correia, Marcelo Pasin,
and Paulo Verissimo. SCFS: a shared cloud-backed file system. In Proceedings of the 2014
USENIX Annual Technical Conference (ATC ’14), 2014.

[67] Alysson Bessani, Marcel Santos, Joo Felix, Nuno Neves, and Miguel Correia. On the efficiency
of durable state machine replication. In Proc. of the USENIX Annual Technical Conference –
USENIX ATC 2013, June 2013.

[68] Alysson Bessani, Joao Sousa, and Eduardo Alchieri. State machine replication for the masses
with BFT-SMART. In Proc. of the 44th IEEE/IFIP Int. Conference on Dependable Systems
and Networks, 2014.

[69] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography. In
EUROCRYPT’98, volume 1403 of LNCS, pages 127–144. Springer, 1998.

[70] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and P. Li. Paxos replicated state machines
as the basis of a high-performance data store. In Proc. of the USENIX Symposium on Networked
Systems Design and Implementation, April 2011.

[71] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 258–275. Springer, 2005.

[72] Anna Bosch, Andrew Zisserman, and Xavier Muñoz. Scene classification via plsa. In 9th European
Conference on Computer Vision, ECCV, 2006.

SUPERCLOUD D3.2 Page 167 of 182

D3.2 - Specification of security enablers for data management

[73] Anna Bosch, Andrew Zisserman, and Xavier Muñoz. Image classification using random forests
and ferns. In IEEE International Conference on Computer Vision, ICCV, 2007.

[74] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4):824–840, 1985.

[75] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim Kraska. Build-
ing a database on S3. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, 2008.

[76] Peter Brouwer. The art of data replication. Oracle Technical White Paper, 2011.

[77] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. The primary-backup
approach. In Distributed Systems (2nd Ed.). ACM Press & Addison-Wesley, New York, 1993.

[78] Gertjan J. Burghouts and Jan-Mark Geusebroek. Performance evaluation of local colour invari-
ants. Computer Vision and Image Understanding, 113, 2009.

[79] Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. In Proc. of the
7th USENIX Symposium on Operating Systems Design and Implementation, 2006.

[80] Christian Cachin. Distributing trust on the Internet. In Proc. International Conference on
Dependable Systems and Networks (DSN-DCCS), pages 183–192, 2001.

[81] Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Introduction to Reliable and Secure
Distributed Programming (Second Edition). Springer, 2011.

[82] Christian Cachin, Birgit Junker, and Alessandro Sorniotti. On limitations of using cloud storage
for data replication. In Proc. 6th Workshop on Recent Advances in Intrusion Tolerance and
reSilience – WRAITS’12, 2012.

[83] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asyn-
chronous broadcast protocols (extended abstract). In Advances in Cryptology: CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 524–541. Springer, 2001.

[84] Christian Cachin and Jonathan A. Poritz. Secure intrusion-tolerant replication on the Internet.
In Proc. International Conference on Dependable Systems and Networks (DSN-DCCS), pages
167–176, June 2002.

[85] Christian Cachin, Simon Schubert, and Marko Vukolić. Non-determinism in Byzantine fault-
tolerant replication. e-print, arXiv:1603.07351 [cs.DC], 2016.

[86] Christian Cachin and Stefano Tessaro. Optimal resilience for erasure-coded Byzantine distributed
storage. In Proc. of the DSN, 2006.

[87] Brad Calder, Ju Wang, Aaron Ogus, et al. Windows Azure storage: a highly available cloud
storage service with strong consistency. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 143–157, New York, NY, USA, 2011. ACM.

[88] Brad Calder et. al. Windows azure storage: A highly available cloud storage service with strong
consistency. In Proc. of the 23rd ACM Symposium on Operating Systems Principles – SOSP’11,
2011.

[89] S. Canard and J. Devigne. Highly privacy-protecting data sharing in a tree structure. Journal
of Future Generation Computer Systems, 62:119–127, 2016.

SUPERCLOUD D3.2 Page 168 of 182

D3.2 - Specification of security enablers for data management

[90] S. Canard, J. Devigne, and F. Laguillaumie. Improving the security of an efficient unidirectional
proxy re-encryption scheme. Journal of Internet Services and Information Security (JISIS),
1(2/3):140–160, 8 2011.

[91] Sébastien Canard and Viet Cuong Trinh. Private ciphertext-policy attribute-based encryption
schemes with constant-size ciphertext supporting cnf access policy. Cryptology ePrint Archive,
Report 2015/891, 2015. http://eprint.iacr.org/2015/891.

[92] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
IACR Cryptology ePrint Archive, 2000:67, 2000.

[93] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable
security for standard multiparty computation. In Proceedings of CRYPTO 2015, pages 3–22,
2015.

[94] Mark Carlson et. al. Software defined storage. Technical report, SNIA - Storage Networking
Industry Association, 2015.

[95] Henry Carter, Charles Lever, and Patrick Traynor. Whitewash: outsourcing garbled circuit
generation for mobile devices. In Proceedings of the 30th Annual Computer Security Applications
Conference, ACSAC 2014, New Orleans, LA, USA, December 8-12, 2014, pages 266–275, 2014.

[96] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20(4):398–461, November 2002.

[97] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. BASE: Using abstraction to improve
fault tolerance. ACM Transactions on Computer Systems, 21(3):236–269, 2003.

[98] Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. Middleware-based database repli-
cation: The gaps between theory and practice. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, 2008.

[99] Rafal Cegiela. Selecting technology for disaster recovery. In International Conference on De-
pendability of Computer Systems (DepCos-RELCOMEX’06), 2006.

[100] Tushar Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live - An engineering
perspective. In Proc. of the 26th ACM Symposium on Principles of Distributed Computing, 2007.

[101] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

[102] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors. Replication: Theory
and Practice, volume 5959 of Lecture Notes in Computer Science. Springer, 2010.

[103] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-authority
attribute-based encryption. In ACM Conference on Computer and Communications Security,
CCS 2009, pages 121–130. ACM, 2009.

[104] B. Chevallier-Mames, P. Paillier, and D. Pointcheval. Encoding-free El Gamal encryption with-
out random oracles. In PKC’06, volume 3958 of LNCS, pages 91–104. Springer, 2006.

[105] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster Computing in Zero Knowledge. In
Proceedings of EUROCRYPT, 2015.

[106] G. Chockler and D. Malkhi. Active disk paxos with infinitely many processes. Distributed
Computing, 18(1), 2005.

SUPERCLOUD D3.2 Page 169 of 182

http://eprint.iacr.org/2015/891

D3.2 - Specification of security enablers for data management

[107] Gregory V. Chockler, Dan Dobre, Alexander Shraer, and Alexander Spiegelman. Space bounds
for reliable multi-writer data store: Inherent cost of read/write primitives. In Proc. of the PODC,
2016.

[108] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid. Multi-client non-
interactive verifiable computation. In TCC, pages 499–518, 2013.

[109] Jia-Kai Chou, Chuan-Kai Yang, and Hsing-Ching Chang. Encryption domain content-based
image retrieval and convolution through a block-based transformation algorithm. Multimedia
Tools and Applications, 74, 2015.

[110] S. S. M. Chow, J. Weng, Y. Yang, and R. H. Deng. Efficient unidirectional proxy re-encryption.
In AFRICACRYPT’10, volume 6055 of LNCS, pages 316–332. Springer, 2010.

[111] Jae Yoon Chung, Carlee Joe-Wong, Sangtae Ha, James Won-Ki Hong, and Mung Chiang.
CYRUS: Towards client-defined cloud storage. In Proc. of the 10th ACM European Systems
Conference – EuroSys’15, 2015.

[112] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike Dahlin, and
Taylor Riche. Upright cluster services. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, SOSP ’09, pages 277–290, New York, NY, USA, 2009. ACM.

[113] Allen Clement, Edmund L. Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco Marchetti. Making
Byzantine fault tolerant systems tolerate Byzantine faults. In Proc. 6th Symp. Networked Systems
Design and Implementation (NSDI), pages 153–168, 2009.

[114] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson. From ARIES to MARS: Transac-
tion support for next-generation, solid-state drives. In Proceedings of ACM/SIGOPS Symposium
on Operating Systems Principles (SOSP’13), 2013.

[115] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow., 1(2):1277–1288, August 2008.

[116] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[117] James C. Corbett et. al. Spanner: Google’s globally distributed database. ACM Transactions
on Computer Systems, 31(3):8:1–8:22, 2013.

[118] Miguel Correia, Daniel Gómez Ferro, Flavio P. Junqueira, and Marco Serafini. Practical hard-
ening of crash-tolerant systems. In USENIX ATC’12, 2012.

[119] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. How to tolerate half less one Byzan-
tine nodes in practical distributed systems. In Proceedings of the 23rd IEEE International
Symposium on Reliable Distributed Systems, SRDS ’04, pages 174–183. IEEE Computer Society,
2004.

[120] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic broadcast: From simple
message diffusion to Byzantine agreement. Information and Computation, 118(1):158–179, 1995.

[121] Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo, José Pereira, and
Ricardo Vilaça. MeT: Workload aware elasticity for NoSQL. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 183–196, New York, NY, USA,
2013. ACM.

SUPERCLOUD D3.2 Page 170 of 182

D3.2 - Specification of security enablers for data management

[122] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, and Andrew
Warfield. Remus: High availability via asynchronous virtual machine replication. In Proceedings
of the 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI’08),
2008.

[123] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Elastras: An elastic, scalable, and self-
managing transactional database for the cloud. ACM Trans. Database Syst., 38(1):5:1–5:45,
April 2013.

[124] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Albatross: Lightweight
elasticity in shared storage databases for the cloud using live data migration. Proc. VLDB
Endow., 4(8):494–505, May 2011.

[125] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Image retrieval: Ideas, influences,
and trends of the new age. ACM Computing Surveys, 40, 2008.

[126] Sebastiaan de Hoogh. Design of large scale applications of secure multiparty computation: secure
linear programming. PhD thesis, Eindhoven University of Technology, 2012.

[127] Sebastiaan de Hoogh, Berry Schoenmakers, and Meilof Veeningen. Certificate validation in
secure computation and its use in verifiable linear programming. In Progress in Cryptology -
AFRICACRYPT 2016 - 8th International Conference on Cryptology in Africa, Fes, Morocco,
April 13-15, 2016, Proceedings, pages 265–284, 2016.

[128] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proc. of the
TACAS’08/ETAPS’08, 2008.

[129] Jeffrey Dean and Luiz Andr Barroso. The tail at scale. Communications of the ACM, 56:74–80,
2013.

[130] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lak-
shman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220,
October 2007.

[131] Yvo Desmedt. Threshold cryptography. European Transactions on Telecommunications,
5(4):449–457, 1994.

[132] T. T. Do, E. Kijak, T. Furon, and L. Amsaleg. Challenging the security of content-based image
retrieval systems. In IEEE International Workshop on Multimedia Signal Processing, MMSP,
2010.

[133] D. Dobre, G. O. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolic. Powerstore: Proofs of
writing for efficient and robust storage. In Proc. of the CCS, 2013.

[134] Dan Dobre, Paolo Viotti, and Marko Vukolic. Hybris: Robust hybrid cloud storage. SoCC, 2014.

[135] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, November 1983.

[136] Thibault Dory, Boris Mejas, Peter Van Roy, and Nam-Luc Tran. Measuring elasticity for cloud
databases. In Proceedings of the The Second International Conference on Cloud Computing,
GRIDs, and Virtualization, 2011.

[137] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. Reclaiming
space from duplicate files in a serverless distributed file system. In ICDCS, pages 617–624, 2002.

SUPERCLOUD D3.2 Page 171 of 182

D3.2 - Specification of security enablers for data management

[138] Assia Doudou, Benoit Garbinato, Rachid Guerraoui, and André Schiper. Muteness failure de-
tectors: Specification and implementation. In Proc. 3rd European Dependable Computing Con-
ference (EDCC-3), volume 1667 of Lecture Notes in Computer Science, pages 71–87. Springer,
1999.

[139] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A Pras. Inside Dropbox:
Understanding personal cloud storage services. In IMC, 2012.

[140] E.P. Duarte, T. Garrett, L.C.E. Bona, R. Carmo, and A.P. Zge. Finding stable cliques of
planetlab nodes. In Proc. of the 40th IEEE/IFIP Int. Conference on Dependable Systems and
Networks, 2010.

[141] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988.

[142] Richard Ekwall and Andr Schiper. Modeling and validating the performance of atomic broadcast
algorithms in high latency networks. In Proc. of Euro-Par, 2007.

[143] K. El Emam, F. K. Dankar, R. Issa, E. Jonker, D. Amyot, E. Cogo, J. P. Corriveau, M. Walker,
S. Chowdhury, R. Vaillancourt, T. Roffey, and J. Bottomley. A globally optimal k-anonymity
method for the de-identification of health data. Journal of the American Medical Informatics
Association, 16(5):670–682, 2009.

[144] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Zephyr: Live migra-
tion in shared nothing databases for elastic cloud platforms. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’11, pages 301–312, New
York, NY, USA, 2011. ACM.

[145] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald Lagendijk, and
Tomas Toft. Privacy-preserving face recognition. In The annual Privacy Enhancing Technologies
Symposium, PETS, 2009.

[146] Bernardo Ferreira, João Rodrigues, João Leitão, and Henrique Domingos. Privacy-preserving
content-based image retrieval in the cloud. CoRR, abs/1411.4862, 2014.

[147] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently Verifiable Computation on En-
crypted Data. In Proceedings of CCS, 2014.

[148] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[149] Sharon Fisher. On the quest for the mysterious source of the “data loss causes company failure”
statistic. http://itknowledgeexchange.techtarget.com/storage-disaster-recovery/

on-the-quest-for-the-mysterious-source-of-the-data-loss-causes-company-failure-statistic/,
February 2014.

[150] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Qian Huang, B. Dom, M. Gorkani, J. Hafner,
D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: the qbic
system. Computer, 28, 1995.

[151] A. Folkers and H. Samet. Content-based image retrieval using fourier descriptors on a logo
database. In 16th International Conference on Pattern Recognition, ICPR, 2002.

[152] E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1), 2003.

[153] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

SUPERCLOUD D3.2 Page 172 of 182

http://itknowledgeexchange.techtarget.com/storage-disaster-recovery/on-the-quest-for-the-mysterious-source-of-the-data-loss-causes-company-failure-statistic/
http://itknowledgeexchange.techtarget.com/storage-disaster-recovery/on-the-quest-for-the-mysterious-source-of-the-data-loss-causes-company-failure-statistic/

D3.2 - Specification of security enablers for data management

[154] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In CRYPTO ’84, volume 196 of LNCS, pages 10–18. Springer, 1984.

[155] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch. Autoscale:
Dynamic, robust capacity management for multi-tier data centers. ACM Trans. Comput. Syst.,
30(4):14:1–14:26, November 2012.

[156] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology: Eurocrypt 2015, volume 9057 of Lecture Notes in
Computer Science, pages 281–310. Springer, 2015.

[157] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed system. Journal
of the ACM, 32(4):841–860, 1985.

[158] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In Proceedings of CRYPTO, 2010.

[159] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span Programs
and Succinct NIZKs without PCPs. In Proceedings of EUROCRYPT. 2013.

[160] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and Fact-Track Multiparty
Computations with Applications to Threshold Cryptography. In Proceedings of PODC, 1998.

[161] G. Gibson et al. A cost-effective, high-bandwidth storage architecture. In Proc. of the ASPLOS,
1998.

[162] David Gifford. Weighted voting for replicated data. In Proc. of the 7th ACM Symposium on
Operating Systems Principles, 1979.

[163] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas Anderson. Scalable
consistency in scatter. In Proc. of the 23rd ACM Symposium on Operating Systems Principles
– SOSP’11, 2011.

[164] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Proceedings of STOC,
2013.

[165] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael K. Reiter. Efficient Byzantine-
tolerant erasure-coded storage. In Proc. of the DSN, 2004.

[166] Google. Google drive. https://drive.google.com/, 2016.

[167] S.Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Multi-client
verifiable computation with stronger security guarantees. In Yevgeniy Dodis and JesperBuus
Nielsen, editors, Theory of Cryptography, volume 9015 of Lecture Notes in Computer Science,
pages 144–168. Springer Berlin Heidelberg, 2015.

[168] Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In Proceedings of
ASIACRYPT, 2010.

[169] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou, and Li Zhuang. Rex: Repli-
cation at the speed of multi-core. In Proc. of the 9th European Conference on Computer Systems
– EuroSys ’14, 2014.

[170] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems. In Distributed
Systems. ACM Press & Addison-Wesley, New York, 1993.

SUPERCLOUD D3.2 Page 173 of 182

https://drive.google.com/

D3.2 - Specification of security enablers for data management

[171] J. Hamilton. Observations on errors, corrections, and trust of dependent systems. http://goo.
gl/LPTJoO, 2012.

[172] Seungyeop Han, Haichen Shen, Taesoo Kim, Arvind Krishnamurthy, Thomas Anderson, and
David Wetherall. MetaSync: File synchronization across multiple untrusted storage services. In
Proc. of the 2015 USENIX ATC, 2015.

[173] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-tolerant storage.
In Proc. of the SOSP, 2007.

[174] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1), 1991.

[175] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programing Languages and Systems, 12(3):463–492, 1990.

[176] Pedro Hernandez. Small business IT survey: No backup, no data,
no business. http://www.smallbusinesscomputing.com/biztools/

small-business-it-survey-no-backup-no-data-no-business.html, May 2014.

[177] B. Hou, F. Chen, Z. Ou, R. Wang, and M. Mesnier. Understanding I/O performance behaviors
of cloud storage from a client’s perspective. MSST, 2016.

[178] C. Y. Hsu, C. S. Lu, and S. C. Pei. Image feature extraction in encrypted domain with privacy-
preserving sift. IEEE Transactions on Image Processing, 21, 2012.

[179] Chao-Yung Hsu, Chun-Shien Lu, and Soo-Chang Pei. Secure and robust sift. In ACM Interna-
tional Conference on Multimedia, MM, 2009.

[180] Chao-Yung Hsu, Chun-Shien Lu, and Soo-Chang Pei. Homomorphic encryption-based secure sift
for privacy-preserving feature extraction. In Media Forensics and Security part of the IS&T-SPIE
Electronic Imaging Symposium, SPIE, 2011.

[181] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-free coordination for internet-
scale services. In Proc. of the USENIX Annual Technical Conference, 2010.

[182] J. Illingworth, J. Kittler, and J. Princen. Shape Detection in Computer Vision Using the Hough
Transform. Springer-Verlag New York, Inc., 1 edition, 1988.

[183] Tibor Jager. Verifiable random functions from weaker assumptions. In Proc. 12th Theory of
Cryptography Conference (TCC 2015), volume 9015 of Lecture Notes in Computer Science, pages
121–143. Springer, 2015.

[184] Thomas P. Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi. A framework for outsourcing of
secure computation. In Proceedings of the 6th edition of the ACM Workshop on Cloud Computing
Security, CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014, pages 81–92, 2014.

[185] Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared ob-
jects. J. ACM, 45(3), 1998.

[186] Minwen Ji, Alistair C Veitch, John Wilkes, et al. Seneca: remote mirroring done write. In
Proceedings of the 2003 USENIX Annual Technical Conference (ATC’03), 2003.

[187] Pascal Junod and Alexandre Karlov. An efficient public-key attribute-based broadcast encryp-
tion scheme allowing arbitrary access policies. In ACM Workshop on Digital Rights Management,
pages 13–24. ACM Press, 2010.

[188] Flavio Junqueira, Yanhua Mao, and Keith Marzullo. Classic Paxos vs Fast Paxos: Caveat
emptor. In Proc. of the Workshop on Hot Topics in System Dependability, 2007.

SUPERCLOUD D3.2 Page 174 of 182

http://goo.gl/LPTJoO
http://goo.gl/LPTJoO
http://www.smallbusinesscomputing.com/biztools/small-business-it-survey-no-backup-no-data-no-business.html
http://www.smallbusinesscomputing.com/biztools/small-business-it-survey-no-backup-no-data-no-business.html

D3.2 - Specification of security enablers for data management

[189] Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance broad-
cast for primary-backup systems. In Proceedings of the Conference on Dependable Systems and
Networks (DSN), pages 245–256, 2011.

[190] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a system for server-aided secure func-
tion evaluation. In the ACM Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, pages 797–808, 2012.

[191] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid
Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. CheapBFT: Resource-efficient
Byzantine fault tolerance. In Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 295–308, New York, NY, USA, 2012. ACM.

[192] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and Mike Dahlin.
All about eve: Execute-verify replication for multi-core servers. In Proc. of the 10th USENIX
Conference on Operating Systems Design and Implementation – OSDI’12, 2012.

[193] Yan Ke and R. Sukthankar. Pca-sift: a more distinctive representation for local image de-
scriptors. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR, 2004.

[194] Kimberly Keeton, Cipriano A Santos, Dirk Beyer, Jeffrey S Chase, and John Wilkes. Designing
for disasters. Proceedings of the 3rd USENIX Conference on File and Storage Technologies
(FAST’04), 2004.

[195] Bettina Kemme, Ricardo J. Peris, and Marta Patio-Martnez. Database Replication. Morgan &
Claypool, 2010.

[196] Ioannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dimitrios Tsoumakos, and
Nectarios Koziris. On the elasticity of NoSQL databases over cloud management platforms. In
Proc. of the 20th ACM international conference on Information and knowledge management –
CIKM ’11, 2011.

[197] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative Byzantine fault tolerance. ACM Trans. Comput. Syst., 27(4):7:1–7:39, January 2010.

[198] Ramakrishna Kotla and Mike Dahlin. High throughput byzantine fault tolerance. In Proc. of
the 2004 International Conference on Dependable Systems and Networks – DSN’04, 2004.

[199] Edward Kovacs. Downtime and data loss cost enterprises
$1.7 trillion per year: EMC. http://www.securityweek.com/

downtime-and-data-loss-cost-enterprises-17-trillion-year-emc, December 2014.

[200] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete. MDCC: multi-
data center consistency. In Eighth Eurosys Conference 2013, pages 113–126, 2013.

[201] Hugo Krawczyk. Secret sharing made short. In Proc. of the CRYPTO, 1993.

[202] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler, and Randy
Katz. Napsac: Design and implementation of a power-proportional web cluster. In Proc. of the
1st ACM Workshop on Green Networking, 2010.

[203] Kripa Krishnan. Weathering the unexpected. Commun. ACM, 55:48–52, November 2012.

[204] John Kubiatowicz et al. OceanStore: An architecture for global-scale persistent storage. In
ASPLOS, 2000.

SUPERCLOUD D3.2 Page 175 of 182

http://www.securityweek.com/downtime-and-data-loss-cost-enterprises-17-trillion-year-emc
http://www.securityweek.com/downtime-and-data-loss-cost-enterprises-17-trillion-year-emc

D3.2 - Specification of security enablers for data management

[205] Petr Kuznetsov and Rodrigo Rodrigues. BFTW3: Why? When? Where? Workshop on the
theory and practice of Byzantine fault tolerance. SIGACT News, 40(4):82–86, January 2010.

[206] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high availability
using lazy replication. ACM Trans. Comput. Syst., 10(4):360–391, November 1992.

[207] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[208] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 21(7):558–565, 1978.

[209] Leslie Lamport. On interprocess communication (part II). Distributed Computing, 1(1), 1986.

[210] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16:133–169, May 1998.

[211] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

[212] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4:382–401, July 1982.

[213] A. Lathey, P. K. Atrey, and N. Joshi. Homomorphic low pass filtering on encrypted multimedia
over cloud. In IEEE International Conference on Semantic Computing, ICSC, 2013.

[214] Ankita Lathey and Pradeep K. Atrey. Image enhancement in encrypted domain over cloud.
ACM Transactions on Multimedia Computing, Communications, and Applications, 11, 2015.

[215] William LeFebvre. Cnn. com: Facing a world crisis. In LISA, 2001.

[216] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. TrInc: Small trusted
hardware for large distributed systems. In Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’09, pages 1–14. USENIX Association, 2009.

[217] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based multimedia
information retrieval: State of the art and challenges. ACM Transactions on Multimedia Com-
puting, Communications, and Applications, 2, 2006.

[218] Barbara Liskov. From viewstamped replication to Byzantine fault tolerance. In Bernadette
Charron-Bost, Fernando Pedone, and André Schiper, editors, Replication: Theory and Practice,
volume 5959 of Lecture Notes in Computer Science, pages 121–149. Springer, 2010.

[219] Jacob Lorch, Atul Adya, William Bolosky, Ronnie Chaiken, John Douceur, and Jon Howell. The
SMART way to migrate replicated stateful services. In Proceedings of the 1st ACM European
Systems Conference, October 2006.

[220] Rafael Los, Dave Shacklenford, and Bryan Sullivan. The notorious nine: Cloud Computing Top
Threats in 2013. Technical report, Cloud Security Alliance (CSA), February 2013.

[221] D. G. Lowe. Object recognition from local scale-invariant features. In IEEE International
Conference on Computer Vision, ICCV, 1999.

[222] David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision, 60, 2004.

[223] W. Lu, A. L. Varna, A. Swaminathan, and M. Wu. Secure image retrieval through feature pro-
tection. In IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP,
2009.

SUPERCLOUD D3.2 Page 176 of 182

D3.2 - Specification of security enablers for data management

[224] Wenjun Lu, Ashwin Swaminathan, Avinash L. Varna, and Min Wu. Enabling search over
encrypted multimedia databases. In Media Forensics and Security part of the IS&T-SPIE Elec-
tronic Imaging Symposium, SPIE, 2009.

[225] Nancy A. Lynch. Distributed Algorithms. Morgan Kauffman, 1996.

[226] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH sepa-
ration. In Advances in Cryptology: CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 597–612. Springer, 2002.

[227] D. Malkhi and M.K. Reiter. Secure and scalable replication in Phalanx. In Proc. of the SRDS,
1998.

[228] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing, 11(4),
1998.

[229] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: building efficient replicated
state machines for WANs. In Proc. of the 8th USENIX Conference on Operating Systems Design
and Implementation, 2008.

[230] Joo Marques-Silva and Karem Sakallah. GRASP: A search algorithm for propositional satisfia-
bility. IEEE Trans. on Computers, 48:506–521, 1999.

[231] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal Byzantine storage. In Proc.
of the DISC, 2002.

[232] Babu M. Mehtre, Mohan S. Kankanhalli, and Wing Foon Lee. Shape measures for content based
image retrieval: A comparison. Information Processing and Management, 33, 1997.

[233] Ricardo Mendes, Tiago Oliveira, Vinicius Cogo, Nuno Neves, and Alysson Bessani. Charon: A
Dependable Cloud-of-Clouds System for Storing and Sharing Big Data. Under submission, 2016.

[234] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Proc. 40th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 120–130, 1999.

[235] Microsoft. Microsoft onedrive. https://onedrive.live.com/about/pt-br/, 2016.

[236] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT
protocols. In Proc. ACM Conference on Computer and Communications Security (CCS), 2016.

[237] Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf Aboulnaga, Kenneth Salem,
and Andrew Warfield. RemusDB: Transparent high availability for database systems. The VLDB
Journal, 22(1), 2013.

[238] Shigeo Mitsunari. A Fast Implementation of the Optimal Ate Pairing over BN curve on Intel
Haswell Processor. Cryptology ePrint Archive, Report 2013/362, 2013. http://eprint.iacr.

org/.

[239] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES: a transac-
tion recovery method supporting fine-granularity locking and partial rollbacks using write-ahead
logging. ACM Transactions on Database Systems, 17(1), 1992.

[240] Payman Mohassel and Matthew K. Franklin. Efficiency Tradeoffs for Malicious Two-Party
Computation. In Proceedings of PKC, 2006.

[241] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus in egali-
tarian parliaments. In Proc. of 24th ACM Symposium on Operating Systems Principles, 2013.

SUPERCLOUD D3.2 Page 177 of 182

https://onedrive.live.com/about/pt-br/
http://eprint.iacr.org/
http://eprint.iacr.org/

D3.2 - Specification of security enablers for data management

[242] Jim Mutch and David G. Lowe. Object class recognition and localization using sparse features
with limited receptive fields. International Journal of Computer Vision, 80, 2008.

[243] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. May 2009.

[244] Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and Antony Rowstron.
Everest: Scaling down peak loads through i/o off-loading. In Proc. of the 8th USENIX Conference
on Operating Systems Design and Implementation – OSDI’08, 2008.

[245] Nasuni. Nasuni UniFS. http://www.nasuni.com/, 2016.

[246] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: Managing performance inter-
ference effects for QoS-aware clouds. In Proceedings of the 5th European Conference on Computer
Systems – EuroSys ’10, pages 237–250, 2010.

[247] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan
McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung, and Venkatesh-
waran Venkataramani. Scaling memcache at Facebook. In Proc. of the USENIX Symposium on
Networked Systems Design and Implementation, April 2013.

[248] Brian M. Oki and Barbara Liskov. Viewstamped replication: A new primary copy method to
support highly-available distributed systems. In Proceedings of the 7th Annual ACM Symposium
on Principles of Distributed Computing, pages 8–17, 1988.

[249] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing, PODC ’88, pages 8–17, New York, NY,
USA, 1988. ACM.

[250] Diego Ongaro and John Ousterhout. In search for an understandable consensus algorithm. In
Proc. of the USENIX Annual Technical Conference – USENIX ATC 2014, June 2014.

[251] Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algorithm. In
Proc. USENIX Annual Technical Conference, pages 305–319, 2014.

[252] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. Scifi - a system for secure face identifi-
cation. In IEEE Symposium on Security and Privacy, S&P, 2010.

[253] Ricardo Padilha and Fernando Pedone. Augustus: Scalable and robust storage for cloud appli-
cations. In Proceedings of the eigth conference on Computer systems, EuroSys ’13, 2013.

[254] Panzura. Panzura CloudFS. http://panzura.com/, 2016.

[255] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Practical Verifiable Com-
putation. In Proceedings of S&P, 2013.

[256] Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve Kleiman, and Shane Owara.
Snapmirror: file system based asynchronous mirroring for disaster recovery. In Proceedings of
the 1st USENIX Conference on File and Storage Technologies, 2002.

[257] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, April 1980.

[258] F. Pedone, C. E. Bezerra, and R. van Renesse. Scalable state-machine replication. In 44th
International Conference on Dependable Systems and Networks (DSN 2014), 2014.

SUPERCLOUD D3.2 Page 178 of 182

http://www.nasuni.com/
http://panzura.com/

D3.2 - Specification of security enablers for data management

[259] Andreas Peter, Erik Tews, and Stefan Katzenbeisser. Efficiently outsourcing multiparty com-
putation under multiple keys. IEEE Transactions on Information Forensics and Security,
8(12):2046–2058, 2013.

[260] Duong Hieu Phan, David Pointcheval, and Viet Cuong Trinh. Multi-Channel Broadcast En-
cryption. In Proceedings of the 8th ACM Symposium on InformAtion, Computer and Commu-
nications Security (ASIACCS ’13), ACM Press, 2013.

[261] Daniel Porto, João Leitão, Cheng Li, Allen Clement, Aniket Kate, Flavio Junqueira, and Ro-
drigo Rodrigues. Visigoth fault tolerance. In Proceedings of the Tenth European Conference on
Computer Systems, EuroSys ’15, pages 8:1–8:14, New York, NY, USA, 2015. ACM.

[262] Jehan Pris. Voting with witnesses: A consistency scheme for replicated files. In In Proceedings
of the 6th International Conference on Distributed Computing Systems, 1986.

[263] Hyperledger project. Fabric. http://github.com/hyperledger/fabric, 2016.

[264] Krishna P. N. Puttaswamy, Thyaga Nandagopal, and Murali Kodialam. Frugal storage for cloud
file systems. In Proc. of the 10th ACM European Systems Conference – EuroSys’12, 2012.

[265] Zhan Qin, Jingbo Yan, Kui Ren, Chang Wen Chen, and Cong Wang. Towards efficient privacy-
preserving image feature extraction in cloud computing. In 22Nd ACM International Conference
on Multimedia, MM, 2014.

[266] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. Journal of the ACM, 36(2), 1989.

[267] Shriram Rajagopalan, Brendan Cully, Ryan O’Connor, and Andrew Warfield. SecondSite: dis-
aster tolerance as a service. In Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on
Virtual Execution Environments (VEE’12), 2012.

[268] Jun Rao, Eugene J. Shenkita, and Sandeep Tata. Using Paxos to build a scalable, consistent,
and highly available datastore. The VLDB Journal, 4(4), 2011.

[269] Michael K. Reiter and Kenneth P. Birman. How to securely replicate services. ACM Transactions
on Programming Languages and Systems, 16(3):986–1009, May 1994.

[270] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[271] Glen Robinson, Attila Narin, and Chris Elleman. Using amazon web services for disaster recov-
ery. Amazon Web Services white paper, December 2014.

[272] S. Roy and Q. Sun. Robust hash for detecting and localizing image tampering. In 2007 IEEE
International Conference on Image Processing, ICIP, 2007.

[273] Yong Rui and Thomas S. Huang. Image retrieval: Current techniques, promising directions and
open issues. Journal of Visual Communication and Image Representation, 10, 1999.

[274] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Efficient privacy-preserving
face recognition. In 12th International Conference on Information Security and Cryptology,
ICISC, 2010.

[275] P. Samarati. Protecting respondents’ identities in microdata release. IEEE Trans. on Knowl.
and Data Eng., 13(6):1010–1027, November 2001.

SUPERCLOUD D3.2 Page 179 of 182

D3.2 - Specification of security enablers for data management

[276] N. Santos and A. Schiper. Achieving high-throughput state machine replication in multi-core
systems. In Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International Conference
on, pages 266–275, July 2013.

[277] N. Schiper, P. Sutra, and F. Pedone. Genuine versus non-genuine atomic multicast protocols for
wide area networks: An empirical study. In Proc. of the 28th IEEE Int. Symposium on Reliable
Distributed Systems, 2009.

[278] Fred Schneider. Implementing fault-tolerant service using the state machine approach: A tuto-
rial. ACM Computing Surveys, 22(4):299–319, 1990.

[279] Berry Schoenmakers, Meilof Veeningen, , and Niels de Vreede. Trinocchio: Privacy-friendly
outsourcing by distributed verifiable computation. Cryptology ePrint Archive, Report 2015/480,
2015. http://eprint.iacr.org/2015/480.

[280] Berry Schoenmakers and Meilof Veeningen. Universally Verifiable Multiparty Computation from
Threshold Homomorphic Cryptosystems. In Proceedings of ACNS, 2015. http://eprint.iacr.
org/2015/058.

[281] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-preserving
outsourcing by distributed verifiable computation. In Applied Cryptography and Network Security
- 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings,
pages 346–366, 2016.

[282] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem, Taha Rafiq, and Umar Fa-
rooq Minhas. Accordion: Elastic scalability for database systems supporting distributed trans-
actions. Proc. VLDB Endow., 7(12):1035–1046, August 2014.

[283] J. Shashank, P. Kowshik, K. Srinathan, and C. V. Jawahar. Private content based image
retrieval. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR, 2008.

[284] Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio P. Junqueira. Dynamic reconfigu-
ration of primary/backup clusters. In Proceedings of the USENIX Annual Technical Conference
– ATC’12, 2012.

[285] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and Ramesh Jain.
Content-based image retrieval at the end of the early years. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, TPAMI, 2000.

[286] Susan Snedaker. Business continuity and disaster recovery planning for IT professionals. Newnes,
2013.

[287] J. Sousa and A. Bessani. Separating the WHEAT from the chaff: An empirical design for
geo-replicated state machines (extended version). Technical Report TR 2015-04, Department of
Informatics, Faculty of Sciences of the University of Lisboa, July 2015.

[288] Joo Sousa and Alysson Bessani. From Byzantine consensus to BFT state machine replication: A
latency-optimal transformation. In Proc. of the 9th European Dependable Computing Conference,
2012.

[289] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for geo-
replicated systems. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 385–400, New York, NY, USA, 2011. ACM.

[290] Michael Stonebraker and Lawrence A Rowe. The design of postgres. In Proceedings of the 1986
ACM SIGMOD ACM SIGMOD international conference on Management of data, 1986.

SUPERCLOUD D3.2 Page 180 of 182

http://eprint.iacr.org/2015/480
http://eprint.iacr.org/2015/058
http://eprint.iacr.org/2015/058

D3.2 - Specification of security enablers for data management

[291] Jeremy Stribling et al. Flexible, wide-area storage for distributed system with WheelFS. In
NSDI, 2009.

[292] Tim Swanson. Consensus-as-a-service: A brief report on the emergence of permissioned, dis-
tributed ledger systems. Report, available online, April 2015.

[293] Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst., 10(5):557–570, October 2002.

[294] Symantec. SMB (Small and Medium Business) security and data protection: survey shows high
concern, less action. White paper: SMB Survey. Available at http://eval.symantec.com/

mktginfo/enterprise/other_resources/b-SMB-Protection-Gap_WP_20094842.en-us.pdf,
2009.

[295] Symantec. Ransomware and business 2016. ISTR Speacial Report. Available at
http://www.symantec.com/content/en/us/enterprise/media/security_response/

whitepapers/ISTR2016_Ransomware_and_Businesses.pdf, 2016.

[296] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore, Ashraf Aboul-
naga, Andrew Pavlo, and Michael Stonebraker. E-store: Fine-grained elastic partitioning for
distributed transaction processing systems. Proc. VLDB Endow., 8(3):245–256, November 2014.

[297] Haowen Tang, Fangming Liu, Guobin Shen, Yuchen Jin, and Chuanxiong Guo. UniDrive: Syn-
ergize multiple consumer cloud storage services. In Proc. of the ACM/IFIP/USENIX Middle-
ware’15, 2015.

[298] Qiang Tang. Type-based proxy re-encryption and its construction. In INDOCRYPT 2008,
volume 5365 of Lecture Notes in Computer Science, pages 130–144. Springer, 2008.

[299] Vasily Tarasov, Abhishek Gupta, Kumar Sourav, Sagar Trehan, and Erez Zadok. Terra incognita:
On the practicality of user-space file systems. In Proceedings of the 7th USENIX workshop on
hot topics in Storage and File Systems (HotStorage’15), 2015.

[300] Philip M. Thambidurai and You-Keun Park. Interactive consistency with multiple failure modes.
In Seventh Symposium on Reliable Distributed Systems, SRDS 1988, Columbus, Ohio, USA,
October 10-12, 1988, Proceedings, pages 93–100, 1988.

[301] Beth Trushkowsky, Peter Bod́ık, Armando Fox, Michael J. Franklin, Michael I. Jordan, and
David A. Patterson. The SCADS Director: Scaling a distributed storage system under strin-
gent performance requirements. In Proc. of the 9th USENIX Conference on File and Stroage
Technologies – FAST’11, 2011.

[302] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V. Jawahar. Efficient privacy preserving
video surveillance. In IEEE International Conference on Computer Vision, ICCV, 2009.

[303] Joost van de Weijer and Cordelia Schmid. Coloring local feature extraction. In 9th European
Conference on Computer Vision, ECCV, 2006.

[304] G. Veronese, M. Correia, A.N. Bessani, and Lau Cheuk Lung. EBAWA: Efficient Byzantine
agreement for wide-area networks. In Proc. of the 12th IEEE Int. High Assurance Systems
Engineering Symposium, 2010.

[305] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo
Veŕıssimo. Efficient Byzantine fault-tolerance. IEEE Trans. Computers, 62(1):16–30, 2013.

[306] Michael Vrable, Stefan Savage, and Geoffrey M Voelker. Cumulus: Filesystem backup to the
cloud. ACM Transactions on Storage, 5(4), 2009.

SUPERCLOUD D3.2 Page 181 of 182

http://eval.symantec.com/mktginfo/enterprise/other_resources/b-SMB-Protection-Gap_WP_20094842.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/other_resources/b-SMB-Protection-Gap_WP_20094842.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/ISTR2016_Ransomware_and_Businesses.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/ISTR2016_Ransomware_and_Businesses.pdf

D3.2 - Specification of security enablers for data management

[307] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. BlueSky: A cloud-backed file system for
the enterprise. In Proceedings of the 10th USENIX Conference on File and Storage Technologies
(FAST’12), 2012.

[308] Marko Vukolic. SUPERCLOUD, D3.1 - Architecture for Data Management, 2015.

[309] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In
Open Problems in Network Security, Proc. IFIP WG 11.4 Workshop (iNetSec 2015), volume
9591 of Lecture Notes in Computer Science, pages 112–125. Springer, 2016.

[310] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting them.
Communications of the ACM, 58(2), February 2015.

[311] Q. Wang, S. Hu, J. Wang, and K. Ren. Secure surfing: Privacy-preserving speeded-up robust
feature extractor. In IEEE International Conference on Distributed Computing Systems, ICDCS,
2016.

[312] Shumiao Wang, Mohamed Nassar, Mikhail Atallah, and Qutaibah Malluhi. Secure and private
outsourcing of shape-based feature extraction. In 15th International Conference on Information
and Communications Security, ICICS, 2013.

[313] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi: Separating data and metadata for efficient
and available storage replication. In Proc. of the USENIX Annual Technical Conference, June
2012.

[314] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. Ceph:
A scalable, high-performance distributed file system. In OSDI, 2006.

[315] L. Weng, L. Amsaleg, A. Morton, and S. Marchand-Maillet. A privacy-preserving framework
for large-scale content-based information retrieval. IEEE Transactions on Information Forensics
and Security, 10, 2015.

[316] Timothy Wood, Emmanuel Cecchet, KK Ramakrishnan, Prashant Shenoy, Jacobus Van
Der Merwe, and Arun Venkataramani. Disaster recovery as a cloud service: Economic ben-
efits & deployment challenges. In Proceedings of the 1st USENIX workshop on hot topics in
cloud computing (HotCloud’10), 2010.

[317] Timothy Wood, H Andrés Lagar-Cavilla, KK Ramakrishnan, Prashant Shenoy, and Jacobus
Van der Merwe. Pipecloud: using causality to overcome speed-of-light delays in cloud-based
disaster recovery. In Proceedings of the 2nd ACM Symposium on Cloud Computing (SoCC’11),
2011.

[318] Y. Ye, L. Xiao, I-L. Yen, and F. Bastani. Secure, dependable, and high performance cloud
storage. In Proc. of the SRDS, 2010.

[319] X. Yuan, X. Wang, C. Wang, A. Squicciarini, and K. Ren. Enabling privacy-preserving image-
centric social discovery. In IEEE International Conference on Distributed Computing Systems,
ICDCS, 2014.

[320] X. Zhang and H. Cheng. Histogram-based retrieval for encrypted jpeg images. In IEEE China
Summit International Conference on Signal and Information Processing, ChinaSIP, 2014.

[321] L. Zheng and S. Wang. Visual phraselet: Refining spatial constraints for large scale image search.
IEEE Signal Processing Letters, 20, 2013.

[322] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A secure distributed online
certification authority. ACM Transactions on Computer Systems, 20(4):329–368, 2002.

SUPERCLOUD D3.2 Page 182 of 182

D3.2 - Specification of security enablers for data management

[323] Piotr Zieliński. Paxos at war. Technical Report UCAM-CL-TR-593, University of Cambridge,
Computer Laboratory, June 2004.

SUPERCLOUD D3.2 Page 183 of 182

	Introduction
	Deliverable Organization
	Publications and impact
	Component integration
	Review: high-level WP3 architecture
	Prospective Integration Vectors
	State-machine replication
	Resilient distributed storage
	Advanced privacy-preserving components

	I State-machine replication
	State-Machine Replication with Hyperledger Blockchain Fabric
	Overview
	Hyperledger Fabric
	Architecture
	Discussion
	Conclusion

	Non-deterministic Byzantine Fault-Tolerant State-Machine Replication
	Introduction
	Definitions
	System model
	Broadcast and state-machine replication
	Leader election

	Modular protocol
	Master-slave protocol
	Cryptographically secure protocols
	Conclusion

	XFT: Practical Fault Tolerance Beyond Crashes
	Background
	System model
	The XFT model
	XFT in a nutshell
	XFT vs. CFT/BFT
	Where to use XFT?

	XPaxos Protocol
	Common case
	View change
	Choosing active replicas
	View change initiation
	Performing view-change

	Correctness arguments

	Performance Evaluation
	Experimental setup
	Synchrony and XPaxos
	Protocols under test
	Experimental testbed and benchmarks

	Fault-free performance
	Performance under faults
	Macro-benchmark: ZooKeeper

	Reliability Analysis
	XPaxos vs. CFT
	XPaxos vs. BFT

	Related work and concluding remarks

	WHEAT: An Empirical Design for Geo-Replicated State Machines
	State Machine Replication & BFT-SMaRt
	Experiments
	Methodology
	Number of Communication Steps
	Number of Replies
	Quorum Size
	Leader Location
	Discussion

	The WHEAT Protocol
	Deriving the protocol
	Vote Assignment Schemes

	Implementation and Evaluation
	Related work
	Conclusion

	Elastic State Machine Replication
	Elasticity for RSMs
	Partition transfer in existing RSMs
	A client-based solution.

	Partition transfer in Non-SMR Databases

	Partition Transfer for RSMs
	System Model
	Partition Transfer Protocol
	Correctness Argument
	Multi-partition Operations

	Implementation
	Evaluation
	Partition Transfer on an Idle System
	Partition Transfer on a Saturated System
	Partition Transfer in Bigger Groups
	Faults during the Partition Transfer
	Partition Transfer in a Hotspot

	Related work
	Conclusion

	II Resilient distributed storage
	Janus – A User-Defined Cloud Storage Platform
	Introduction
	Janus Overview
	Janus Server
	Requirements Solver.
	Cloud info collector.
	Billing Manager.

	Virtual Disk Driver
	Solver
	Query solving strategy.

	Related Work
	Distributed file systems.
	Cloud-backed storage.
	Multi-cloud storage.

	Final Remarks

	Exploring Key-Value Stores in Multi-Writer Byzantine-Resilient Cloud-of-Clouds Storage
	Related Work
	System Model
	Register Emulation
	Threat Model
	Key-Value Store Specification

	Multi-Writer Constructions
	Overview
	Protocols Mechanisms
	Byzantine Quorum Systems
	Multi-Writer Semantics
	Object integrity and authenticity
	Erasure codes

	Pseudo Code Notation and Auxiliary Functions
	Two-Step Full Replication Construction
	Two-Step Erasure Code Construction
	Three-Step Erasure Code Construction

	Correctness
	Two-Step Algorithms Proof
	Three-Step Algorithm Proof

	Protocols Extensions
	Atomicity
	Garbage Collection

	Evaluation
	Setup and Methodology
	List Quorum Performance
	Read and Write Latency
	Read Under Write Contention

	Conclusion

	Low-cost Cloud-based Disaster Recovery for Databases
	Introduction
	Disaster Recovery
	Low-cost Cloud-based Disaster Recovery
	Transactional Database I/O
	Ginja
	Controlling Costs and Data Losses
	Data Model
	Algorithms
	Initialization.
	Database Update Commits.
	Checkpoints and Garbage Collection.

	Extensions
	Compression and encryption.
	Point-in-time recovery.
	Backup verification.

	Implementation
	Cost Analysis
	Ginja Cost Model
	Storage of DB objects.
	PUT operations of DB objects.
	Storage of WAL objects.
	PUT operations of WAL objects.

	The Cost of Running Ginja
	Real application.

	The Cost of Recovery

	Experimental Evaluation
	Overhead of Ginja
	Performance overhead.
	Compression and encryption.

	Resource Usage
	Cloud usage and its implications.
	Database server resource usage.

	Recovery Time

	Related Work
	Database disaster recovery.
	Filesystem mirroring.
	Virtual machine replication.
	Cloud-backed storage services.

	Conclusion

	III Advanced privacy-preserving components
	Privacy-Preserving Outsourcing by Distributed Verifiable Computation
	Introduction
	Related Work
	Distributing the Prover Computation
	Multiparty Computation using Shamir Secret Sharing
	The Trinocchio protocol
	Parameters for Efficient FFTs

	Security of Trinocchio
	Privacy against Active Attacks

	Handling Mutually Distrusting In- and Outputters
	Multi-Client Proofs and Keys
	Protocol Overview
	Security of the Trinocchio Protocol

	Performance
	Case Study: Multivariate Polynomial Evaluation

	Architectural integration and prototyping
	Conclusion

	Privacy of Image Processing
	Image Processing Techniques
	Content Based Image Retrieval
	Scalar Invariant Feature Transform
	Speeded Up Robust Features
	Shape-based Image Features

	Privacy-Preserving Techniques for Image Processing
	Content Based Image Retrieval
	Scalar Invariant Feature Transform
	Speeded Up Robust Features
	Shape-based Image Features
	Techniques in other Applications

	Performance and Security Analysis
	Efficient Implementation of Image Processing in SGX
	Software Guard Extensions (SGX)
	Overview of SGX-based Privacy-Preserving Image Processing
	Structure of SGX-based Privacy-Preserving Image Processing
	Adversarial model and related assumptions

	Other Encryption-based privacy-preserving components
	Context
	Some Notations

	Key Encapsulation and Deduplication
	Key Encapsulation
	Convergent Encryption for Deduplication
	Encrypted Data Storage Sequence Diagrams

	Proxy re-encryption
	Proxy re-encryption in a nutshell
	Cryptographic Basis
	Management of a File System
	High Level Specifications
	Sequence Diagrams
	A First Implementation

	Attribute-based encryption
	Attribute-Based Encryption in a Nutshell
	Main Ideas of the Scheme
	Sequence Diagrams

	Conclusion

	Data Anonymization
	K-anonymity
	Detailed Procedure

	Cost Metric
	Optimal Lattice Anonymization Algorithm
	Conclusion

	Conclusion and Future Work
	Bibliography

